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ABSTRACT

The use of modified predicate transition nets for the
modeling of computer communication protocols has
been investigated by the authors in reference [43]. The
translation of such models into simulation programs is
examined in this paper. Though protocols for all layers
of a computer communication architecture can be
modeled using the technique presented in this paper, we
focus on the network layer protocols and we treat
mechanisms like: fragmentation and reassembly, rout-
ing, store and forward buffering and congestion control.

Non-prime transitions can be embedded into the
modified predicate transition nets hence a top-down
modeling is possible. The present paper uses a hierarchi-
cal modeling approach to describe complex communica-
tion mechanisms in terms of simpler constructs. Models
developed using the modified predicate transition nets
can be automatically translated into simulation pro-
grams. The paper presents the translation of a computer
communication model into a program, using a process
oriented simulation language, ASPOL..

Key Words:  Communication Protocols, OSI Architec-
ture, ASPOL, modeling, predicate transition
nets, Petri nets, synchronization, simulation,

concurrent execution,

1. Introduction

The Open-Systems Interconnection (OSI) reference model [1]
is a framework for defining standards for interconnection of
heterogeneous computers. It partitions the computer communica-
tion functions into a vertical set of seven layers. Each layer pro-
vides services to the next higher layer, and relies on the next lower
layer to perform more primitive functions. Layer n on one host
carries on a conversation with layer » on another host. The rule
and conventions used in this conversation are collectively known
as a (peer-to-peer) protocol.

For computing systems and especially for systems of the
complexity of a computer network, modeling is essential during
system design, implementation and throughout the entire system
life. In connection with computer communication protocol design,
modeling is necessary in order to predict the feasibility and the
performance of the protocols.

Simulation can be used to evaluate the model of a system
after the model has been mapped into a computer program which
describes the interesting behavior of the system, A simulation
model of a computer communication architecture emphasizes a
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szl_‘ﬁciently precise representation of protocols and protocol hierar-
chies.

Very often a hierarchical modeling is possible, a complex
system can be decomposed into subsystems. Each subsystem can
be modeled separately and its model can be evaluated indepen-
dently. The behavior of the entire system can be investigated by
combining the previous results.

In recent years a considerable effort has been invested into
modeling and analysis of computer communication protocols. Two
approaches to modeling, namely the finite state automata approach
[8] and the simulation language approach [9-12] have been investi-
gated in the past. More recently queueing models have been also
considered [13,41]. The Petri nets [17-22] are used mostly for the
specification and validation of protocols [6,7], but they seem a
natural tool for protocol performance analysis [14-16].

Predicate-transition nets [23-25], enhanced with stochastic
transition time, are proposed as a suitable framework for modeling
the communication protocols in a computer network. In order to
illustrate this, we have considered some common mechanisms
used by the network layer of the ISO reference model. In the first
section of the paper a modified predicate-transition net is
presented. In the second section, the computer network model
based upon the modified predicate-transition nets is analyzed.
Finally, the mapping of the network model into program structure
is discussed.

2. Modified Predicate-Transition Nets

The Petri nets used in this paper are a modified version of the
Predicate-Transition Nets and Generalized Stochastic Petri Nets.
The elements of the Modified Predicate-Transition Nets are:

(1) Token types
In the modified nets there are three types of tokens,

Type 1  Tokens with no attribute. They are used to
represent the synchronization operations
among concurrent activities.

Type 2  Tokens with one attribute only. The attribute
is an integer which may represent for exam-
ple the value of a counter.

Type 3  Tokens with multiple attributes. The first

item in the attribute record is used to identify
the token subtype. Each subtype represents a
different data unit exchanged by the com-
munication protocols. We recognize the fol-
lowing subtypes: message, packet, etc. A
token representing a message has three attri-
butes, subtype=m, destination address a, and
message length 1. A token representing a
packet has six attributes: subtype=p, the
packet sequence number S, the destination
address a (copied from the message), the
packet length 1, the last packet in a message
flag la, and the neighbor to neighbor packet

60



@

6]

“@

®
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sequence number s1. A token conversion
process occurs whenever the corresponding
data unit crosses the boundary of a communi-
cation layer and it corresponds to the encap-
sulation and decapsulation process performed
by the different protocol layers.
Places
They are the first type of nodes in the graphs. A
place is represented by a circle and has a name consist-
ing of one or more upper-case characters. A place can
contain a finite number of tokens, determined by its
capacity. We distinguish two types of places: places of
the first type are used to represent the queues of interest
in the performance evaluation of system and they con-
tain Type 3 tokens. Places of the second type are used
to represent system environments.

Transitions )
Transitions are the second type of nodes in the

graphs. A transition is represented by a bar or a
rectangle and has a name consisting of one or more

upper-case characters. Nonprime transitions represent-
ing model subnets are represented graphically as rectan-
gles. This possibility enables top-down hierarchy struc-
turing and information hiding. A similar structuring
method for distributed software system design has been
discussed in [34]. Predicates can be inscribed on transi-
tions: they specify relations between variables of dif-
ferent tokens from the input places of the transitions. It
is possible to evaluate the interesting performance
aspects in the modelled system by introducing “time"
into the transitions [14, 26-33], There are two types of
transitions: timed and immediate. An exponentially dis-
tributed random time (possibly marking-dependent),
denoted by T(), between enabling and firing of a transi-
tion can be associted with timed transitions only.

Arcs

Arcs connect transitions and places together. The
arcs are labelled with token variables. Operations can
be inscribed on outgoing arcs of transitions. An opera-
tion performs a computation or a change of the attributes
carried by the tokens from the input places, and it forms
tokens to be inserted into the output places. In our
modified nets multiple arcs between a place and a transi-
tion are allowed, and the number of such arcs may vary
from zero to a finite value. In the followings we will
show that this extension does not change the property of
the predicate-transition nets, but it makes more con-
venient to describe some mechanisms of the protocols.
The variable arc is represented graphically by an arc
crossing a small circle, and has an associated range
expression.
Firing rule

A transition is enabled when there is at least one
token in each of its input places and the predicate asso-
ciated with the transition is satisfied. If there are the
multiple arcs between the input place and the transition,
then the transition is enabled when the number of tokens
in the input place is at least equal to the number of arcs
and the predicate is satisfied. An immediate transition
fires immediately after being enabled. When the timed
transition is enabled, it fires after a random enabling
time, x. The enabling time, x, is exponentially distri-
buted and it is specified by the T(x) associated with the
transition. However, the firing of a transition is con-
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sidered to be instantaneous, so the probability of two or
more transitions firing simuitaneously is zero. The
firing of a transition consists of two steps:

a) removing the tokens (satisfying the predicate) from
the input places;
b) adding tokens to the output places after performing

the operations specified on the outgoing arcs.

In our model the distribution of the time x associated with a
timed transition depends upon the system environment. The main
difference between the nets used in this paper and the predicate-
transition nets are the introduction of time and of variable arcs (a
variable number of arcs may connect a place and a transition, and
this number may range from zero to a finite value).

Tn our paper the following notations are used: @ stands for
addition modulo the size of the sequence number. [x,y] denotes
the set of integers from x to y, including the lower and the upper
bound while (x,y] excludes x and [x,y) excludes y. |[{ } denotes
the cardinality of a set. For example, [{a, e, d}| is equal to 3.

In our nets, we often use a place representing a counter as an
environment state variable in order to control the probability of
firing a transition. Such values are presented in the predicates as
individual token attributes. From the reference [14], we know the
bounded place marking can be tested. The value of the counter or
the set element in the model can also be tested and changed,
including testing for zero.

The variable-arc nets are useful to model the network proto-
cols, for instance to model the fragmentation of a message of a
given length.

The correspondence between a variable-arc net and a predi-
cate transition net will be discussed in connection with an example
used to model a mechanism of the network layer protocol.

Example. The Fragmentation Mechanism . The network
layer breaks up a message into several packets. Two models of this
fragmentation mechanism are presented in Figure 1. In Figure 1.(a)
a variable-arc net is used to describe the mechanism. X represents
the arc variable. It is assumed that the maximum length of a packet
is 128 bits and the maximum message length is 384 bits hence X
varies in the range 1 to 3.

The following transitions occur in our model:

is a transition representing the arrival of a message from a
user. Messages arrive according to a Poisson distribution
with average arrival rate A..

is a transition representing the fragmentation process. This
transition fires only once, when the message is received,
hence the firing condition for fransition FR is:
(f’n=0)AND (0<1<348) . When it fires, a number X of
packet tokens are created and deposited in place PS. X
depends upon the actual message length, [ .
is a transition representing the sending of the next sequen-
tial packet to the output quene(place OUT).
We now focus our attention upon the places present in our
variable-arc net and upon the attributes of each type of token
allowed in any given place.

5Q

us

SEN

is a place containing tokens that represent messages, and
have three attributes:

m : token subtype (message) ;

a : destination address;

1 : message length.
is a place containing tokens that represent packets. Such a
token has four attributes:

PS
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p : token subtype (packet);

a : destination address (copied from the
message);

11 : packet length;

la : last packet in a message flag, used in
reassembly.

A variable arc connects the transition FR to the place PS.
Consequently a variable number of packet tokens are deposited in
place PS when the transition FR fires.

S is a place containing tokens representing the sequence
number counter, s. Whenever the transition SEN fires, this
counter is incremented modulo M .

FN  is a place containing the counter fn of packets left in place
PS. When the transition FR fires, the value is set to X, the
number of packets created from the incoming message.
Whenever the transition SEN fires, the value is decreased
by one.

An equivalent model for the same mechanism is presented in
Figure 1.(b) but a predicate-transition net is used instead of a
variable-arc net. The complexity of this model is considerably
increased. Instead of a single transition FR now we have the set of
FR;,i=1,2,3 . The predicate associated with FR is the combina-
tion of all predicates associated with FR; . the performance of the
system will be taken into account by considering the firing time of
the corresponding transitions.

3. The Network Layer

In Figure 2. we describe the network layer model using non-
prime transitions. Each non-prime transition represents a mechan-
ism of the protocol and it-can be extended as a subnet.

3.1. Fragmentation and Reassembly

The Fragmentation and its corresponding Reassembly model
are presented in Figure 2. The Fragmentation model has been dis-
cussed earlier, in the previous example , and we focus our attention
on the Reassembly model, namely how several packets are put
together into a message to be delivered to the upper layer. In case
of Reassembly, transition REC corresponds to the receiving of a
packet, and it fires whenever a token is placed in the input place IN

and the receiver counter value r equal to s, the sequence number of .

the packet received. This keeps the receiving packets in sending
order.

The following places are presented in our model:

R is-a place related to the sequence number of the next packet
expected. The current value of this counter is denoted by r.
Whenever the transition REC fires, the value r is incre-
menteéd modulo M .

PR is a place containing tokens which represent packets, It is
the correspondent of the place PS in the fragmentation
model. It contains tokens. with four attributes which have
been described in the previous example. When the last
packet arrives, i.e., when a token with la = 1 arrives at the
place PR, then the transition RE fires. After firing, all
tokens are removed from the place PR and a token of sub-
type message is put in the place RQ.

RQ s a place containing tokens which represent received mes-
sages, hence it is associted with the received message
queue. It is the correspondent of the place SQ, the sent
message queue, from our previous Example and contains
tokens with identical attributes,
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3.2. Routing

A distributed adaptive routing mechanism with updated trig-
gered by major changes, for a packet switched network operating
internally as a datagram is embedded in the network model
presented in Figure 2. The routing table RB is represented by a
place and it is updated at random time intervals, v, associated with
firing of the transition RDU. The routing table has N entries, one
for each node of the network. Each entry consists of two items, the
destination node id and the the output line or the next node to
which the packet is to be delivered. Update vectors are received
periodically by each node from its neighbors. Each update vector
contains entries with the same format. The places RB and NRB
contain tokens with two attributes: x and y as described above, The
arc label N indicates that there are N arcs. Functions f | and f 2
represent the updates for an entry in the routing table.

The routing table is used for every packet to decide which is
the optimal route, and then the token associated with the packet is
passed to the proper Buffering and Congestion control mechanism.

3.3. Store and Forward Buffering and Congestion Control

A rather simple congestion control mechanism is modeled in
the graph presented in Figure 3. An intermediate node maintains a
low water mark, M; and a high water mark, M. - Whenever the
amount of used buffers reaches M. » » the node informs its neigh-
bors that it will no longer accept any messages by sending a <ref>,
REFUSE control packet. When the amount of used buffer space
decreases below M , then the node becomes friendly again, sends
to its neighbors a <res>, RESUME control packet and starts
accepting messages.

We focus our attention upon the congestion control mechan-
ism sketched above. In order to simplify the graph (Figure 3), we
consider only one host and one neighbor node connected o the
node under examination. Some attributes of the tokens represent-
ing packets are omitted in the graph, for example the attributes 1,
la, s, are not represented though the tokens contain them.

The flow of the tokens representing packets is as-follows:
tokens are deposited by the data link entity in the place EQ.
Depending upon the type of the packet, different transitions take
place. For example the arrival of data packets triggers the transi-
tion T12 and depending upon the destination address, the tokens
representing packets for the local host trigger transition T13 and
end up in place IN while the tokens for the other hosts trigger tran-

sition T14, are transmitted to the place OUT and go through the

routing mechanism previously described.
The places and attributes of the tokens they contain are:

St is a place representing a counter, namely the sequence
number of the next packet to be sent on the outgoing link.
Its current value is denoted by s1. Note that there is no
need to represent the place S, the end-to-end packet
sequence number.

BUF  is a place representing the store and forward buffer. It
contains tokens of subtype. packet, with six attributes. In
addition to s1 the remaining five attributes are palla
and s are as in the case of tokens in Place QUT of the pre-
vious example.. )

BC is a counter of the number of buffers in use, it reflects the
occupancy of BUF. Its current value is be. It is incre-
mented when a new packet arrives and buffer space is
allocated to it and it is decremented when the buffer space
is released. It has a maximum capacity, M .

P6 is a place where tokens representing data packets are
deposited.
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Figure 3. Store and forward buifering and congestion conmrol mode!

The transitions shown in Figure 3 are described in the follow-
ings:
T2 occurs when an explicit acknowledgment for packet i,
<ack,i> is received. Then the buffer holding packet i is

released and a token is removed from the place BUF.

occurs when a negative acknowledgment for packet j,
<nak,j> is received. Then the proper token is first
removed, then put back in the place BUF through the
self-loop arc. In addition, when T3 fires a token is put in
the place P3 which contains tokens representing packets
to be retransmitted.

occurs when the high water mark, M, is reached and the
current node sends a <ref>, REFUSE control packet to its
neighbors.

occurs when the low water mark, M, is reached and the
current node sends a <res>, RESUME control packet.

if the final destination of a packet is a host connected to
the immediate neighbor of the current node, the buffering
of the packet is not under the control of the congestion
mechanism and the transition is T6 enabled. The predicate
(D2=a) is true when the immediate neighbor condition is
satisfied.

the enabling condition of this transition is the opposite of
the enabling condition for transition T6.

occurs when the current node receives a <ref>, REFUSE
control packet from its neighbors. It shows the action of
congestion control. In this case the transition T7 cannot
fire until T9 fires (a <res> control packet is received).

occurs when a <res>, RESUME control packet is received
from its neighbor.

T3

T4

T5

T6

T7

T8

T9

764

T1l  occurs whenever a packet is sent on the output line. The
predicate associated with this transition represents its
firing condition, where LINE is related to the Buffering
and Congestion address on the output line determined

after checking the routing table,

4. Translation of Protocol Models into Simulation Programs

The models of the communication protocols developed in the
previous section can be translated into simulation programs. The
target language can be any programming language which supports
concurrent processing. We have selected ASPOL since it is a pro-
cess oriented simulation language which in addition to concurrent
processing provides an adequate support for simulation constructs.

The mapping of Petri nets and of extended Petri nets into pro-
gramming structures has been investigated in the literature [35-37].
In case of Petri nets a process can be associated with a connected
subnet in which every transition has at most one input arc and one
output arc from (to) any input (output) place. Other methods have
been proposed recently, [38-40}. However the method used in this
paper is conceptually different, and easier to use. It partitions the
set of all places into two disjoint classes and associates with one
class synchronization primitives and with the second one
processes. We recognize different types of tokens and we associ-
ate with each of them a different type of process.

Two types of places can be distinguished in our previous
models which are based upon modified predicate transition nets:

a.  Type e places. They may contain Type 1 or Type 2 tokens
which are associated with predicates that decide upon the
opportunity of firing a transaction. The correspondent of such
places in our simulation structures are primitives to control
the synchronization between the processes executing con-
currently in the simulation programs.
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b. Type m places. They may contain only Type 3 tokens which
are associated with the transmission units exchanged by the
corresponding protocols. For example, in the network proto-
col, the basic transmission units are data packets, ack-
nowledgment, negative acknowledgment packets, etc. In our
model they are represented by different subtypes of Type 3
tokens. In this section, unless it is explicitly stated otherwise,
all tokens are assumed to be Type 3 tokens. Each different
token subtype will be associated with a process type. The
number of concurrent processes of a given type equals the
number of tokens of the corresponding subtype. A process
will in fact describe the the migration of that particular token
through all the places it visits in the system.

Each entity at a given network layer can be conceived as consist-
ing of two basic agents, the sender and the receiver, and in some
cases of additional auxiliary components. Each component will be
mapped into a different process. The activities of the two primary
agents consists of: interfacing with the immediate upper neighbor-
ing layer, the specific processing associated with the current layer

and interfacing with the immediate lower layer. Both handle the
same type of transmission units (packets) but they are concerned
with the flow of transmission units in different directions. For
example in case of the network layer we recognize a packet send-
ing and a packet receiving process and in addition a packet
retransmission process and a routing table update process which
for the sake of simplicity will be omitted in our discussion.

To illustrate the translation technique from the modified
predicate transition net model to the simulation program, we
present in Figure 4, the basic types of processes, the packet send-
ing, packet receiving and packet retransmission. Each structure
identifies the range of the corresponding process activities and the
path followed by the respective token type. A type m place is
associated with a sequential code in the corresponding process.
When a process (remember that a process is associated with a
Type 3 token) visits such a place the program counter is position to
execute the next sequence of instructions. The firing of a transition
determines the execution of the next sequential code section.
‘Whether the transition can fire or not, this depends upon the predi-
cate associated with the transition, if any. If a predicate is associ-
ated with the transition then it should be checked according to the
label variables of the input arcs associated with the transition.
Then the sequential code is executed. Usually it will compute
some environment variables and modify some attributes of tokens.
These operations are shown by the labels of the output arcs associ-
ated with that transition.

In ASPOL, a process description specifies the behavior of a

" type of processes and defines variables and events unique to each

process of that type. Each process is a particular and independent
instance of a execution of a process description.

In Appendix, we give three process descriptions of packet
type, which were written in ASPOL. The sendp (send packet) pro-
cess executes first the operations associated with transition T11
from Figure 3. These operations are: routing table lookup to deter-
mine the output line and checking the availability of that line, by
evaluating the predicate associated with T11. If the predicate
which is also related to buffer occupancy on the selected output
line is not satisfied, the process waits until the predicate becomes
true. If the predicate is true, then the transition fires and it triggers
the execution of subsequent operations: computation of the
sequence number and the buffer counter, addition of the packet
sequence number into token attribute record, creation of a retrap
(retransmit packet) process, and decision whether to create a sref
(sending refuse) process. The place P3 is a decision place because

it has multiple output arcs. The program branchs at this place
according to the attribute value of the destination address. If the
predicate associated with the transition T7 is satisfied and the vari-
able P4 is held, i.e., the refuse command is not received, the only
operation associated the transition T7 (including 'T6) is to hold the
process for a random time interval, f. If P4 is empty, ie., the
refuse command has been received, the process waits until the
receiving resume process wakes it up. Finally, the process arrives
at the place FQ, it is substituted for a sending frame process, sendf.
The retrap process and the recep (receive packet) process are
simpler and their description will be left as an exercise for the
reader. The creation, termination and synchronization of processes
will be discussed later.

The Type m places are in turn classified into three groups:

a) Places which accept as input tokens of two or more different
subtypes. In the graph, such places are nodes with two or
more input arcs labelled with token variables of different sub-
types. For example places P3 and FQ in Figure 3 belong to
this group. Tokens of two different subtypes are also in place
P3 since a retransmitted packet is specially identified. Place
FQ contains different types of tokens corresponding to, ref,
res, ack, nak control packets and the data packet, p. This
indicates that different type of processes may execute the
same operations in steps to follow. At these places, we may
combine such processes into a new process, since they exe-
cute the same sequence of operations and this reduces the
complexity of our simulation programs.

b) Places which allow as output two or more different subtypes
of tokens. In the graph, there are two or more output arcs
emerging from such a node, labelled with token variables of
different subtype. The place EQ in Figure 3 is an example of
a decision node of the program. The tokens of different sub-
types contained by the place can cause that the different tran-
sitions are executed. At these places, it is possible to substi-
tute several types of process for the original one.

c¢) Places where no transformation of the process type can occur.

The transitions associated with process creation and termina-
tion are of special concern for the generation of simulation pro-
grams from modified predicate transition nets models. The follow-
ing types of transitions can be recognized:

Fork The transitions for which the number of output arcs
(labelled by token variables of type 3, the following is
the same denotation) is larger than that of input ones
correspond to a fork operation. For example, referring to
Figure 3., the transition T11 corresponds to a fork opera-
tion. When this transition fires, some new processes are
created. The number of the new processes created is the
difference between the number of output and input arcs.
The transition T3 is another example. Whenever T3 is
executed, the retransmission packet process is created
while the original one still exists.

Join The transitions with more input arcs than output arcs
correspond to a join operation. When such a transition
fires, some processes terminate their execution. The
number of terminating processes is the difference
between the number of input and output arcs. For
instance, whenever the transition T2 is executed, the
receiving ack process and the certain retransmitting
packet process are terminated.

Synchronization among processes is represented by transi-
tions to or from places of Type e. If a transition is associated with
a predicate concerning with the attributes of tokens of type 2 con-
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(a)

Pachet-send process

(b)

Packet-retransmission process

ouT N

(c)

Packet-receive process

Figure 4. The primitive processes mnvalved in packet handling

tained by its input places or if a input place of a transition can con-
tain a token of type 1, generally we can identify a synchronization
topology. For example referring to Figure 3, the input place P4 of
transition T7 can contain a Type 1 token, This is not true for tran-
sition T6 sirice the predicate associated with it contains only Type
3 tokens. For transition T11 the predicate is concerned in the
value of token bc contained by the place BC. When a process exe-
cutes such a transition, it should decide whether it waits or not. If
the predicate is not satisfied the process waits, else it continues.

If a transition is associated with updating Type 1 or Type 2
token variables then one may identify a synchronization topology.
In Figure 3, the place BC connects the transition T11 and T2.
When a process executes the transition T2, the process would like
to update the token variable bc contained by the place BC. It is
possible this process wakes up other processes which wait to exe-
cute the transition. T11. As the same case, the place P4 connects
the transition T7 and T8. There is synchronization between the
sending packet process and the receiving packet process, because
the receiving process would like to remove the token contained by
the place P4.

Most of the synchronization problems can be treated in the
framework of Petri nets or modified Petri nets. As two examples
in last paragraph, the former is a classical producer-consumer syn-
chronization, the latter is a mutual exclusion problem.

5. Conclusion

A significant part of the performance analysis of a computer
communication architecture is related to the modeling of commun-
ication protocols supported by the architecture. The communica-
tion architecture investigated in this paper is based upon the OSI -
Reference Model. Queuing models and analytical methods [41]
have been used for this purpose.

In this paper we take a different approach. We define
modified predicate transition nets and use them to model the
mechanisms built into different protocols. "'While Petri nets have
been used in the past to prove the correctness of protocols, by
introducing the time concept and the variable arc concept, we are

766

able to use modified predicate transition nets for the performance
analysis of communication protocols. A two step approach is
presented, first we built the graphs which model the protocol
behavior and then we translate these graphs into simulation pro-
grams,

Since our models can include non-prime transitions we are
capable to represent intricate communication mechanisms using
simpler ones as building blocks. Using this hierarchical modeling
approach we model first mechanisms like fragmentation, reassem-
bly and congestion, etc., then we model the function of an entire
layer.

We believe that the modified predicate transition nets can be
successfully used as a framework for the study of communication
protocols and that they can be applied to the performance evalua-
tion, specification, validation and implementation phases.
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Appendix: Examples of Program Structures

sim net; comment simulation program of the network;
def (nod=5); comment number of the node;

def (line=4) comment maximum line number with a node;
def (n1=16); comment modulo of packet sequence number;
def (m=10); comment buffer maximum capacity;

def (mh=8); comment buffer high water mark;
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event out(line); comment event set of output queue;
event con(line); comment congestion semaphore;
event rq(m1); comment event set of retransmission queue;
macro cm; comment defining a referencing block’s;
block com; comment defining a storage space shared;
integer rb(nod,nod,2); comment routing table, each row contains
destination and line number;
integer s1(line);  comment counter of packet sequence number;
number;
integer be(line);  comment buffer capacity counter;
integer pl(line); comment sending ref control flag;
integer p2(line);  comment sending res control flag;
integer p4(line);  comment receiving ref control flag;
integer ad(nod,line); comment post neighbor table;
integer rtq(tine;m1); comment retransmission state variable;
end block;
endmacro;

end sim;

comment the meaning of the following arguments in processes
a: destination address, sou: source address,
s: sequence numberof packet(end-to-end),
s1(j) or ss1: sequence number of packet(point-to-point),
j: the number of output line;

comment send packet process description;

process sendp(a,s,sou);
integer i,j,a,s,sou,t1;
cm; comment introducing the common data space;
comment checking the routing table to decide output line;
i=0;
while(i.lt.nod)do
begin
if(rb(sou,i,1).eq.a)then
goto g;
i=i+1;
énd;
g j=rb(sou,i,2);
comment deciding whether or not buffer is full;
if(be(j).ge.m)then
queue(out(j));

comment computing the counters;
s1(j)=mod(m1,s1()+1);
be(j)=beG)+1;
comment deciding whether to create sref process;
if(be(j).eq.mh)then
if(p1(j).eq.Dthen
begin
p1G)=0; p2()=1;
initiate sref(sou,j);
end;

comment creating retrap process;
initiate retrap(a,s,s1(j),sou,j);

comment deciding congestion;
if(a.ne.ad(sou,j))then i
if(p4(G).ne.1)then
queue(con(j));
comment delaying time of interface and connection;
hold(random(1.,5.)*.001);
comment substituting send frame process for this one;
ti=1; comment setting frame type;
initiate sendf(t1,a,s,51(),50u,j);

end process;

768

comment retransmit packet process description;

process retrap(a,s,ssl,sou,j);
integer a,s,ss1,s0u,j,t1;
cm; comment introducing the common data space;

commeni waiting for being woke;
queue(rg(ss1+1));
comment deciding whether ack or nak has been received;
if(rtq(j,ssI).eq.I)then goto v;
comment creating retransmit packet process;
initiate retrap(a,s,ss1,sou,j);
comment the following is same with that of sendp process;
if(a.me.ad(sou,j))then
if(p4d(j).ne.1)then
queue(con(j));
hold(random(1.,5.)*.001);
t1=1;
initiate sendp(t1,a,s,ss1,50u,j);

v: rtg(jss1)=0; comment reset the ack flag;
end process;

comment receive packet process;

process recep(a,s,ssl,sou,j,me);
integer a,s,ss1,50u,j,me;
cm; comment introducing the common data space;

comment creating sending ack process;
initiate sack(ss1,sou,j);
hold(random(0.,3.)*.001);

comment deciding whether the packet is mine;
if(a.ne.me)then
initiate sendf(a,s,sou); comment delivering it;
else initiate recem(s,sou); comment receiving it;

end process;



