Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

PACKSIM

A Personal Computer Implementation of a
Packet Switched Network Simulation Model.

Horst E, Ulfers
Defense Communications Agency
Center for

Command,

Control and Communications

AHS, Arlington, Virginia

ABSTRACT
PACKSIN 1is a recent personal computer
implementation of a large scale simulation

model of a packet switched network simulator
which had been previously developed for use
sn the IBM System/j?O mainframe. This paper
addresses special modeling techniques used
in simulating the flow of various types of
packets +through a packet switched network.
Techniques to keep the overhead associated
with discrete simulations low are even more
important for personal computer
implementations +then for +the large main
frame, The model is written in the PC-SOL
simulation language interspersed with
special PASCAL procedures and functions for
traffic generation and alternate routing.
The alternate routing algorithnm is
implemented as a special module, such that
it can easily be replaced with a different
one when desired, The model simulates in
detail the specific protocols within a
typical packet switched network. The paper
also discusses the procedure to be followed
in compiling and executing the model. Inputs
to the model are parameterized.
Consequently, a recompilation of the model
becomes necessary only when major changes
are to be implemented. A pre-processor will
generate the 1input data for the model in
interactive fashion with the wuser. During
execution +the model generates a log file
that contains records of all significant
events of +the simulation. The PC-S0OL
analytical routines are used to analyze the
log tape and generate statistics as well as
presenting graphics of the simulation. The
paper concludes with a description of +the
simulation of a typical, ©but small, network
to demonstrate the capabilities of PACKSIM.

1, MODEL DESCRIPTION

The PACKSIM simulation model has been
designed to simulate the flow of information
packets and control packets through a packet
switched network as realistically as needed
for the evaluation of protocols, routing
algorithms, and system control actions as
they affect network performance. The design
goal was to build a model that simulates the
flow Dbetween backbone packet switches to a
fine degree while handling the access area
traffie flow only to the degree that it
contributes +to backbone network congestion.
In general, the arrival of messages at hosts
is modeled on a per line basis. The model

769

was implemented in two versions., One with an

idialistic routing algorithm, assuming
instant routing wupdates available at all
switches, This +version also ignores +the

access line problem and assumes nonblocking.
It 1is,therefore, better suited for network
engineering, where analytical methods cannot
provide +the desired degree of accuracy and
other more detailed modelling would be too
time consuming., The other version contains
an actual routing algorithm, implemented in
modular form, simulating the +time delay
usually encountered Dbetween dynamically
updating tables driving the routing
algorithm at each packet switch,

The following discussion pertains
both versions of the model., Both
the packet flow across the entire mnetwork.
Messages composed of single packets and
nultiple packets are generated on a host-to-

to
simulate

host Ybasis. The nearest packet switch is
determined by a homing table. PFile transfer
nessages consist of a constant number of
packets, in this case eight., They are
packetized at the origination switch and
transmitted across the network
simultaniously after an opening packet has
established the connection. Messages
consisting of a single packet are sent

immediately since a buffer for one packet is

always reserved and does not require a
confirmation. The routing algorithm
represents the algorithm implemented in the
ARPA network. The basic model consists of
two processes: CONTROL and LOAD, In the
second version the routing table update is
implemented by two additional processes:

UPDATE, to
tables Dbased
number of hops,
update the
switches.

periodically update the routing
on least delay and shortest

and REVISE, to periodically
GODOWN and COMEUP tables for

1,1, Components Modeled

Figure 1 illustrates the
components modeled. Both versions of
model simulate the basic packet switch with
central processor (CPU), the input queue
(INQUE), +the buffer pool (BUFFER), the task
queue (TASKQUE), and the itransmission links
ELINK) with associated modem queues
MODQUE). The second version of the model
also simulates the access lines (LINES) and
output queues (OUTQUE). In it's current
implementation the model collects the
following data to be presented as
histograms: The time it takes for packets to

basic
the

H. E. Ulfers

travel through the network (PKTDELAY), the
time it takes for a file transfer message to
t=s packetized, transmitted, and re-assembled
(MSGDELAY), aborted packets are recorded
with the +time +they Wwere in the systenm
(ABORTTABLE), and finally the number of hops
across the network for each packet is
recorded in table HOPTABLE.

Components Modeled

LIRK

II

TASK

Figure 1: Components Modeled

2. MODEL DESIGN

This discussion is based on the second,
more complex version of the model. However,
the reader should keep in mind +that the
simpler model simply has the processes
UPDATE and REVISE eliminated and does not
implicitly model the access lines and their
associated queues, Model PACKSIM was
implemented for wuse on +the IBM Personal
Computer using the SOL-PC simulation systemn.
SO0L~PC uses the Simulation Oriented Language
(s0L) to formulate the model. Since the
Language allows the inclusion of PASCAL
code, several special functions have been
implemented as PASCAL procedures; mosdt
notebly the routing algorithm,.

[PACKSIM.SOL

TRANSILATION

[SOCLTB.PAS PACKSIM.PAS |

IATION

SIMULATION
\

SOL LOT

Figure 2: Operational Flow

(TiRE BUFFER
INQUE PODL DUTRUE | CIRe_)
[T ,

DDRUE
QUE CPU M [:::>

Figvre 2 illustrates the tasks involved
from coding +the model +to analysing the
simulation results. SOL-PC translates the
source code written in SOL into PASCAL, then
compiles it dinto an executable module.
During model ~xecution a Log File is
generated which +then is analyzed by two
tools the SOL~PC Simulation System provides,
a STATISTICS and a GRAPHICS program. Both
are interactive and can optionally provide
hard coples. The model will =zun on PC
configurations with 512k of RAM or more. It
can be operated with two floppy disk drives.
However, a hard disk drive, better still a
removable hard disk, is desirable for
‘increased execution speed as well as for
accomodating log data of long runs.

Figure 3 illustrates the structure of
model PACKSIM. The upper horizontal block
represents the global entities of the model.
Each of the four blocks below represents one
of +the processes which are executed in a
parallel fashion.

Global varinbles: SIMIIME. INTERARRIVAL. MAXNUM. etc.

External Procedures: MESSRGE. ROUTE

Facilities: CPUL201

Stores: BUFFERL20), INQUET20]. MODRUELBO1, QUTRUE[25).
TASKQUE (201, LINK[25]. LINE[801. OUTQUEL25]

| Tables: PKTDELAY[S], MSGDELAYI251, ABORTTABLEL20]. HOPTABLE

g U i I

PROCESS PROCESS PROCESS PPROCESS
CONTROL LOAD UPDATE REVISE
controls Generates Updates . Updates
axecution messages routing Came~-up
of and tables and
simulotion routes at all Ga-~down
and reads packets packet counters
input data through swiiches
netvork

Figure 3: Model Structure

S0L requires that in the source code
all global entities are declared ahead of
the first process. All processes can make
use and compete for the resources
(FACILITIES and STORES) declared globally. A
FACILITY is the SOL resource used to model a
time shared device like a central processox
unit (CPU). A store is used to model a space
shared device like memories, buffers and
queues; A store is declared with a certain
capacity. Also a transmission link can be
modeled as a STORE, it's capacity
representing the number of circuits. Tables
are used to collect special statistical data
during the simulation. Standard statistics
on all resources are collected automatically
and sent to the log file.

At the Dbegin of the simulation - at
time O - one transaction is started at the
beginning of each of the four processes. The
S0L conventions specify that the processes
are handled in the order in which they have
been declared, as illustrated in PFigure 1
from left to right. Consequently, Process
CONTROL will start first, following by
Process LOAD, Process UPDATE, and Process
REVISE.

PACKSIM: Packet Switched Network Simulation Model

3. MODEIL OPTIMIZATION

detailed
it might be
that

Before
discussion

going into the
of the model logic,
worthwile +to explain some +techniques
can be used in simulation of communication
systems in general and of packet switched
networks in particular to keep the size of
the model and the execution time down.
3.1. Transactions
the transaction is
in this case representing
a single packet. Bach packet has to carxry
along a number of descriptors which are
called LOCAL VARIABLES in SOL terminology.
These may describe items like the
originating host, +terminating host, time of
message generation, packet identifier, etc.
A transaction also maintains its own record
of the SOL resources it is wusing. When a
transaction enters a queue condition, e.g.
when it executes a conditional or
unconditional WAIT statement or when it
encounters blocking on a resource, this
transaction with all it's descriptors is
entered into one of many queues until it is
time to re-activate it. This is the process
which places the heaviest load on the queune
management xroutines and the physical gqueue
space in RAM. The strategy to follow is to
keep +the number of transactions one must
simultaneously maintain in queue as small as
possible and to allocate as few local
variables to a transaction as ©possible.
Furthermore, it 1is advisable to carefully
plan the Resource parameter R in the process
declaration that reserves space in each
transaction for resource management., The
more resources one particular transaction is
allowed to wuse the more space mnust be
reserved for a transaction. Other techniques
which 1lead to conservation of +transactions

As mentioned before,
the unit of flow,

are discussed with the model logic in each
process,
3.2, Reentrant Submodels

Another +technique, when applied will
keep program memory size down by designing
the submodels in re-entrant fashion. All
resources are dimensioned as indicated Dy
the value in brackets. This S0L feature,
allowing dimensioned resources is

significant for modeling a network with many
identical nodes and links.

[LINK &
BUFFER
(L1nel POOL -
INGUE MODGUE
/
TRSH DUTRUE]
=%?E 7
CPU
Figure 4

illustrates the flow of
packets through the model as contained in
Process LOAD., A transaction, representing a
packet, traveling +through the backbone
network may ‘traverse +the switch model
several times, each time with a different
switch identifier., This switch identifier, a
local variable to the transaction, is used
as a subscript for the resources modeled at
the switch, This method allows use of the
same switch model numererous times in a re-
entrant <fashion, simply by re-setting the
switch identifier. This is accomplished by
the routing algorithm which does not only
determine the next node but also the
identifier of +the link conecting the +two
nodes, Each different subscript of a
resource then represents the same resource
but at a different nodes or link.
Consequently, the dimension of the resource
specifies ‘the maximum number of each the
model can handle.

Figure &4

There is another advantage
technique, it gives the model
simple means to increase the
particular model., This model, for instance,
could be easily modified +to handle 200
switches by changing the dimension 20 for
all resources modeled in the switch to 200.

to this
designer a
size of a

4, MODEL IMPLEMENTATION

The following paragraphs adress the
implemntation of +the model and discuss in
detail the logical flow through eachi process.

4,1. Process CONTROL.

Process CONTROL is +the first S0L
Process and is used to control the
simulation run, This process first reads a
file which contains the simulation
parameters and other input data wused in
initializing arrays that control the
simulation., These data contain the

connectivity matrix, +the host homing table,
and the traffic matrices., The input file has
to be in a specific format, e.g. traffic
matrices must be cumulative as required by
the sampling algorithm. A special
interactive program is available to the user
to easily generate +this file. Process
CONTROL uses three +time parameters to
control +the simulation: (1) SIMTIME, the
simulated time, When expired the simulation
is terminated and all files are closed. (2)
MONTIME, +the monitor time interval between
writing a transaction record to the systenm
output file. (3) BRKTIME, the time interval
between performing checkpoint/restarts. This
function 1is easily implemented by just one
transaction which cycles in a loop executing
WAIT statements until the simulated time has

expired and then executes a STOP statement
that terminates the simulation.

4,2, Process LOAD.

Process Load simulates the flow of
information across the packet switched
network. Each individual packet is simulated

as it travels across the network, enters a

H. E. Ulfers

queue, is re-activated, until it is finally
delivered at the destination. It is +this
process vwhich is critical for the build-up
of large queues,

SOURCE SOURCE BACKBONE DESTINATLON
HOST SVITCH NETWORK gs?¥éﬁﬂrluu HOST

MESSABE :> E}

9=
ACK RCVD h n

Figure 5: Typical Packet Flow Protocol

The +transmission of a message causes

five different types of packets to be sent
between the originating node and the
destination node (see Figure 5). At +the

communications between two

after the message has been
opening packet (Type 1) 1is
sent from the originating switch to the
destination switch, If +the destination
switch has sufficient buffer space to accept
the communications, a positive RFNM (Request
For New Message) packet (Type 2) is

beginning of
packet switches,
packetized, an

returned, otherwise +the +transmission is
denied by a negative RFNM packet (Type 3).
The originatin switch starts sending
packets (Type 5) in rapid succession. The
reception of each packet at the destination

switch is confirmed by piggy-backing a short
message on to another packet +o the
originating switch, Since this process does
not add to the load of the network it is not
modeled explicitly, but is represented by
simulating the transmission time delay
encountered. After +the 1last packet of a
message has TDbeen received an acknowledge
packet (Type 4) is returned to the
originating switch. This terminates the
transmission of a message. Analysing ‘this
process one can see that all packets except
the imformation packets (type 5) are sent
sequentially. The normal approach to
simulate the packet flow of a message would
be to simulate each individual packet and

then put +the packets into a holding queue
until the last packet, the acknowledge
packet has been processed. This approach,

however, would lead to a rapid build-up of
the internal transaction queuve. As a result
the model may run out of RAM space Dbesides
substantially slowing down the execution .
The approach implemented in this model takes
advantage of the fact that all but the
information packets (Type 5) are sent
sequentially. Therefore, one and the same
transaction simulates all packets, types 1
through 4, and the first information packet.

If there are more +than one information
packet +then the remaining packets are sent
in parallel. This approach is implemented by
attaching the packet +type as a Local
Variable to the transaction, starting it out
at the originating node with Type=1, +then
returning the same transaction to the
originating node with Type=2 or Type=3, and
again sending the same transaction back to
the destination node as a Type=5 packet.
Other transaction are now being generated to
simulate +the parallel transmission process
of the remaining information packets. The
original transaction is held in queue at the
destination node until the last information
packet of a transmission has been received.
Then it is set to Type=4 and is returned to
the originating node. The other information
packets are immediately cancelled when +they
have arrived at +the destination. While
transactions are gqueued up, usually, the PC~
SO0L Simulation System keeps track of loads
on buffers and other modeled resources. This
modeling approach is superior o the
straight forward method, ©Dbut requires sone
additional bookkeeping +to maintain the
proper load on buffer space at the
destination node, Otherwise, the PC~SOL
Simulation System would have kept track of
the load on buffers while transactions are
queued up.

Other functions of process LOAD are the
generation of messages, finding routes
through the network, and the simulation of
transmission links, There are two external
procedures, written in PASCAL language: (1)
Procedure MESSAGE generating pairs of nodes,

the originating and the destination node.
This is accomplished by sampling process
two traffic matrices. (2) Procedure ROUTE

finding the next node toward the destination
node by executing the routing algorithm.
Both procedures can easily be changed or
replaced, allowing for implementation of
other traffic generation schemes and routing
algorithms.

4,3, Process UPDATE
Process UPDATE simulates a system

control function that automatically updates
the routing tables at each node, I% closely

resembles +the functions used in the ARPA
routing algorithm. It performs two Dbasic
functions: Determination which other
destination nodes are reachable, and a

calculation of the route of the least delay

for the nodes which are reachable., The
process maintains a set of tables for each
node in the network. Each table has
information necessary to derive the optimum

route to any other node in the network, like
least number of hops and shoxrtest delay.
Each node re-computes these tables in fixed
intervals based on information received from

it's neighbour nodes. It then formulates a
routing update message that is sent to it's
neighbouring nodes after the next update

interval has expired.
4.4, Process REVISE.

There are two tables at each node which
maintain the status of each other node. The

PACKSIM: Packet Switched Network Simulation Model

tables are kept current about switches going
down and switches coming up. Process REVISE
updates these tables in fixed intervals, The
update interval is a parameter that can Dbe
set at the begin of the simulation.

5. A SAMPLE NETWORK

Although this paper concentrates on
special implementation techniques of a
packet switched model, it was thought
worthwhile +to +take the reader through the
major steps of preparing the inputs to the
model and means available to analyze the
results. In the following the simulation of
a sample packet switched network is
demonstrated to show the capabilities of the
PACKSIM simulation model,

Figure 6: Packet Switched Sample Network

Figure 6 shows the network, For
simplicity it is assumed that only one host
is connected to each node, consequently the
hosts are mapped into the nodes, Nodes are
numbered sequentially., Each link is assigned
two numbers, an even and an odd number. The
odd numbered link has the traffic flowing to
a node with a higher numbered ID while
traffic +through even numbered links flows
into the opposite direction.

5.1, INPUT FILE PREPARATION

The user must prepare a connectivity
matrix, an entry of 'l' «zrepresents a
connection between a pair of nodes, a '0' no
connections. The user must also prepare two
traffic matrices, one for single packet
messages the other for multi-packet file
transfer messages., Fortunately, there is an
interactive input preprocessor +that leads
the user systematically through all steps in
preparing the input file, and processes the
information into the format required by the
model. Figure 7 lists the simulation
parameters and arrays as they have been
generated in the input file. This listing is
produces each time at the beginning of model
execution.

773

START TIME AND STOP TIME OF TRACE:
50000 50000
MAXNUM=100 SIMTIME=50000 BRKTIME=5000
MONTIME=50000

WODES=8 HOSTS=8
HOST TO SWITCH HOMING

0
0
1
0
1
0
]
0

[y

OF OO OF

SINGLE PACKETS:

10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10
10

FILE TRANSFERS:

2 3 & 5 6 7 8
CONNECTIVITY MATRIX:
o1 1 0 1 0
i1 0 1 1 1 1
11 0 0 1 1
o 1 0 0 1 O
1 1 1 0 1
6 1 1 0 1 O
¢ o0 1t 0 1 0O
i1 0 1 1 0 O
TRAFFIC MATRIX FOR
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
TRAFFIC MATRIX FOR
0 2 2 2 2 2
2 0 2 2 2 2
2 2 0 2 2 2
2 2 2 0 2 2
2 2 2 2 0 2
2 2 2 2 2 0
2 2 2 2 2 2
2 2 2 2 2 2

NONNNNDNDNN

ONMNNDNNDNIN

INTERARRIVAL TIME= 500
AVERAGE LINK TRANSMISSION TIME= 100
AVERAGE LINE TRANSMISSION TIME= 500

CPU PROCESSING TIMES ARE:

100 100 100 100

COMBINED CUMULATIVE TRAFFIC DEMAND MATRIX:

564
70
70
70
70
70
70
72
72

DEMAND
84
10
10
10
10
10
10
12
12

THE LINK ASSIGNMENTS ARE AS FOLLOWS:
¢ 1 3 0 5 0 0 7
2 0 911 1315 0 O
4 10 0 0 17 19 21 23
012 0 025 0 0 27
6 14 18 26 0 29 31 ©
016 20 030 0 0 O
0 022 032 0 0 33
8 02426 0 034 O

752 94 188 282 376
ok 10 22 34 46
188 12 22 34 L6
282 12 24 34 L6
376 12 24 36 46
470 12 2L 36 48
564 12 24 36 48
658 12 24 36 L8
752 12 24 36 48
CUMULATIVE FILE TRANSFER
112 14 28 42 56
14 0 2 L 6
28 2 2 4 6
42 2 4 L 6
56 2 4 6 6
70 2 4 6 8
84 2 L 6 8
98 2 L 6 8
112 2 b 6 8
Figure 7:

Input File Listing

658 752
82 94
82 o
82 94
82 ou
82 ok
82 9i
82 9u
84 o
MATRIX:
98 112
12 14
12 14
12 14
12 14
12 14
12 14
12 14
14

H. E. Ulfers

5.2. TYPICAL STATISTICS AND GRAPHICS OUTPUTS

model execution all significant

events are recorded in the LOG file,
e.g. when a transaction enters or leaves a
Store, seizes or releases a Facility, and
when data are entered into a Table. The PC-
50L Simulation System provides two standard
analysis tools, SOLSTAT and SOLPLOT. SOLSTAT
Produces statistics on the resources modeled
as well as histograms on data collected
during the simulation, in table or bar-graph
format. More detailed 1load analysis is
possible by SOLPLOT, a graphics routine that
graphs load over time, and has the
capability to zoom in on any segment of the
graph and expand it to its limits for the
finest details. The following figures give
some examples.

During

statistics
Note, that

Figure 8 lists the standard
output on resources modeled.
resources that are modeled, ©but have not
been used, are not listed. This feature is
convenient it suppresses statistics on nodes
9 through 20 which are modeled but have not
been used in this 8 node sample network,

FACILITY NAME TIME UTILIZATION
CPU[1 10000 0.,1480
cPU[2 10000 0.1900
CPU(3 10000 0.1800
CPU[4 10000 0.0980
CPU{ 5 10000 0.0880
crul6 10000 0.1200
CPU%?} 10000 0.0740
cPU[8 10000 0.0800
STORE NAME TIME CAPCTY MAX OCCP UTLZN
BUFFER[1] 10000 1000 5 8177 0.001
BUFFER[Z% 10000 1000 13 30225 0,003
BUFFER[3] 10000 1000 31 47284 0,005
BUFFER[4] 10000 1000 23 89211 0.009
BUFFER[5] 10000 1000 15 87537 0,009
BUFFER[6] 10000 1000 21 23932 0,002
BUFFER[7] 10000 1000 5 4591 0.000
BUFFER[8] 10000 1000 3 5110 0.001

Figure 8: Standard Statistics Listing

TABLE PKTDELAY[5] TIME=50000
SUM OF ALL ENTRIES=56839.446
STANDARD DEVIATION=414, 585
UPPER LIMIT COUNT PERCENT CUMULAT MULT/MEAN

ENTRIES=137
MEAN=414,886

0 0 ! o.00 0.00 0.0000
100 3 2.19 2.19 0.2410
200 63 43,99 48,18 0.4821
300 17 12,41 60,58 0.7231
400 35 25.55 86,13 0.9641
500 9 6.57 92,90 1.2051
600 2 1.46 94,16 1.4462
700 2 1.46 95,62 1.6872
800 b4 2.92 98,54 1.9282
900 0 0,00 98.54 2.1693

1000 0 0.00 98,54 2.4103
1100 0 0.00 98,54 2.6513
1200 0 0.00 98,54 2.8924
1300 2 1.46 100,00 3.1334

Figure 9: Histogram Table

Figure 9 shows the data collected in
table DELAYTABLE[5] in histogram format,
while figure 10 below presents the same data
in bar graph form.

FRIDELAYL §)

i ' PR RAREAE W
TABLE: EXTDELAYE 51 Max Value is! 63,00

Figure 10: Histogram Bar Chart

Figures 11 and 12 have been
with the SOLPLOT utility.

produced

e BUFFERLS)
awn- BUFFERC3]

N T T T T ¥ T L T Ll T T‘
0.00 0.35 0.70 1.05 1.8 1,75 2.10 2.5 2.4 10

Figure 11: Loading on Stores BUFFER[2]
' and BUFFER[3]

During +the analysis of simulation
results, it often ©becomes necessary to
pinpoint exactly the time when the heaviest
load on a particular store had occured
during +the simulation. For instance, the
overview graph in figure 11 just gives an
indication +that the heaviest load occured
about time unit 17500. The zoom feature of
the graph utility can now be used to pick a
narrow time frame around the value and blow
it up to show details with as fine a grain
as needed, even down to the time unit level.
Figure 12 illustrates the results of +this
procedure. Here, one realizes that the peak
load consists of a series of pulses, mnost
likely caused by a series of packets
originating from a file tranfer message.

774

PACKSIM: Packet Switched Network Simulation Model

m—meee BUFFERCE)
==== WUFFERE3)

A

JRTIIEE e FYRN
el -a) .-I... 11
end o I..

o5 e
I
T

T T T T T T T T T

L T T T
1.5¢ 1.8 1.4 1.69 1.7% 1.7 1.82 1.87 151 10"

Figure 12: Illustration of Zoom Feature

6. CONCLUSIONS

It has TDeen
techniques
network
switched

shown, that Dby
presented in this paper,
sinmulation models, like

networks, can be implemented on
personal computers, Similax Models,
previously, required a large main frame +to
run effectively. Today's personal computersl
are very reliable and offer the user a much

using
large
packet

mnore efficient, interactive environment
leading to faster simulation model
implementation and turn~around, As personal
computers become more powerful, increased
speed and larger memory size, they are
bound tobecome the preferred simulation
vehicle for all but very special real time
simulation models depending on large data
bases.

REFERENCES

1. Horst E, Ulfers,” PC-SO0L,
Computer Implementation of a
Oriented Language", Proceedings of the
Summer Computer simulation Conference,
July 1986.

A Personal
Simulation

2. PC-S0L Language Reference
Systems Simulation Consultants,
Ring Road, Reston, Virginia, 22090,

Manual,
11051

3. D. E Knuth and J, L. McNeley, "SOL - A
Symbolic Language for General Purpose
Systems Simulation", IEEE Transactions
on Electronic Computers, IC-13, No.5
(Aug. 1964},

4, J. Armstrong, H. Ulfers,, D. Miller, H.
Page, "SOLPASS - A Simulation Oriented
Language Programming and Simulation
System", Preceedings of +the Third
Conference on Applications of
Simulation, Dec 1969.

5. Horst E. Ulfers, "PACKNET - A Packet
Switch Network Simulator," Proceedings
of the 1975 ICC, June 1975a

775

AUTHOR'S BIOGRAPHY

Horst E., Ulfers is a Senior Electrical
Engineer at the Defense Communications
Agency. He obtained the Degree of Diplom-

Ingenieur (MSEE) at the Technical
University of Munich in 1954, After 5 years
of employment with +the Siemens & Halske

Research Center in Munich he Jjoined in 1953
4“he US Army Signal Corps Laboratory in Fi.
Monmouth, New Jersy, and later in 1969 the
Defense Communications Agency in Arlington,
Va. During his career he specialized in the
field of Communications Network Analysis and

Systems Engineering. He developed numerous
aimulation models and developed and
implemented General Purpose Simulation

Systems on Main Frame Computers and Personal

Computers, He is the author of several
publications in this field and is currently
working in the Center for Command, Control
and Communications at the Defense

Communications Agency.

