Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

THE SCRIPT PROCESSING TECHNIQUE IN MODELING/SIMULATION

AND ITS ROLE IN THE GENERATION OF ANIMATED COMPUTER GRAPHICS

Robert E. Sheridan
The BDM Corporation
Albuguerque, New Mexico

ABSTRACT

The script processing method provides the modeler with
an extremely powerful technique for developing simulations
of force-~on-force engagements that are detailed and/or complex
in nature. Through the use of the script processing technique,
it is possible to simulate the actions and reactions of
opposing forces (logically) in parallel on a computer with
a single CPU. The cornerstone of this technique is the input

script and associated processing software. Many different
scenarios and tactics can be played easily due to the
flexibility of the script concept. Just as a script directs

players within a framework of scenes and activities for a
screenplay, the simulation script directs elements in
particular actions such as movement, weapon firing, et cetera.
It also provides for contingencies based on the recognition
of script~defined situations.

The script concept lends itself as a natural driver
to control the production of computer generated motion
pictures. The discrete script events dictate the plot of
the animated film and describe the movements and interaction
between the picture elements. By algorithmic interpolation
between script events, the discrete script format can be
filled in to simulate +the analog film medium. The
Transportation Safeguards Effectiveness Model (TSEM) is a
good example of the use of the script processing technique.
This program will be used to demonstrate the above mentioned
techniques in simulation and animated motion picture
generation.

The graphics can also serve to guide the creation of
macro/micro terrain features for the simulation scenario.
In this way, the modeler has control over the placement of
obstacles to both movement and line-of-sight calculations,
for example. Also, the discrete script generated event vectors
can be created off-line, a movie produced and viewed, and
decisions made concerning the viability of this particular
script. These capabilities enhancé the instruction and
training of defender force configurations.

BACKGROUND

Script processing is a modeling technique the script concept when implemented with
that provides for the processing of player an event-driven architecture lends itself
interactions by means of a special input as a natural driver to control the
structure and a parallel processing production of computer generated graphics.
simulator (that is input/event driven).

The .script processing method provides The main basis for the script processing
the modeler with an extremely powerful technique is provided by the script. The
approach for developing simulations of script is the input medium for defining
detailed/complex small force-on-force the engagement scenario. The script directs
engagements. It provides a story input elements (players, vehicles) in particular
format (the input script). In addition, actions such as movement, weapon firing,
script processing simulates processes and tactics, and it also provides for
that normally occur simultaneously. Lastly, player assignments. In a real sense,

819

R. E. Sheridan

the simulation script resembles a screenplay
in +that the script directs players and
objects within a framework of scenes and
activities.

SCRIPT PROCESSING IMPLEMENTATION

The present implementation of the script
processing methodology incorporates a
major improvement that was designed and
developed by the author and colleagues.
This innovation consists of the addition
of contingencies to the script and their
associated processing. ‘This feature
provides the ability to make the performance
of player/vehicle actions contingent on
the occurrence of special events (for
example, player killed, player reaches
location, and ‘so. forth). Another
significant enhancement is the provision
of a mechanism {(that is, the script input
language and processor) for expressing
the script in an English-like manner instead
of a numerically encoded form. A detailed
discussion of the present script processing
implementation follows.

Structurally, the script consists of three
building blocks which are the instruction,
the segment, and the .process. An
instruction provides the means for defining

player actions, assignments, or conditional
logic/decision making requirements. The
script segment is a continuous group of

one or more script instructions beginning
with a labeled instruction and terminating
with a "wait" instruction. A process
contains one or more script segments which
are related to a common scenario threat
or theme. In a typical engagement scenario
involving two opposing forces there would
be at least two script processes (a minimum
of one script process for each side). The
script structure is illustrated in figure 1.

SEGHS
’}_EHT

PROCESS A PROCESS B INSTRUCTION 1

IHSTRUCTION 2

SEGHENT .
B-1

.
"HALT"

SEGHENT
% e

SEGRENT ©
B-2

7N\

SEGHENT
A2

——

SEGHENT
SE[G‘I:]'EHT B

Figure 1. Script Structure

A functional overview of
processing methodology
figure 2. This figure
the discussion of the

methodology that follows.

the script
is presented in
is referenced in
script processing

820

SCOREBOARD
DATA

-
.

. .
PROCESS A STTUATION
. FLAG

. /
L
.
SEGHENT 1 SCRIPT CONDITION M

PROCESSOR BRANCH
PROCESSED

STTUATION
RECOGHIZED

EVENT
LisT
.

CORDITION
X 3
.

)
| SEGHENT

EVENT
PROCESSOR

. PROCESS B

Figure 2.
Functional Overview of the Script Processing Method

In script processing, there are two model
execution states. The first state is
embodied in the processing of the script

instructions by the script processor. The
second state consists of the processing
of script-generated events by the event
processor,

The processing of script instructions
is the initial model execution state. The

user selects via the script input language
which script processes are to be processed
first. The processing of script
instructions is performed sequentially
starting with the first instructions of
the first segment of each process. Action
type instructions generate events.
Conditional logic instructions generate
"situation" flags that are stored in data
structures called scoreboards. Scoreboards
contain data which reflect the entire
state and condition of execution of the
computer model. Each process has a
scoreboard that defines associated players,
active contingencies (that 4is, what can
cause changes 1in the activities of the
players) and the location in the script
that is currently being processed (if
the process is not in the ‘"wait" state
defined below).

The processing of script instructions
continues until all processes are in the
"wait" state (that is, WAIT insttuctions
have been encountered in all processes).
When this occurs, model execution shifts
to the event processing state. Events
that were generated in the script processing
state are now executed from a time-ordered
queue. Some events, such as player
movement, may gJgenerate additional events
referred to as micro events. In addition,
the performance of certain events may
cause future events to be cancelled. For
example, when a player is killed, all
of his future movement and firing events
are deleted. In the case of movement,

Seript Processing Technique in Modeling/Simulation

these micro events are responsible for
moving a player from one point to another
by taking into account terrain features
and opposing player positions. The event

processing state continues unless a
“situation™ is recognized (satisfied).
If this occurs, model execution shifts

to the processing of script instructions

that are specified by the conditional
logic instruction (that defined the
"situation"). The script processing state

will continue wuntil the “"wait" state is
reached and then, model execution will
again shift to the event processing state.
Model execution will continue in this
fashion until all events and script
instructions have been processed.

THE TRANSPORTATION SAFEGUARDS EFFECTIVENESS
MODEL

A model that effectively utilizes the
script processing technigque is the TSEM
(Transportation Safeguards Effectiveness
Model). TSEM is a monte carlo,
event-stepped computer model which plays
a two-sided engagement between courier
defender wunits of an overland shipment
of special’ materials and terrorist attacker
units of varying degrees of sophistication
and training. An overview of the TSEM
functions and capabilities follows.

The players in TSEM (i.e., persons and
vehicles) are directed by a script which
includes actions (movement, firing, and
dismounting) and contingency situations
(player or vehicle at a location, players
dead or incapacitated, attack started).
The script is reentrant and several sections
may operate in parallel to direct different
groups of players. At least two parallel
sections operate concurrently; one for
the attackers, and one for the defenders.
The script 1language has statements to
create a new parallel section (called
a script process) and associate it with
a group of players. Associated with a
script is a user defined data file
containing information that establishes
intitial conditions for the scenario (for
example, location of attackers at the
start of the scenario, initial number
of rounds per clip, etc.). The implemented

script instructions are summarized in
table 1.
Table 1. TSEM Script Instructions
INSTRUCTION LOIMENTS

START LABEL 3, LABEL 2; Activate script processes labeled LABEL 1
and LABEL 2.

HAIT: Terninates a3 script segment.

PERETRATE; An instruction to attacker forces to attempt
to penetrate the cargo vehicle and recove the
special raterfals,

FIRE, FIRER » P[RsOHLlsT {WEAPON), lnstrucnnn to fire a weapon with type defined

TARGET « PLAYERLIST WEAPOH,
WHEN (PLAYERLIST conmnu.'l) THEN GO TO LABEL Condmonal Togtc/decision making comnand,

implemented condftions lre ACTIVE, INWACITAYED
ATTACKED and AT (X Y2,

GET {PLAYERLIST)3 Assn:lms player(s) or vehicle(s) with a sceipt
pro

MOVE, MOVEE = VLAVERLIST GOAL = (X, 1,), Hoves phyer(s) or vehicle{s) from present
SPEED REAL Kunas lecation to

DISMOUNT, DISHOUNTEE = PERSONLIST, GOAL = (X, ¥, 2), Similar to HOVE except specialized for deployment
SPEED » REAL HUMBER; from a vehicle(s).

The battles take place on a two-dimensional

surface with terrain and vegetation
superimposed. The line-~of-sight
interruptions due to vehicles, terrain
and vegetation features are correctly

calculated and taken into account in firing
allocation (i.e., people will not fire
at opponents they cannot ‘'see"). The
battles progress until all people on one
side are killed off, a preset time limit
is reached, or cargo wvehicle penetration
is successfully completed. A movie can
be produced which shows the course of

battle, including player movements and
shots fired.

Finally, TSEM features a rather detailed
casualty assessment submodel (BDM Report,
1977). This TSEM submodel includes postures

(standing, crouching, prone, kneeling,
sitting), presented angle, and possible
immediately adjacent shielding. The
vulnerable areas of the body are
approximated by rectangles and the
appropriate conditional probability of

incapacitation (given a hit) is used on
each one. The TSEM casualty assessment
submodel represents a major improvement
over other existing models (for example
SIAF, 1973 and ASARS, 1973) with respect
to the level of detail utilized in modeling
the human body in a variety of postures
and shielding aspects; with respect to
the wuse of conditional lethality data
for various body parts; and with the respect
to the fact that battle times were increased
by approximately an order of magnitude
based on comparisons with the SIAF (Small
Independent Action Forces) model (SIAF,
1973).

EXAMPLE SCENARIO AND SCRIPT

In figure 3, a snapshot of an example
TSEM scenario during execution is presented.

O DEFENDERS (3), DUl
O ATTACKERS (3), AUl
[T CARGO VEHICLE (1), DV1

Figure 3. TSEM Scenario Snapshot

R. E. Sheridan

a vehicle carrying special
stopped along a road
of an explosive

In this example,
materials has been
due to the detonation
device placed by an attacker force of
three members. Also depicted in this
figure, are three members of the defender
force deployed outside of the cargo vehicle
in defense of that, vehicle. For
convenience, the three defenders have
been grouped as defender unit 1 (DUL),
the three attackers have been grouped
as attacker wunit 1 (AUL) and the cargo
vehicle is referred to as defender vehicle
1 (DV1). The objectives of the attacker
force are (1) to kill (incapacitate) all
of the defenders, and (2) to penetrate
the cargo vehicle. Conversely, the defender
force goal is to kill all of the attackers.
The portion of the script that describes
the scenario snapshot is presented in
figure 4. A brief discussion of each
script instruction for this example follows.

START ATT1, DEF1;

ATTL: GET (AUL);
FIRE, FIRER = AUL(10); TARGET = DUL;
WHEN (DU1 INCAPACITATED) 6O TO ATT2;
WAIT;
ATT2: PENETRATE;
WAIT;
DEF1: GET (DUL);
DISMOUNT (DU1);
FIRE, FIRER = DU1(8), TARGET = AU1;
WAIT;
[]
L]
[J
Figure 4. Example Script
The START instruction informs the script

processor of the two names of the processes
to begin processing. The first process
which defines the attacker scenario consists
of the two segments labeled ATTL .and ATT2.

As depicted in this example script, the
defender force process consists of only
one segment (labeled DEFl). The GET

instruction in the segment ATTLl associates
attacker unit 1 with this process. The
FIRE command instructs attacker wunit 1
to fire at defender unit 1 with weapon
type 10. It dis the event processing
software that performs the required
line~of-sight, detection and identification
calculkations and the associated casualty
assessment determinations. If the condition
specified in the WHEN script instruction
is satisfied, then segment labeled ATT2
will then be processed. This segment
contains only the PENETRATE instruction.
The PENETRATE instruction is a special
TSEM macro command. For this example,
this nmacro command directs that all
surviving attackers move to the cargo
carrying vehicle to attempt to penetrate
this vehicle. The GET instruction in

822

the segment labeled DEF1 associates all
members of defender unit 1 with the defender
process. The DISMOUNT command is another
example of a macro command. It directs
that all members of defender unit 1 move
from the cargo vehicle and deploy themselves
at predetermined locations around the
cargo vehicle. The FIRE command directs
that defender unit 1 fire at the members
of attacker unit 1 with weapon type 8.

TSEM GRAPHICS

of force~on-force
scenarios that are
when the simulation
output involves only a printer listing.
The positions, movements, and interactions
of the players amongst themselves and
with their environment (scene) are difficult
to visualize at best. One can spend hours
analyzing why player defender 1 didn't
fire upon player attacker 3 at 5 minutes

Even simple
engagements generate
complex to analyze

scripts

into the fire £fight. Was he out of
ammunition? No, we check the scoreboard
of player data and see that he has several
clips left. Wa's he wounded and
incapacitated so that he couldn't fire?
No, the data reveals that he was not
wounded. Was he moving to a new location

or involved in some other activity which
occupied his full efforts so that he didn't
have time to fire? No, he was just standing
in a fixed area. Did he have line-of-sight
to attacker 3, and so forth?

This and other necessary analysis efforts
dictate computer graphics for information
display and, in particular, animated motion

pictures. Even the most sophisticated
and elegant simulation 1is worthless if
the results of the simulation cannot be
interpreted. Large engagements involving
many players and complex interactions
producing reams of listings may lend
themselves to misinterpretations and
negative effects. This is especially
true where human lives are potentially
involved, as in wargame simulations
resulting in policy decisions. Thus,
the graphical illustration of simulation
results is a necessary and integral part
of any such code. Indeed, they are
inseparable. With this basis, then, the
mechanics of constructing the complete
simulation with script, scene, action

and motaon picture results are discussed
in the following paragraphs.

An intriguing situation which arises in
computer simulations, such as TSEM,
utilizing graphics for information display,
is in the definition of the player universe.
Initial development possibilities fall
into three categories. First, the scene
can be defined and the script written
to utilize its peculiarities. Secondly,
a given script might indicate the best
way to construct the terrain. Finally,
the scene and script can be developed
simultaneously to maximize the interactions
of player and environment. In some
instances, the choice is dictated by that
element which is of greater importance.

Script Processing Technique in Modeling /Simulation

For example, if the simulation is designec
to evaluate defense configurations against
penetration at a nuclear fuels repository,
then the scene or layout is fixed. The
attackers are varied in numbers anc
configurations, as are the defenders,
along with weapon types, motivation, &
priori knowledge and so forth. The script
which directs the player interactions
and governs decisions during the course
of the engagement is also varied. Here,
and especially in the case of an established
facility, the terrain is known and £ixed,
and the script controls all the what ifs'
in repetitive runs of the simulation.
The opposite situation occurs when the
scene is constantly changing and the script
remains constant. In this situwation,
a particular defender and attacker
configuration and script are analyzed
in varying environments to test for wide
applicability. .In the example, a fixed
defender force <can be implemented at
different sites and then the engagements
simulated. Finally, the most interesting
case is that where both the script and
the scene can be varied. This is usually
not done in any one particular computer
run because of the complexities involved
in the analysis and comparison of the
results. Thus, there exists an interactive
bond between the script writer, the scene
layout producer and the analyst in the
classic war gaming simulation environment.

Separating the elements of scene and script,

momentarily, it will be assumed that some
agreement or plan has been reached in
a specific force-on-force engagement. it

is now necessary to generate a description
of the player universe in a form that
can be processed by a high speed digital
computer and that is compatible with the

rest of the simulation code. For TSEM
several factors dictated a macro-terrain
structure generated by x, y -~ coordinate

data and accompanying elevation information
in the =z =~ axis. The most important of
these factors was the desire to reproduce
a known terrain via a U.S. Geological
Survey Data tape formatted in the Universal
Transverse Mercadian (UTM) mode. These
tapes were produced by aircraft or satellite

mapping and have elevation resolution
accurate to 1 meter. Programs exist which
can strip out any particular window in
degrees, minutes and seconds of latitude
and longitude, producing a £file of the
area of interest. This file may also
be produced via the brute force method

of digitizing a contour map of the desired
area, or an interactive graphics package
and CRT can be utilized to generate the
data file. These last two methods are
not as accurate or as fast in replicating
the existing terrain as the UTM data tape.
A second factor for the mathematical
description of the terrain is in the
line-cf-sight algorithms in the fire
allocation subroutines. These algorithms
require coordinate position information
along with elevation data to perform their
calculations. Any terrain information
not in this form would have to be converted

the

and duplication of information would result.
Figure 5 illustrates the various input
methods discussed. The final result 1is
a file of elevation data
which is "ground-work" for
the micro-terrain features.

coordinate and
utilized as a
of

addition

(-.@)9 -

U.S. GEQLOGICAL SURVEY
UTH DATA TAPE

CONTOUR HAP

oF
VATION DATA
ELE JHTERACTIVE
GRATHICS

SOFTUARE PROGRAN TO
FORIAT TAPE BATA
TERIIAL

DIGITIZER

© ESTADLISWIENT OF COORDINATE SYSTEN AND UNIVERSE FOR SCRIPT
© HACRO-TERRAIN FEATURES FOR PLAYER CHOREGGRAPHY

Figure 5. Generation of Script Action Environment

Tbis. file can be displayed on a CRT for
viewing and further analysis can be done

such as generation of 1lines of constant
e}evation to produce a contour map.
Figure 6 shows a 3-dimensional display

of some macro-terrain data and the projected
contour lines. The generated contour
map along with +the 3-dimensional image
is then used to check the macro-terrain
data file for accuracy and any changes
accommodated either interactively with
CRT or by -appropriately editing the
data file in a batch mode.

%
NN

QO “‘\\\\\\\“
>

Figure 6. Macro-Terrain Data
Building upon the macro-terrain we can
add micro-terrain features to customize

the landscape and simulate various seasons
and weather conditions. The process was
implemented in TSEM by using polygons
placed within the coordinate system. Within
any particular polygon a vegetation class,

soil type, or positive or negative
undulations were defined. Thus, vegetation
classes such as heavy forest, swampland,
savannah brush or high mesa can be
implemented; soil types such as sandy
or hard packed clay defined (which
influences mobility); and individual

R. E. Sheridan

boulderg placed. Also, obstacles suct
as ravines, ditches, lakes and rivers
and their dimensions can be defined anc
l9cated. Figure 7 shows an example of
micro-terrain features. Again, as witlh
the macro-terrain, this file can be editeé
to produce the desired scene layout.
i
B N
_ vcsi)g/
a ViotL 9
4 08 \24\\‘
;]
/ /
g i /
Y
g w:'a.l s E3ncag. 3 £s
e | 1 I}
28 ; i =
: WV
a4 L ! HICRE....2.
e e A R
|1 A ™~ {
a L3 aa 7 i AY
,/ \\ﬁ vioow 3
o '{’ HICRCL | S !:"\
& — Vi /I
. /
) S 4 \ S~ /s
° 0 0.0 1090 IS!.I!I'Wla : 0 00
X-DIRECTION
Figure 7. Micro-Terrain Vegetation Polygons
Finally, the macro and micro-terrain
features combine to completely define
the player universe as shown in figure 8.
Figure 8. Terrain Data
The established environment of the

fire-fight can serve to bound the endless
possibilities of valid scripts. One would
not knowingly position attackers where
they would not have line-of-sight to their
targets, nor would one direct players
to move to a goal that they cannot possibly
reach (viz. across an unnegotiable ravine).
Thus, the script can more realistically
represent viable realities and options
in the physical world. Hence, the off-line
development of the terrain data file serves
to shape the script in addition to being
directly involved in the simulation

824

calculations and utilized in the graphics
program, as shown in figure 9.

Gy

\VIHFUI

SCRIPT

e
|‘

.~
AN

outPuT

SHULATION
BvEnTS

Figure 9.
The Script Driven Simulation and Graphics

A§ the TSEM execution progresses, the
simulation events are produced by processing
the script. These events are formatted
and collected in a file to later drive
the movie generating program. An example
of a fire event and a movement event are

shown in figures 10 and 11, respectively.
s e
ot pave oty
NLANING 3 1] 3 & S 3 1 1]
Lt TN T™E oF n n THRE OF MUND SIuE
it T | mias | omeem | MRS | e | wiih
sicis 3 et 1 o o § e | e
(rIKC LVINT) OF CASUALTY. JaVEIHICLE TiMR TARCLT AsvnIteLe
{rngy ASL3SINT TeREASON 2e0TRSOR Qnpss
oF sHoT 1-HIhoR. @ BLFLTLR
2+5AJ0R AeATTACLER
i
fre
Stcass 2 ?.:L“ T 3 112 1
\AY TINE 71,3646 SICONDS ATTACLCN)|f(PLRSON}
SIOT AT BUFLATEN 1 (FCRSGR) WD mISSED
B
MRS 22029 !))}) 01
AT TIME 1 0500 STCONDS ATTACKIR 3 (FERSON)
$HGT AY DIVEKGER VEMICLL X, (MIT I3 ASSUD OX
ANY S1OT AT A VeKICLE)

lﬁwmlm Hovie Fire Event Output

Voxd Y

OUTRUT LIVE LastL
M anIRG 1 k] 3 [3 [i []
P wier e e » 10t eIz wetr | acceitmrnion
3 oot R ATFILIA
sartx 1 ot LAY o T1ed moees Ropats | murees rex
Tint noviRG ana rune yrx f1a1con. sk
rovtrtat ponty | rovton B NG sieuts | KETNICALY)
STaxie tavocee oF AIMLCTION
ool o-nertxorx oVInG
1-ATHACMR
toneny e

SIVTA ocad t 1 0 250000 4 0000 0,0000
R torr v DU
AT CAL TINE ¢ & SICON0S, DCHLALED ALNICLF | STARTS nOVING

AT 23 0 NEVOIS PER S260ND I & DIRECTION O 0 0 JADIAKS VITH KO
ACCLLERATEOR,

BXANPLLS
smovid 1 2. L 3 0 3.0600 SNy 5940
AT AT Tird OF 2,0 SLCLemS, SUFFMLIR™S VINIELL 3, JRAVFLLING
AT 23 0 1ENED Prk 5ILMD ALLING 10 LHCT)LLIATE AT § 9ACA MuliRS/
SLE JAXING A DIKECHIUN ©F 3,3917 RALIANS,
Figure 11. lMovie Movement Event OQutput
It is important to note that different
types of event vectors are handled
differently within the graphics code.

A fire event produces a vector drawn on

the screen from the firer to its target
at the time of the shot. This is then
repeated for 1 second worth of viewing

Script Processing Technique in Modeling /Simulation

time on motion picture film for analysis
purposes. A movement event is much more
involved in its graphical representation.
This is due in part to the translation
from discrete events to the analogue £ilm
medium. The player's position must be
updated each frame based on its last
position, direction, speed, and acceleration
or deceleration, if any. This requires
memory from frame to frame in addition
to the calculations wupdating the data
every 1/24th of a second.

The illustration in figure 12 represents
a frame from a TSEM computer-generated
movie of a firefight between attacker
forces deployed at the ambush sight, and
defender forces traveling through the
site in various convoy vehicles. Referring

400.0 A

A3 MR*
350.0)

300.0 Lice 4

SORLEL 2

Y-DIRECTION

-,
—
\ o a7
. vencL 12
Y
kY
»

Litog 7 %2/ g . o—

X3 /- 04
S
%5705 N gy

4
AS

0.0

T T T T 1
200.0 250.0 300.0 350.0 400.0

X-DIRECTIO0H

T T T
0.0 $0.0 100.0 150.0

Terrain-Vegetation Scenario Example

to figure 12, terrain
features include a heavy forest (VEGCL
12), sandy soil (SOILCL 2), boulders
(MICRCL 5), a ravine (LINOB 3), and a
dike (LINOB 4) situated as shown near
the ambush site. The defender cargo vehicle
(CV) and escort vehicle (EV) have been
stopped along the road (LINOB 7) and
defender players 1 through 6 (DI-D6) have
dismounted. After stopping the convoy
by detonating explosives in the road or
firing upon the vehicles, the attackers

Figure 12.

and vegetation

(Al-A6) then proceed to engage the defender
unit. (In a TSEM movie, a general overhead
view (or plan view) is maintained and

micro-terrain features eliminated to avoid
clutter and to view the entire firefight.
A zoom close-up is incorporated toward
the end of the film as the attackers attempt
to penetrate the convoy security.
Additional information such as casualty
lists for both sides and scenario clock
are included as the battle progresses.)

SUMMARY AND CONCLUSIONS
In summary, a detailed description of

the script processing technique and the
innovative implementation of this technique

8¢

5

in the TSEM model and the application
of this approach to the generation of
animated computer graphics have been
presented. Based on wuser comments, the

script processing technique as implemented
in the TSEM provides a very powerful user
interface medium in terms of ease of use

and flexibility in defining complex
scenarios. The use of the TSEM Analyses
of TSEM outputs, especially the movies,
has provided users with valuable information
pertaining to the evaluation of
attacker/defender tactics, the duration
of +the simulated battles, and response
force requirements.

ACKNOWLEDGEMENT

The author wishes to acknowledge the
collection of subroutines found in the

terrain-vegetation submodel modified from
the SIAF code of TRW by Pat DeLaquil of

Sandia National Laboratories and John
Dawson (former employee of The BDM
Corporation, Albuquerque). He would also
like to acknowledge Dr. Bruce D. Link
(formerly of Sandia National Laboratories)
for his technical contributions under
contract 05-9365 and Mr. Dawson for his
development of the graphics package. In
addition, the author acknowledges the
significant contributions of the other
BDM Corporation project +technical staff
including Messrs. J. L. Cooke, S. D.
Jones, and H. G. Pringle, and Mr. L. H.
Skinner (former BDM employee).
REFERENCES
The Probability of Single Shot
Incapacitation, P(SSIN), Algorithm for
TSEM, Report no. BDM/A-77-274-TR, The
BDM Corporation, Albuquerque, New Mexico,
June, 1977.

SIAF System Model User's Manual:

Small Independent Action Forces, TRW
Systems Group, Report no.
20660-6007-R0~00, Volume VI, "Combat
Execution Subroutines," December 1973.
SIAF Model Development Validation and
Implementation, Final Report, TRW Systems
Group, August 1971. Volume I, Report
no. 16905-6012~R0~00
Volume III, "Model Subroutines (Terrain,
Weather, Targets)," Report no.
16905-6014-R0~-00
ASARS Battle Model, United States Army
Combat Development Command, Systems
Analysis Group, Report no,
USACDCSAG-TR-9-73, March 1973.
"Book 2, Volume II-a, Narrative
Description"
"Book 5, Volume II-B, Phase B and C Charts"
"Book 9, Part 1, Volume III, User Manual"

R. E. Sheridan

AUTHOR'S BIOGRAPHY

ROBERT E. SHERIDAN, JR. was born on
January 18, 1943 in Wilson, PA. He received
the B.S. and M.S. degrees in Aerospace
Engineering from The Pennsylvania State
University in 1965 and 1968, respectively.
In 1973, he received the M.S. in Computer
Science' from The Pennsylvania State
University.

Mr. Sheridan was employed by the Boeing
Company from 1968 to 1970, Pratt & Whitney
Ajircraft-Florida Research and Development
Center from 1970 +to 1971, the Applied
Research Laboratory as a graduate research
assistant from 1971 to 1973 in the areas
of theoretical and experimental fluid
mechanics. Since 1974, he has been employed
by The BDM Corporation and is currently

a Principal Staff Member. His work has
been primarily concerned with the
development of computer models and

simulations. He has been assigned technical
leadership and management positions on
numerous projects.

Mr. Sherijidan is a member of the ACM, IEEE
Computer Society, and the AIAA.

The BDM Corporation
1801 Randolph Rd. SE
Albuguerque, NM 87106
(505) 848-5000

826

