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Simulation is a valuable tool in the
study of complex systems., This paper
discusses the fundamental principles of simu-
lation. Its intent is to provide sufficient
background in simulation that the potential
user would be encouraged to follow through
with additional study and soon come abreast
of the techniques of simulation.

I. INTRODUCTION

Simulation is defined as the development

of a mathematical-logical model of a system
and the experimental manipulation of the
model on a digital computer. Two basic

steps in simulation are cited in this defini-
tion: (1) model development, and (2) experi-
mentation. Model development involves the
construction of a mathematical-logical repre-
sentation of the system, and the preparation
of a computer program that allows the model
to mimic the behavior of the system. Once we
have a valid model of the system, the second
phase of a simulation study takes place -
experimentation with the model to determine
how the system responds to changes in the
levels of the several input variables.

The terms "model" and "system" are also
very important in the definition of simula-
tion given above. A system is a collection

of items from a circumscribed sector of
lity that is the focus of study.
a relative thing,

rea-
A system is
and we define the bounda-
ries of the system so as to include those
items that are deemed most important to our
objectives and to exclude items of Ilesser
importance. For instance, if our focus is
the operation of an outpatient clinic in a
hospital we will define the boundaries of the
system so as to include the physicians, nur-
ses, staff, facilities and services of the
outpatient clinic, while excluding all other
areas of the system.

A model is the means we choose to cap-

ture the important features of the system
under study. The model must possess some
representation of the entities or objects in

the system, and reflect the
which these entities engage.

activities in

The steps in a simulation study are as
follows:

1. Problem formulation - a statement of the
problem that is to be solved. This includes
a general description of the system to be
studied and a preliminary definition of the
boundaries of that system.
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2. Setting objectives - a delineation of
the questions that are to be answered by the
simulation study. This step allows further
definition of the system and its boundaries.

3. Model building - the process of captu-
ring the essential features of a system in
terms of its entities, the attributes or
characteristics of each entity, the activi-
ties in which these entities engage, and the
set of possible states in which the system
can be found.

4. Data collection - gathering data and
information which will allow the modeler to
develop the essential description of each of
the system entities, and developing probabi-
lity distributions for the important system
parameters.

5. Coding - the process of translating the
system model into a computer program which
can be executed on an available processor.

6. verification ~ the process of
ascertaining that the computer program per-
forms properly.

7. Validation - the process of
ascertaining that the model mimics the zeal

comparing the behavior of the
model to that of the real system where the
system can be observed, and altering the
model to improve its ability to represent the
real system. The combined steps of verifica-
tion and validation are crucial to establish-
ing the c¢redibility of the model, so that
decisions reached about the system on the
basis of the simulation study can be support-
ed with confidence.

system, by

8. Experiment design - determining the

alternatives that can be evaluated through
gimulation, choosing the important input
variables and their appropriate levels,

selecting the length of the simulation run
and the number of replications.

9. pProduction runs and analysis -
assessing the effects of the chosen input
variables on the selected measures of system
performance, and determining whether more

runs are needed.
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10. Simulation report - documenting the
simulation program, reporting the results of
the simulation study, and making commenda-

tions about the real system on the basis of
the simulation study. The implementation of
the these recommendations 1is wusually the

result of a decision by the appropriate mana-
ger in the organization.

II. PRINCIPLES OF DISCRETE~EVENT SIMULATION

The concepts of a system and a model of
a system have already been discussed. This
section expands on those concepts and estab-
lishes a general framework for discrete~event
simulation. The major concepts are briefly
defined and then illustrated with examples:

System - a collection of entities that inte-
ract together over time to accomplish a set
of goals or objectives.

Model - a mathematical-logical representation
of the system in terms of its entities and
their attributes, sets, events, activities
and delays.

System State - a collection of variables the
values of which define the state of the sys~
tem at a given point in time.

Entity - an object, item, or component of the
system which requires explicit representation
in the model.

Attributes - the properties or characteris-
tics of a given entity.

Set - a collection of associated entities,

Event - an instantaneous occurrence in time
that alters the state of the system,

Activity - a duration of time in which one or
more entities are engaged in the performance
of some function that is germaine to the
system under study, the length of which is
known at the outset.

Delay - a duration of time of unspecified
length, the 1length of which is not known
until it ends.

To illustrate these concepts, consider

the example of an outpatient <c¢linic in a
hospital. The entities in this system in-~
clude patients, physicians, nurses, and exa-
mining rooms. The attributes of a patient
include, for example, the nature of the
disorder, the time the patient arrives at
the clinic, and the type of insurance cove-
rage available. In fact, the patient's en-
tire medical history could form attributes of
the patient. The attributes of a physician
might include type of specialty, number of
patients in-process, and number of nurses
assigned, A set might include the patients
waiting for service, ordered by severity of
disorder and first-come-first-serve within
disorder priority. An activity might be
typified by the examination of a patient by a
physician, or the time required to perform a
X-ray procedure. A delay might be the time a

patient spends waiting to see a physician.
An event might be the arrival of another
patient into the clinic, the completion of

the examination on a patient by the physi-
cian, or the completion of an X~ray by a
laboratory technician.

The scheduling of events is accomplished
by a next-event approach. Time is advanced
from the time of a current event, t , to the
time of the next scheduled event, t . The
calendar of events consists of a file
containing the time and type of each of n
events, arranged in chronological order in
the memory of the computer. The simulation
program must have a mechanism for fetching
the next event that is scheduled to occur,
automatically advancing simulation time to
the scheduled time of occurrence of that
event, and transferring control to the appro-
priate event program. Figure 1 illustrates
the time-advance procedure in next-event
simulation.

Arflvnl 1 2 3 s n Al e Ar'rlval
Time g 37 ad T4 ClotK=l 7 ... Time
Between Successive Arrival Events, Other
Types of Events May Occur, Causing
System Stote 1o Chonge
FIGURE {. TIME~ADVANCE PROCEDURE IN NEXT—EVENT SIMULATION

The method by which events are placed in
the event calendar is extremely important.
One or more events must be initialized at the
outset of the simulation. Two techniques are
then applied to generate "future" events in
the course of the simulation. One such tech-
which refers to the

nique is bootstrapping,
process by which the occurrence of an event

is wused to generate the next occurrence of
the same type of event. This technique is
perhaps best illustrated by the arrival pro-
cess of patients in the outpatient clinic.
The first arrival is initialized to occur
just as the clinic opens, or shortly there-
after. When that arrival event occurs, the
time of the next arrival is immediately sche-
duled and placed in the event calendar.
Thus, arrivals generate new arrivals as the
simulation proceeds, The second method for
generating events is the next logical event
approach. For example, when a physician has
examined a patient he can (a) discharge the
patient, (b) schedule one or more laboratory
tests, (c) refer the patient to another spe-
cialist on the current visit, or (d) schedule

another visit. Having done one or more of
these, the physician can then take another
patient from the gueue, which 1is another

example of the bootstrapping approach to
event scheduling; that is, service completion
events generate subsequent service completion
events.

event-scheduling approach to
concentrate on events and
their effect on system state. In our out-
patient clinic example, system state is
reflected by such variables as the number of
patients in the system (clinic), the number
of busy physicians, the number of busy nur-
ses, the number of busy examining rooms, etc.

In the
simulation, we
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For instance, when a patient arrival event
occurs, it increases the number of patients
in the system by one, possibly increases the
number of busy nurses by one, and possibly
increases the number of busy physicians by
one. The word "possibly" is important,
since the newly arrived patient could only
activate a nurse or doctor if the nurse or
doctor is idle. A "patient discharge" event
reduces the number of patients in the system
by one and possibly deactivates a nurse or
doctor.

Thus, the occurrence of any of the
events which make up the model will bring
about a resultant change in system state.
The model must provide for recording these
state changes. This is usually managed by
taking one or more types of statistics at the
occurrence of each event. For instance, when
a patient enters or leaves the system, we
would wupdate a time-dependent statistic to
reflect the change in the number of patients,
whereas we would collect sample statistics
on the duration of time the patient spends in
the system. We might also update a counter
as the patient left an examining room to keep
track of the number of times that facility is
utilized.

A different outlook on discrete-event
simulation is provided by the rocess-
interaction approach. A process is a time-
ordered collection of events, activities, and
delays which are somehow related to an
entity. For example, the sequence of events,
activities, and delays encountered by a
patient in the outpatient clinic constitute a
process. Process-oriented simulations usual-
ly have many processes ongoing simultaneously
and involve extremely complex interactions
among these many processes.

ITI. DISCRETE-EVENT SIMULATION LANGUAGES

Discrete-event simulation models can be
developed using one of three general classes
of simulation languages: (1) high-level lan-
guages such as FORTRAN, pascal, Ada, or
C; (2) general-purpose simulation languages
such as GASP-1IV, Simscript, SLAM-~II, or
SIMAN; or (3) special-purpose simulation
languages such as GPSS.

FORTRAN, Pascal, Ada and C are high-
level programming languages which were
developed for a wide range of computing
applications. FORTRAN is the oldest of these
languages and has been widely applied as the
base language in simulation modeling, due
mainly to its being so well known and so
widely available on almost any computer of
sufficient size and speed to be able to
accommodate computer simulation, Almost all
simulation models developed directly from
FORTRAN have utilized the event-scheduling
approach. The recent emergence of smaller
microcomputers has led to greater use of
Pascal as a base language for simulation,
while the growing popularity of the Unix
operating system has led to more work with
the C language. These languages have not yet
been applied in commercially available simu-~
lation languages, but soon will be.

GPSS (Schriber, 1974), one of the first
process-oriented simulation languages, is a
highly structured special-purpose simulation
language which was designed for use
primarily with queueing systems. The later,
general-purpose simulation languages, notably
GASP-1IV (Pritsker, 1974) and Simscript
(Kiviat et al, 1973) were largely event-
oriented, but afforded more general con-
structs for model building. These languages
initially found favor among those simulation
modelers who had previously relied on FORTRAN
as the base language. SLAM-II (Pritsker,
1985) and Simscript II.5 (CACI, Inc., 1976)
evolved from GASP-IV and Simscript, respecti-
vely, and offer the analyst a choice of
either event or process orientations. SIMAN
(Pegden, 1986) also provides a choice of
orientations, but differs from the other
general~purpose simulation languages in that
it enables the analyst to develop separate
model and experiment frames, thus permitting
greater ease in experimenting with the simu-
lation model once it has been developed.

The special-purpose simulation languages
were designed to allow easy modeling in a
highly specialized area of application.
These languages have not found as wide an
application as the general-purpose languages
because analysts prefer to acquire simulation
tools that afford them greater flexibility in
a broader range of application environments.

IV. STATISTICAL TOOLS IN SIMULATION

The simulation modeler sees a probabili-
stic world. The time it takes a machine to
fail is a random variable, as is the time it
takes a maintenance mechanic to repair it.
Simulation modeling requires skill in recog-
nizing the random behavior of the various
phenomena that must be incorporated into the
model, analyzing data to determine the nature
of these random processes, and providing
appropriate mechanisms in the model to mimic
these random processes, This section
discusses the basic concepts in probability
and statistics as they relate to discrete-
event simulation modeling. Thses basic terms
are as follows:

Random variable - a variable X which can
assume any of several possible values over a
range of such possible values.

Discrete random variable - a random variable
X 1in which the range of possible values is
finite or countably infinite. For x, x2,.”,
p(x;) = P(x = x4 1) plxy YZ 0 for all i %p(x ) =
Contlnuous random varlable -~ a random vari-
able X in which the range of 90551b1e values

. = ®gxeo, Lf £(x) he pro-
%J;b}tlrl%y sdeeisflfy ]:fﬁig-t::é 5 };_ hen P (a‘xﬁb) f‘ £ (E) dx
Cumulatlve % tﬁon function - denoted
F(x), measures the probability that a random
variable X has a value less than or equal to
the value x, that is

F(x) = P(X < x)

If X is discrete, then

F(x) = L p(xy)

xig X
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If X is continuous, then For one trial, this eguation is called the
x Bernoulli distribution. The mean and
F(x) = J, £(x) dx variance of the Bernoulli distribution are
given by
Bxpectation ~ the expected value of the EX) = p
random variable X is given by J
V(Z;) = p(1-p) =pq
E(X) =2 x5 plxyg) if X is discrete 2. Binomial distribution. If we define
i the random variable X as the number of
successes in n independent Bernoulli trials,

and by

E(X) =_£a; £(x) dx if X is continuous.

The expected
mean and denoted by u .
moment of X. We can also define
moment of X as

value is also called the
It is also the 1st
the nth

E(XD) = E x; p(xi) if X is discrete

and as

EED =_°f°°° = £(x) dx if X is continuous.

From these results, we can define the
variance of the random variable X as

V) = E[(X - EX))2] = B[~ 1))

Useful statistical models in discrete-
event simulation include gueueing systems,
inventory systems, and reliability and main-
tainability systems. Underlying these
systems, however, are several very important
discrete and continuous probability distribu-
tions that we shall examine here.

Discrete Distributions

Discrete random variables are used to
describe random phenomena in which only
integer values of the random variable X can
occur. The probability distributions of four

such random variables which are fundamentally

important in discrete-event simulation are
discussed here.

1. Bernoulli trial and the Bernoulli dis-
tribution. Consider a random experiment
consisting of n trials in which each trial

can produce one of only two outcomes, success

and failure. Let X4= 1 if the jth trial
results in a success and Xj=0 if the jth
trial produces a failure. For example, let

the random experiment consist of the inspec-
tion of a manufactured assembly, and
"success" be defined as finding a defective
assembly. Thus, a defective assembly yields

the value X;= 1, while an acceptable assembly
yields the Vvalue Xj= O. (This viewpoint can,
of course, be reversed without altering the
model.) The n Bernoulli trials are called a
Bernuolli process if the successive trials
are independent.

The probability distribution for the

Bernoulli trial is Py(xy) = plxy) = {8=1-

%x:=1, i=1, 2,...,1 o>

x2=0, j=1,2,...,n

3 otherwise
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then X has the binomial distribution given by
Ty X n—X

p(x) = (x) P q x=0,1,2,...50
with mean and variance

E(X) = np

V(X) = npq

3. Geometric distribution. The geometric
distribution applies to the random variable X

which is defined as the number of Bernoulli
trials until the first success, and is given
b —
Y ®) = {qx lp X =1,2,...
P 0 otherwise

with mean and variance

ER®) = 1/p
2

V(x) = q/p
4, Poisson distribution. The Poisson
distribution describes so-called "rate
processes". For instance, the rate of occur-
rence of arrivals of patients at the
outpatient clinic in our earlier example
might well follow a Poisson distribution.
The rate of occurrence of bubbles per square
meter of plate glass, of pits per linear
meter of extruded copper wire, and of
failures of a milling machine might also
follow Poisson distributions. The Poisson
probability distribution is given by

p(x) =g« * % = 0,1,2,...

x!

with mean and variance

E(X) = «

V(X) = «

Continuous Distributions.
Continuous random variables are used to

describe random phenomena in which the random
variable X can take on any value in some real
interval. Seven continuous distributions
which are fundamentally important in
discrete-~event simulation are the uniform,
exponential, gamma , Erlang, normal, and
Weibull distributions. We shall consider a
few of these here.

1. Uniform distribution. A random
variable X is uniformly distributed in the
interval [a,b]l if its probability density
function, or pdf, is given by

£(x) = {

b-a
0

a<x<b

otherwise
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The cumulative distribution function, or cdf,
is given byo % <a
FX) = {xza a<x<b
1 x >b .
The pdf and cdf for the uniform distribution
are shown in Figure 2.

Hx}

02 preme——

Ol e

RN
FIGURE 2. UNIFORM pdf AND cdf

The mean and variance of the uniform distri-

bution are given by

E(X) = atb and V(X) = (b-a)’
2 12
The uniform distribution plays a vital
role in discrete-event simulation. Random
numbers, uniformly distributed in the inter-
val [0,1], are used to generate the random
variates X which give rise to random events.

Random number
later section.

generation is discussed in a

2. Exponential distribution. The random
variable X is said to be exponentially dis-
tributed with parameter X > 0 if its pdf |is
given by

f(x) =

-Ax X 20

Ae
The exponential distribution is used to model
interarrival times in a random process in
which the rate of arrivals is Poisson distri-
buted. In this case, A 1is the mean rate of
arrivals and 1/ A is the mean time between
arrivals. The mean and variance of the
exponential distribution are

E(X) =_1 and V(X) =1
A 32
The cumulative distribution function is given

by - Ax

F(X) =1 -e X >0

Figure 3 shows the pdf and cdf for the
nential distribution.

expo-

Hx) F{x)
A 1

© x ° x

FIGURE 3. EXPONENTIAL pdf AND cdf

3. Normal distribution. A random varia-
ble X with mean and variance has a normal
distribution if its pdf is given by
X Uy 2
fx) = _1 e_[“U 7] - o< x<®
0'21r

The normal distribution is illustrated in
Figure 4.

t{x)

®

FIGURE 4 NORMAL DISTRIBUTION
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V. RANDOM NUMBERS AND RANDOM VARIATES
Random numbers are an essential
nent of discrete-event simulation models.
Most computer languages have function or
subroutine that will generate random numbers
that can in turn be used to generate random
events or other random variables. In this
section, we shall examine how to generate (a)
random numbers, and (b) random variates from
several common probability distributions.

compo-

Properties of Random Numbers

A sequence of random numbers R,, R, ,
to be wuseful in discrete-event simulation:
(a) uniformity, and (b) independence. Unifo-
mity requires that each random number R is
an independent sample drawn from a continuous

uniform distribution in the interval {o,1].
That is, its pdf is given by
¢l 02 x< 1
£x) = {0 otherwise

as shown in Figure 2. The mean and variance
of the U[0,1] distribution are 1/2 and 1/12,
respectively.

The
numbers

only way to generate truly random
on a digital computer is to store a

table of such size to provide all numbers
needed during the course of a simulation.
This technique would require either very
large storage in main memory, or many

accesses of off-line memory, neither of which
is desirable. The alternative is to use a
pseudo-random number generator. Desirable
properties of such algorithms are as follows:

1. The routine should be fast.

2. The routine should not require large
storage in main memory.

3. The routine should have a sufficiently
long cycle, which is the length of the
sequence until the series begins to repeat

itself in the previous order.

4. The routine should avoid degeneration,
which is the condition of continuously
repeating the same number.

5. The random numbers should be replicable,
given a particular starting seed.

6. The generated random numbers should be
uniform and independent.

Techniques for generating random numbers
are as follows:

1. Midsquare technique.

This technique starts with an initial
number, or seed, consisting of n digits.
This number 1is sqguared, and the middle n

digits taken as the next random number.
random number R
a decimal

The
is found by simply placing

before the first digit in the n-
digit set.
2. Midproduct technigque.
Two initial seeds of n digits each are
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used to start the sequence. These numbers
are multiplied, and the middle n digits taken

as the next number in the sequence. This
process is repeated as often as needed. This
process 1is illustrated with the following
example.1
Let X, = 7143 X = 1689
Then, U; = Xg X,=(7143)(1689) = 12,064,527 +X,=
0645 and R 0.0645 '
(1%89)(0645) =1,089, 405-*x2—0894 and
R 0 Oé
U3~x X,=(0645) (0894)=576,630~> . =5766 and
Ry= =0. 5766
3. Constant multiplier technique.

A constant K is used as a multiplier of
a seed X . The middle n digits are taken as
the next number in the series, and the pro-

cess 1is repeated. The example below illus-
trates this process.
Let K=4552 X0=6129
Then V1=KX =(4552)(6129)=27,899,208~>Xl=8992 and
1 =0.8992
V=KX= (4552) (8992) = 40,931,584 + X,=9315 and
2~0 .9315
3—KXZ=(4552)(9315)=42,401,880 -+X3=4018 and
3 =0.4018
4. additive congruential method.
. The method by which values are generated
is
Xi = (Xi_l + Xi—n) mod m

where, by definition, a =
divisible by m with zero

b mod m if (a-=b) is
remainder.

5. Linear congruential method.

Using an initial seed X, a constant
multiplier a, a constant increment ¢, and a
modulus m, random numbers are generated using
the following recursive relationship:

X =

(aX + c) mod m i=0,1,2,...

It is necessary to test random numbers
for validity as follows:

the
test,
of

1. Frequency test -
Kolmogorov~Smirnov or the Chi-Square

test whether the distribution
the generated set is U[0,1].

using either

2. Runs test - tests runs up or down, or
above ~or below the mean, using a Chi~Square
statistic.

3. Autocorrelation test - tests the corre-
lation between numbers in the series.

A gap test and a poker test should also be
used. A standard text in statistics should
be consulted to see how to apply these tests.
Once a reliable random number generator has
been ascertained, the analyst can go on to

12

using these numbers to generate random varia-
bles in the simulation.

Random Variate Generation

Assuming the availability of a source of
random numbers from the U[0,1] distribution,
random variates from specified probability
distributions can be generated from one of
the following three methods: (1) the inverse
transform technique, (2) the convolution
method, and (3) the acceptance~rejection
technique.

1. Inverse-transform technique
A four~-step procedure is described
below, and illustrated with the exponential

distribution:

Step 1. Compute the cdf of the desired ran-
dom variable X. For the exponential distri-
bution
F(x) = 1 - e **  y30
Step 2. Set F(X) = R.
-A
1l ~e * o R
Step 3. Solve for X in terms of R.
1 - é-lg R
-A
e %L 1 -R
-A X = 1ln(l - R)
X = =1In(l - R)/ A
Step 4. Generate random numbers Rl' Rz, Rg
rees and compute the random variates X1
Xz, XS gees
2. Convolution method.

The probability distribution of the sum
of two or more independent random variables
is called a convolution of the distributions
of the original variables. For instance, the
BErlang random variable X with parameters (K,
©)can be shown to be the sum of K independent
exponential random variables X, Xp,..., Xg .
An.Erlang variate can be generated by summing
K exponential variates.

Normal variates are generated by exploi-
ting a result from the central limit theorem
which asserts that the sum of n independent
and identically distributed random variables
Xy ’ Xo, 2..., X xr each with mean Wy and
variance Oy is approximately normally dis-
tributed w1th mean zeroand variance one .

Applying this result to uniform variates
U{0,1}, which have mean 0.5 and variance
1/12, it follows that

n

% R.- 0.5n

7 = 1

i=1

is approximatelyn normally distributed with
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mean zero and variance one. One could sum
various numbers of U[0,l1]} variates, but n =
12 is convenient agnd efficient. To generate
a variate N[ M y,Oy 1, simply apply the trans-
formation

3. Acceptance-Rejection Method

In this method, the
random number or random
this gquantity to a test to determine if it
meets pre-established criteria, accepts the
quantity if it passes the test or rejects the
quantity if it fails the test. The proce-
dure continues to generate random numbers or
variates and test them until a sufficient
number of them pass the test.

analyst generates a
variate, subjects

Banks and Carson {1984) describe proce-
dures for using the acceptance-rejection
-method to generate Poisson and gamma random
variables, Fishman (1973) and Law and Kelton

(1982) give extensive treatments of the sub-
ject of random variate generation.
VI. ANALYSIS OF SIMULATION DATA

Competent simulation modeling requires
careful analysis of input data as well as
output results. Input data form the base on
which realistic models are derived. The
expression 'garbage in - garbage out" should
be the motto of the simulation analyst in

treating input data.

Input Data Analysis

There are four steps in developing a
valid simulation model: (1) data collection;
(2) identifying the underlying probability
distributions; (3) estimating the parameters
of those distributions; and (4) using the
estimated parameters and the assumed distri-
bution, test goodness-of-fit. This section
discusses porcedures for input data analysis.

the data collec~
unusual circum-
discarding cer-

Data collection. Plan
activity. Be alert to
stances which might warrant
tain data elements. Perform data analysis as
the collection activity is underway. Employ
scatter diagrams to visually examine the data

1.
tion

for correlation among variables, Look for
so-called autocorrelation in time-series
data.

2. Identifying the distribution. Construct

frequency histograms to give an indication of
the shape of the probability distribution.

3. Estimating parameters. If the
observations in a sample of size n are X, Xy
variance from the expressions

n

X=1/n I X and
=1
' n 2
s%=1/n-1 [Zx? -nx]
If the dafa ‘are grouped into a frequency
distribution, it is usually more convenient

to compute the sample mean and variance from

13

. k

the relatloni = 1/n L £.x. 4 X

j=1 41 @ gt s

f.x% ~-n ;2] =1
.7 Goodness-of-fit tests. The two most
important tests of goodness-of-fit of an
assumed distibution to a theoretical distri-
bution are the Kolmogorov-Smirnov test and
the Chi-~Square test. The K-S test is typi-

50
-test is applied to

cally applied to sample with fewer than
observations, while the

those with more than 50 observations. Banks
and Carson (1984) give a detailed treatment
of these techniques.

Other techniques which are often useful

in analyzing input data are linear and multi-
ple regression, correlation analysis, and
time-series analysis. When a thorough analy-
sis of input data has been completed, the
analyst 1is then prepared to construct the
simulation model.

VII. VERIFICATION AND VALIDATION

During the process of model-building,
the analyst must employ procedures to ascer-
tain the credibility of the simulation model.
The first of these steps is called verifica-~
tion. The purpose of model verification 1is
to assure that the conceptual model is accu-
rately reflected in the computer code. The
first step in this procedure is to develop a
flow chart of the model. This helps the
analyst organize the computer code as it 1is
being developed. The unfinished computer
code should provide for printing numerous
traces and intermediate results so that the
analyst can finds flawed results easily
should they occur.

Model validation is the process of com-
paring the behavior of the model to that of
the system it is intended to represent. The
first goal of the simulation modeler 1is to
construct a model that appears reasonable on
its face to prospective model users. He must
then examine the structural assumptions and
the data assumptions of the model. Structu-
ral assumptions are those that relate to how
the system operates. Data assumptions are
those related to the form of distributions,
parameter estimates, goodness-of-fit tests,
etc. We have already seen how to perform
this analysis. The wultimate test of the
model is its ability to predict future beha-
vior of a real system, including perhaps
under conditions which may be only proposed.
To accomplish this, it is necessary to com-
pare the behavior of the model to that of the
system under conditions at which the system
can be observed. An important means of model
validation is to compare the performance of
the model to that of selected, applicable
analytic models. Although the assumptions of
the analytic model may have rendered its use
inappropriate for the system in question, by
ascertaining that the simulation model gives
comparable results when run under the same
assumptions as the analytic model is valuable
insight into the behavior of the simulation
model.
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Qutput Analysis

Once a valid simulation model is avail-
able, the next step in the simulation study
is to use the model to predict the
performance of the system, If the
performance is measured by a parameter ©0 ,
the result of a simulation experiment will be
an estimate © of O . The accuracy of © can
be measured by its variance. These estimates
are called point estimates, and are computed
from the time series of n observations {Y %

n} by the relation

I‘

Feeey

0 =
r

z
i=1

A second type of estimate produced by a simu-
lation run is the interval estimate. For
instance, the 100(1 -o )% confidence interval
for the parameter 0 is given by

0 - o®i< 8208 +¢t, /2,89 @:

le/nr r=l,...,R

w2, £

where

tg /2,fis student's t-statistic at
and

is ¢he number of degrees of
which is a function of the

g (6) If {Y 1,Y¥Y2,...,¥%} are
1ndependent observations, then
variance is computed from

OL/Z
freedonm,
estimator for
statistically
the sample

£

= 1/n-1 Z (Y -0 )
i=1
If they are not independent, other means must
be employed. An important part of the
output-analysis phase of a simulation study
is the design of simulation experiments.

This involves identifying a set of dependent

or response variables Y. j=1,...,m which
are assumed to be func%lons of the set of
controllable or independent variables X;, i =
l,...,n. Some of the techniques used for
this purpose include (1) designed experi-
ments, (2) regression analysis, and (3) stat-

istical tests of hypothesis.
has presented a thorough treatment of the
statistical techniques used in simulation
output analysis.

Kleijnen (1975)

VIII. SUMMARY AND CONCLUSIONS

This
principles

paper has reviewed the concepts,
and techniques of discrete-event
simulation. This discussion should be viewed
as a guide to the approaches one should
follow in conducting a simulation study, but
should not be construed as an exhaustive
treatment of the subject. The following
references include several that enable the
simulationist to select a modeling language,
several that are useful in input and output
analysis, and several that are important in
overall simulation philosophy. Anyone en-
gaged in serious simulation modeling efforts
should have many of these references at hand.

Finally, it should be stressed once
again that computer simulation cannot replace

sound analytic modeling in those instances
where analytic models are applicable. In
more complex real-world situations, however,

computer simulation is an indispensible tool
for successful analysis.
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