Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

A New Approach to Distributed Functional Fault Modeling

Dr. Sumit Ghosh

AT&T Bell Laboratories Research

Holmdel, NJ 07733, USA.

Abstract

A new approach to functional deductive fault simulation
is presented in this paper. In this approach, fault mod'els
of complex functional digital components are derived using
a new modeling technique and a decomposition principle.
Also this approach utilizes the deductive technique [AD72]
and the fault simulation algorithm is distributed in all the
fault models. Every model is independent and is capable
of scheduling itself for execution when it receives the input
vectors and fault lists at all its input ports. As a result,
parallelism may be ufilized with relative ease. Functional
fault models are also observed to be invariant to their inter-
nal implementation and performance measurements indi-
cate that functional fault simulation is significantly faster
than gate-level simulation. The CPU time rises linearly
with the increasing number of devices simulated as shown
by a limited set of experiments. This approach has been
verified in the RDV [GS84] at Stanford University.

1. Introduction
1.1 Previous Work

Before Seshu [SS65] introduced the parallel technique, fault
simulation was based on the serial technique where, corre-
sponding to every fault, a faulty circuit is simulated and
its output compared against that of a good circuit. As a
result, serial fault simulation was slow. The parallel tech-
nique is faster and is based on the following principle. In
it, the fault-free circuit and a number of faulty circuits are
simulated simultaneously. The number of faults simulated
during a single pass is a function of the word length of the
host machine; for multiple faults, many passes may be re-
quired. The performance improvement of the parallel over
the serial technique is, therefore, proportional to the word
length of the host computer. TEGAS [8572] implements
the parallel technique. However, modeling of functional
blocks is very complex because, for fault simulation, each
block must be broken into an equivalent gate-level repre-
sentation for fault simulation.

1This research was performed while the author was associated with the Computer

Systems L v, § ity, CA - 94305.

743

The SALOGS [CG78] fault simulator implements the se-
rial technique to fault simulate gates and flip-flops. Mul-
tiple simulation passes are required, one for each fault,
and the CPU time increases quadratically with the number
of devices simulated; however, a “states-applied analysis”
which is equivalent to fault collapsing is carried out prior
to fault simulation, which identifies all equivalent faults
and eliminates them from consideration. Consequently,
the CPU time is less than it would have been without the
analysis.

Armstrong {AD72] introduced the deductive technique
to further ed in a linked list and, therefore, the limitation
of finite computer word length does not apply. Faulty cir-
cuits are not explicitly simulated; however, given an input
vector(s) to a circuit, output fault lists are deduced from
knowledge of circuit behavior. 2 Because of its deductive
nature, this technique is complex to implement.

The concurrent fault-simulation technique was intro-
duced by Ulrich and Baker [UET4] around the same time
as the deductive technique and was intended to be an im-
provement over the parallel method. It is ideally suited for
a multiprocessor machine. The fault-free and (multiple)
faulty circuits are concurrently simulated. During simula-
tion of a faulty circuit, however, if the output at any stage
is identical to that of the faultless circuit, the faulty one
is dropped from consideration because the corresponding
fault cannot be detected. In a single-processor machine,
the concurrent evaluation of multiple copies is emulated
by lists and list processing techniques.

The SIMDE fault-simulator system {MAT8] uses the de-
ductive principle to fault simulate gate-level circuits. A
few general techniques for functional-level fault simulation
have been reported in [SS73] that may enhance fault simu-
lation speed; these techniques are specific to parallel fault
simulation. A functional concurrent fault simulator was
introduced by d’Abreu [dM80] where, 2 new scheduling
approach is capable of .accurately simulating timing and
stuck-at faults simultaneously.

Hirschhorn [HS83] described an extension of concurrent
fault simulation to the functional level incorporated in the
FANSIM3 logic simulator. Fault-simulating storage ele-
ments (such as memory) normally requires every fault as-
sociated with each element to be stored separately. For a
large number of faults, this resource requirement becomes
excessively large. FANSIMS solves this problem by storing
the response from the faultless element and only the dif-
ferences {typically a few words) generated by the faults; it

27h £

, the word simulation is not P iate; h the t s
“deductive fault simulation” will to be used in this investigation as it
is widely known in the desig t ity

S. Ghosh

also uses a concurrent storage evaluation algorithm where
elements whose state differs because of storage faults only
are simulated concurrently with the faultless element. This
reduces the number of faulty functional simulations and
simplifies the problem of convergence and divergence of
functional-fault effects. Hajj [HI83] introduced a fault sim-
ulator for MOS that extracts the logic expressions for sub-~
circuits from layout information and uses a combination of
concurrent and parallel methods to evaluate these expres-
sions. Moorby [PMS83] reported the ”parallel value list”
method that combines the parallel and concurrent fault
simulation techniques. This approach uses multiple fault
lists similar to concurrent fault simulation but they are
compacted into computer words as in a parallel fault sim-
ulator.

In summary,

¢ The fault modeling knowledge and the functions for
evaluating gate-level primitives are intertwined with
the centralized simulation scheduler. Consequently,
addition of fault models of new primitives into the
fault simulator is often very difficult.

o Fault models are devoid of any scheduling which is
completely contained in a centralized scheduler. Con-
sequently, utilization of parallelism that might be present
is difficult.

» fault modeling of functional devices is difficult. Usu-
ally a functional device is synthesized from gate-level
primitives which are then fault simulated. Problems
associated with this approach are

- Difficulty in achieving accuracy of the functional
device through synthesis of gate-level primitives.

— The CPU time taken for fault simulation at the
gate-level is usually very large and therefore such
simulations are expensive.

1.2 A Novel Approach to Fault Simulation

First, a few concepts and definitions are presented after
which the new fault simulation approach used in RDV is
detailed.

The concept behind fault simulation is that of sim-
ulating a circuit under various fault conditions, in order
to evaluate an input (test vector) in terms of its fault de-
tection and location capability. Mathematically, fault sim-
ulation may be described as follows. Let C? denote an
arbitrary good circuit and f = {f1,f2,...,fn}, is the set of
all faults of interest in C. Assuming a 0,1 value system in
RDV, let the good output response from using a test vec-
tor T be C?(T). Assume C/ denote the circuit under fault
condition f in {fl,....,fn}. A fault in {f1,...,fn} is said to be
detected by T if C/(T) # C¢(T).

A fault list at an output of a circuit, under fault sim-
ulation, is a list of faults that will force a faulty value at
the output, for a given input. Mathematically, if a circuit
denoted by C has the following set of relevant faults, f =
{f1,...,fn}, then the fault list at an output O (good value
0*) will be FO = {fi,...,fk}, such that, for each fault in
YO, the value at the output O will be 07 # 07,

744

A fault model, corresponding to a device, is defined
as an abstraction that contains adequate knowledge to
determine the output fault lists, given the input vectors
and the input fault lists to the device. For such a fault
model structure, the deductive fault simulation technique
was chosen as appropriate in RDV, because, both the fault
model and the deductive technique operate in a dataflow
manner. Fault modéls are expressed in Ada [AD83].

This investigation is limited to single stuck-at logical
0 and logical 1 faults, because, a high percentage of all
faults in a circuit may be detected when modeled in terms
of stuck-at faults [BM76]. It is also limited to zero-time-
delay fault models. An advantage of the zero-time-delay
approach is that the fault models and lists are less com-
plex, as compared to the case where every model has an
unique delay value. The disadvantage, however, is that
delay faults may not be simulated.

In contrast to conventional fault simulators where schedul-
ing is concentrated in a centralized scheduler, in RDV a
large degree of the scheduling is distributed among the
fault models. The remaining small part of scheduling is a
part of the Ada environment. The models are independent
and distinct from each other and the Ada scheduler, and,
therefore, to fault simulate a new type of device it is only
required to add a fault model.

Because a large degree of scheduling is distributed among
the fault models and only a small remaining part. is con-
tained within the Ada environment, parallelism can be
utilized with relative ease. Every fault model is capable
of scheduling itself when input vectors and fault lists are
agserted at all its input ports. Consequently, at any in-
stant during simulation more than one fault model may be
executing simultaneously. Fault models, in RDV, do not
introduce any new technique for parallelism into the Ada
environment; they simply preserve and utilize the paral-
lelism that is already in Ada. A limitation of the above
approach, however, is that models are complex and deriv-
ing them may be difficult. ‘

Fault list propagation through a functional device with
a complex input-output relationship is difficult. However,
fault models for functional devices including sequential de-
vices with memory may be derived in RDV. The capability
is made possible by a combination of three factors.

e The high-level language Ada in which the complex
behavior of functional devices may be expressed.

¢ A decomposition principle which may structurally de-
compose most commonly used digital devices into smaller
units, where each unit is fault simulated in succession
and the intermediate fault lists are propagated from
one simulated unit to another. This principle is. not
detailed here and the reader is referred to [GS84].

Fault information related to storage is stored using
Ada variables. This technique is not presented here
and the reader may refer to [GS84],

Distributed Functional Fault Modeling

In summary, the fault simulator in RDV has the follow-
ing characteristics :

¢ For every device type, the fault modeling knowledge
and the function to evaluate the device are stored in
a single fault model. Fault models are independent
entities and distinct from the simulator nucleus.

To a large degree, scheduling is distributed in every
fault model as opposed to conventional fault simu-
lators where the entire scheduling is contained in a
centralized scheduler. As a result, parallelism can be
utilized with relative ease.

Fault models for functional devices and sequential blocks
with memory may be derived with relative ease.

e A fault model of a device may be integrated with its
functional and timing counterparts in the rule-based
design verifier RDV.

Section 2 presents the basic concepts of RDV followed
by the derivation of fault models for gates. The fault mod-
els for gates explain the basic constituents of a model — the
fault modeling knowledge, the evaluation function, and the
distributed scheduling and also how it is independent of
the rest of the simulator. In section 3, functional-level
models are derived for several commonly used digital de-
vices (using the decomposition principle) such that they
can each be integrated with their respective functional and
timing models into the RDV. Also, the limitation of the de-
composition principle is presented followed by the invari-
ance principle which states that the results of functional
fault simulation are invariant to the implementation de-
tails. Section 4 contains an analysis of the measurements
obtained from running fault simulation on several example
circuits in RDV.

2. Basic Concepts and Gate Fault Models in RDV
2.1 Basic Concepts

The deductive fault simulation algorithm [AD72] incorpo-
rated in RDV deduces the output fault lists based on the
input vectors, input fault lists, and the input-output be-
havior of the device being simulated without any explicit
simulation that usually involves scheduling of good and
faulty events.

In RDV, prior to initiating fault simulation of a digital
design, input vectors are assigned to all the primary in-
puts and any required initialization is performed. When
a device as a result of initialization has input vectors and
fault lists asserted at all its inputs, the corresponding fault
model is executed. Because scheduling is distributed, at
any instant during simulation, the number of such mod-
els that are executing simultaneously may be greater than
one. The execution process is described as follows.

Every path or net in a circuit is identified in RDV by an
integer. A net may connect several nodes of many devices
and has a single logical value at any instant during simula-
tion. When a fault model of an n-input device, where the
input ports are identified by I1,...,In is executed, first, fault
lists F(I1),,F(In) are created. This process is termed
“creating list.” When the input value at net Ik is logi-
cal 0, F(Ik) contains a single fault entry Ik stuck-at 1. If
the value at net Ik is 1 instead then F(Ik) will contain the
fault entry Ik stuck-at 0. A fault list is implemented as
a linked list of fault records or entries, where each record
consists of three fields. In RDV, a fault list for net Ik is
pointed at by F(Ik), where F identifies that part of the
simulation database that relates to fault simulation. The
first field contains the identifier of the net where the fault
originates, the second field identifies the nature of the fault
— whether stuck-at O or stuck-at 1. The third field points
to the next fault record and when none is present it points
to nil. Figure 1 shows a fault list corresponding to the net
identifier X, where the entry is X stuck-at 1.

F(X) s-a-1

Next ———> nit

Figure 1: FAULT RECORD FOR NET X.

Once input fault lists are created at the inputs of a
device, then, the output fault lists are deduced based on
the input lists and the input-output behavior of the device.
The process of deduction consists of selectively merging the
input fault lists to form output fault lists at the output of
the device and is termed “merging lists,” as discussed in
section 2.2.

Because of reconvergence in a circuit, it is sometimes
necesary in the deductive technique to subtract selected
fault entries from a fault list. In the procedure respon-
sible for subtracting fault lists, the fault entries that are
selected for subtraction are usually those that are common
beween two or more fault lists. The two procedures that
are responsible for extracting the common entries from
two or more lists, and subtracting selected entries from a
fault list are respectively termed as “common-entry,” and
“subtract-lists.”

A fault model completes execution after the output fault
list is deduced and is propagated to the inputs of other
fault models that are connected to it. In RDV, fault models
are successively activated, executed, and then the fault
lists are propagated to the primary output of the circuit.
The fault simulation process terminates when output fault
lists are available at all primary outputs of the circuit; the
contents of these lists identify all faults that are detectable
for the given input vector.

745

S. Ghosh

2.2 Fault Model of a two-input AND Gate

For the AND gate shown in Figure 2, the fault model is
derived in Figure 3.

Fault list
Flinward(1))
" Fault list
inward(1) ‘Floutward(3))
AND2 [>——
outward(3)
inward(2)
Fault fist
F(inward(2))

Figure 2: AND GATE.

First, the model checks whether inputs have been as-
serted at its inputs and when true it activates itself for
execution. The output fault list is deduced based on the
input fault lists, input vectors, and the input-output be-
havior of the gate. Therefore, deducing the fault list is
completely independent of other models and the rest of
the simulator. At the end of execution, the fault model
propagates output fault lists to all other fault models that
are connected to its output port. Subsequent models ac-
tivate themselves when inputs are asserted at their input
ports and, the fault lists are propagated in the direction
of the primary output of the circuit. The self-activation
and propagation of fault lists to other models at the end
of execution constitutes the distributed scheduling of the
model. The underlying Ada scheduler simply places active
fault models in a queue for execution by a single processor
and terminates the executed models.

Also, because the input fault lists are accessed from the
simulation database indirectly through the input identifiers
input (1) and input (2) and since the computation on input
fault lists to derive the output fault lists is based on these
identifiers, the fault model is independent of the functional
and timing models and may, therefore, be integrated into
RDV.

In the device modél shown in Figure 3, the input iden-
tifiers are input (1) and input (2) and the output identifier
is output (3). The values at input(1), input(2), and out-

put(3) are stored in t(input(1)), t(input(2)), and t(input(3)).

Until vectors are assigned to the inputs, the fault model
is not executed. During execution, first, the fault lists
F(input (1)) and F(input (2)) are created by the create-
list based on the input vector. Then, the output value is
determined using the Boolean relationship and the fault
list F(output (3)) is created by the create-list. Based on
the input vector and considering only single stuck-at faults,
the output fault list is determined using the merge-lists are
in the following way.

If the inputs input (1) and input (2) are both assigned
logical 1, then every record (fault) in the fault lists F(input
(1)) and F(input (2)) will force the respective input to 0.
Both F(input (1)) and F(input (2)) must be merged into
I'(output (3)) because for all faults that force an input to
0, the output will be 0 — different from the correct output
and, therefore, these faults are detectable at the output.
‘When input (1) and input (2) are both logical 0, then,
every record in the fault lists F(input (1)) and F(input
{2)) will force the respective input to 0.

| Task body AND2 is

| input : array(1..2) of node;

| output : arxray(3..3) of node;

| var k is integer;

| begin
if t(input(1))=one and t(input(2))=one then
t(output(3)) :=one; else t{output(3)):=one; end if;

~- output determined by input vector

if t(input(i))=zexo then create-list(input(1),s-a-1);
else create-list(input(1),s-a-0); end if;

if t(input(2))=zero then create-list(input(2),s-a-1);
else create-list(input(2),s~a~0); end if;

if t(output(3))=zerc then create-list (output(3),as-a-1);

else create-list (output(3),s~a-0); end if;
~- create input fault lists based on input vector

|

|

|

|

|

]

|

|

|

|

|

|

|

| common-entry(input(1),input{2),k);

| if t(input(1))=zero and t(input(2))=zero then

| if P(k) <> nil then merge-lists(output(3),k); end if;
| elsif t(input(1))=zero and t{input(2))=one then

| merge-lists(output(3),input (1));

| 4f F(k) <> nil then subtract-lists(output(3),k); end if
| elsif t(input(1))=one and t(input(2)=zero then

| merge-lists{output (),inmput ());

| if F(k) <> nil then subtract-lists(output(3),k); end if;
|
|
|
|
|
}
|
|

else merge-lists(output(3),input (1));
merge-lists(output (3),input (2));
=~ create output fault list based on test vector,
-~ input fault lists, and functionality of the gate

end if;
end;

Figure 3: FAULT MODEL FOR AN AND GATE.

Nome of the F(input (1)) or F(input (2)) are merged into
F(output (3)) because, for all faults that force an input to
1, the output is 0 - indistinguishable from the correct out-
put and, therefore, these faults are not detectable at the
output. However, if there are common entries between
fault lists at input(1) and input(2), then, for each entry,
both inputs will be forced to 1 causing a 1 at the out-
put which is detectable. The output fault list will contain
all common entries between F(input(1)) and F(input(2)).
If input (1) and input (2) are 0 and 1 respectively, ev-
ery record in F(input (1)} and F(input (2)) will force the
two inputs to 1 and O respectively. Only the F(input
(1)) is merged with F{output (8)), because, for all faults
that force a 1 on input (1), the output is 1 — different
from the correct output and, therefore, these faults are
detectable at the output. However, all faults common
between F(input(1)) and F(input(2)) must be eliminated
from F(output(3)) because each of them will force a 0 on
input(2), causing a 0 on the output which is undetectable.

When input (1) and input (2) ate 1 and 0 respectively,
the F(input (2)) is merged into F{output (3)) and the faults
common between F(input(1)) and F{input(2)) are elimi-
nated, by a similar reasoning. The fault model therefore
determines the output fault list and the AND gate is fault
simulated.

Distributed Functional Fault Modeling

The above fault model consists of rules expressed through
“if” clauses. These rules are but explicit calls to the three
procedures, based on the Boolean relationship that defines
the AND gate, and are executed based on the input vector.
Fault models for other gates such as OR and NOT contain
different sets of rules based on their respective Boolean re-
lationships and executed depending on the input vectors.
Fault models of an Inverter and OR gate may be derived
analogous to the AND gate.

3. Functional Fault Simulation in RDV

In this section, the new approach is applied to functional
devices and functional fault models are derived.

Definition of functional fault models in RDV for
combinational blocks : Let CB denote a functional com-
binational component with n inputs 11,12,..,In, and k out-
puts 01,02,...,0k, where Oj = Mj(11,12,..,In) for all j from
1 to k, and M1,...,Mk are Boolean mappings. A functional
fault model in RDV is required to consider all faults in the
fault lists, F{I1),...,F(In) including the stuck-at faults at
I1,..,In, simulate them assuming unfaulted Boolean map-
pings M1,..,Mk, and propagate them to the output ports
01,...,0k, for a given set of input test vectors.

Definition of functional fault models in RDV for
sequential blocks : Let SB denote a functional sequen-
tial component with n inputs I1,12,..,In, r states S1,...,5r,
and k outputs 01,02,...,0k. Oj = Mj(I1,12,..,In,S1,..,Sr)
for all j from 1 to k, and Sl,., = NI(I1,12,..,In,S1,..,S1)
for all I from 1 to r where, ML,...Mk and NI,...,Nr are
Boolean mappings. A functional fault model in RDV is
required to consider all faults in the fault lists, F(I1),...,
F(In) including the stuck-at faults at I1,..,In, and the in-
ternal stuck-at faults at S1,..,Sr, simulate them assuming
unfaulted boolean mappings M1,.., Mk,N1,..,Nr and prop-
agate them to the output ports O1,...,0k, for a given set
of input test vectors. A stuck-at fault associated with a
state implies that the initialization is faulty.

The principal advantages of deriving functional fault
models are :

¢ Because the CPU time required to simulate a circuit
is generally a function of the number of devices sim-
ulated, it may imply considerable savings when fault
simulation is carried out at a much higher — functional
level, where a single device represents many gates.

¢ Functional fault models of flipflops and other sequen-
tial devices are more comprehensive than their gate-
level equivalent.

¢ Typical digital designs contain a substantial number
of functional blocks such as adders, counters, and mul-
tipliers.

e For some large circuits such as microprocessors, the
manufacturer supplies the functional model only.

The principal disadvantage of functional fault models is
loss of detail particularly with respect to internal faults.
Section 3.1 presents a functional fault model of a one-bit
adder and section 3.2 presents the functional fault model of
a four-bit adder. Section 3.3 briefly presents the limitation
of the decomposition principle.

A lB CIN
|
1 2 3
ONE-BIT ADDER -
4 5

|
Y
s cour

Figure 4: A ONE-BIT ADDER FUNCTIONAL
REPRESENTATION.

The Boolean equations describing the functional block
are :

§ = CIN.(-A.-B + A.B) + -CIN.(-A.B + A.-B);
COUT = CIN.(A + B) + A.B;

For the one-bit adder shown in Figure 4, the functional
fault model is derived assuming the general case that A,
B, and CIN are secondary inputs. The boolean equations
that define the adder are given below the Figure 4, where
the symbols “”, “+”, and “” represent Boolean AND,
OR, and NOT respectively. Therefore, fault lists F(A),
F(B), and F(CIN) may be nonempty. Figure 5 contains
the truth tables for COUT(carry out) and S(sum) outputs.
For a given input set of values of Cin, A, and B, the COUT
and S outputs may be obtained from the tables 1 and 2.
Assuming CIN = 1, A = 0, and B = 1, the following fault
lists are created by the procedure create-list and appended
to the already existing lists. Therefore, F(CIN) = F(CIN)
U CIN(s-2-0), F(A) = F(A) U A(s-2-1), and F(B) = F(B)
U B(s-a-0). For the input vector, the correct outputs are
read from the tables 1 and 2 to be S = 1 and COUT = 0;
therefore, the fault lists for these outputs are F(S) = S(s-a-
0) an F(COUT) = COUT(s-a-1). For all faults in F(CIN),
the equivalent faulty input vector is CIN = 0, A = 0, and
B = 0 for which COUT is 0 (table 1) and § is 0 (table 2).
The value of COUT is indistinguishable from the correct
value; however, any fault common between F(A), F(B),
and F(CIN} will be cause a 1 at COUT which is same as
the good output. Therefore, F(COUT) = F(A) n F(B)
N F(CIN). The value of S is different and, therefore, the
faults in F(CIN) are potentially detectable at the output
5. Hence, F(S) = F(S) U F(CIN). All fault entries that are
common between F({A) and F(CIN) will cause a 1 at the
S output and hence must be eliminated. Therefore, F(S)
= 8(s-a-0) U {F(CIN) - F(A) N F(CIN)}. For all faults
in F(A), the output values are CIN = 1 and S = 0. Both
of these output values are different from the correct out-
put and all faults in F(A) are detectable at both S and
COUT. Therefore, F(S) = F(S} U F(A), and F(COUT)
= F(COUT) U F(A). All fault entries common between
F(A) and F(B) and between F(A) and F(CIN) must be
eliminated from F(S) because they cause a 1 on the S out-
put which is indistinguishable from the good output. The

S. Ghosh

fault entries common between F{A) and F(B) and between
F(A) an F(CIN) must also be eliminated from F(COUT)
because they will force a 0 on the COUT output which is
same as the good output. Therefore, F(8) = F(S) U F(A)
- F(A)NF(B) - F(A)NF(CIN), and F(COUT) = F(COUT)
UF(A) - F(A)NF(B) - F(A)NF(CIN). By a similar reason-
ing process, for all faults in F(B), the following final fault
lists are obtained.

F(S) = $(s-a-0) U F(CIN) - F(A)NF(CIN) U F(A) -
F(A)NF(B) - F(A)NF(CIN) U F(B) - F(A)NF(B).

F(COUT) = COUT(s-a-1) U F(A)NF(B)NF(CIN) U F(A)
- F(A)NF(B) - F(A)NF(CIN).

The fault model (Figure 6) for the one-bit adder must
produce output fault lists for all possible vectors at the in-
puts A, B, and CIN. In it, first, the input fault lists F(A),
F(B), and F(CIN) are determined based on the given input
vector. Then, the S and COUT are determined using the
truth tables and based on these, the F(S) and F{COUT)
are deduced. All faults in F(A), F(B), and F(CIN) cor-
respond to respective faulty vector for which, the S and
COUT outputs are determined again using the truth ta-
bles. If the value of S for all faults in F(A) differ from the
correct value, then, the fault list F(A) is appended to F(S),
because, they are potentially detectable at the S output.
Similarly, where the value of COUT for all faults in F(A)
differ from the good value, the fault list F(A) is added to
F(COUT). When the fault lists F(A), F(B), and F(CIN)
are being appended to F(S) and F(COUT), care is taken
to isolate all faults that are common between the input
fault lists. Each of these faults imply a faulty value on
more than one input and, consequently, the output must
be evaluated using the truth tables. Where such a fault
causes an output that is identical to the good value, that
fault must be eliminated from appropriate output fault list,
because, it will not be detectable. The fault model termi-
nates execution when the output fault lists are completely
determined and are propagated to other fault models that
are connected to its output port.

CN| A | B| couT | s
o|lo|o 0 0
ojo]1 0 1
c|l1loc] o 1
o1t 1 0
1]0]o0 0 1
1]0]1 1 0
1{1}o0 1 0
111 1 1

Figure 5: TRUTH TABLES FOR COUT AND S.

|Task body one-bit-adder is

|input : array(i..3) of node;
|output : array(4..5) of node;
lvar

| ab,acin,bcin,abcin : integer;
[function inv(a : intnet-val) return intnet-val is

|begin end;

|function Tablei(g,h,m:intnet-val) return intnet-val is
[begin end;

|function Table2(g,h,m:intnet-val) return intnet-val is
|begin end;

|begin

common-entry (input (1) , input(2),ab);

common-entxy (input (1) ,input(3) ,acin);

common-entry (input (2) , input (3) ,bein);

common-entry(input (1), input (2),abcin) ;

common-entry (abcin, input (2) ,abcin);

t (output (4)) :=Tablei(t (input(1)),t (input(2)),t(input(3)));
t (output (5)) :=Table2(t (input (1)) ,t (input(2)),t (input (3)));
if t(input(1))=zero then create-list (input(1),s-a-1);

else create~list(input(1),s-a-0); end if;

if t(input(2))=zero then create-list (imput(2),s-a-1);

else create-list(input(2),s-2-0); end if;

| if t(output(5))=zero then create-list(output(s),s-a-1);
| else create-list(output (5),s-a-0); end if;

| if t(output(4)) <> tablet (inv(t(input(1))),t(input(2),

| t(input(3)) then

| merge-lists(output(4),input(1));

| if P(ab) <> nil and T(output(4)) =

| tablei(inv(t(input(1))),inv(t(input(2))),t(input(3)))

| then subtract-lists(output(4),ab); end if;

| if F(acin) <> nil and T(output{(4)) =

| table(inv(t(input(1))},t(input(2)),t (inv(input(3))))

| then subtract-lists(output(4),acin); end if;

| if F(abcin) <> nil and T(output{4)) =

| table(inv(t(input(1))),inv(t(input(2))),inv(t(input(3))))
| then subtract-lists(output(4),abcin); end if;

| end if;

Figure 6: FAULT MODEL FOR ONE-BIT ADDER.

3.2 Functional Fault Model of Four-Bit Adder

In the above functional fault model for a one-bit adder, the
truth table size is a function of the number of inputs and
outputs. Reading a table is equivalent to determining the
outputs logically using the Boolean equations and with a
rise in the number of inputs and outputs as in functional
blocks, these equations become complex. This section de-
scribes methods of subdividing functional blocks into mod-
ules to simplify fault simulation.

Figure 7 is a functional diagram of a four-bit adder.
The outputs SO through S3 and C3 are functions of AO
through A3,B0 through B3, and Cin. The truth-table for
nine inputs and five outputs would be prohibitively large
and, equivalently, a set of Boolean equations with some of
them involving nine variables may be quite complex. The
fault model for such a component will require complex fault

Distributed Functional Fault Modeling

list manipulation which may be difficult.

A technique is introduced whereby the four-bit adder is
functionally decomposed into four one-bit adders as shown
in Figure 7. The four one-bit adders are identified by 1
through 4. The carry output from a previous one-bit adder
is connected to the carry input of the subsequent one. For
1, the carry input is primary and for 4, the carry output
is primary. 1 and 4 are the least - and the most signifi-
cant adders respectively. The decomposition principle may
be formally expressed as follows. Let C denote a circuit
that may be structurally decomposed into n units, C =
C1ye..sCy such that, either each unit may be fault simu-
lated completely independent or they must be fault simu-
lated in sequence. In the latter case, intermediate results
and fault lists are propagated from C; to Cj;y immediately
after the unit C; has been fault simulated.

In the fault model of the four-bit adder, the four one-bit
adders 1 through 4 are fault simulated sequentially using
the truth table for a one-bit adder repeatedly. Because all
three inputs AO, BO, and CIN of 1 are primary, they re-
ceive input vectors first and 1 is fault simulated. Results of
simulation are fault lists F(80) and F(CO0), where SO and
CO are the sum and intermediate carry outputs. Both out-
put fault lists will be some function of the input fault lists
F(A0), F(BO) and F(CIN). Therefore, F(S0) = f1(F(A0),
F(B0), F(CIN)) and F(80) = g1(F(A0), F(BO), F(CIN)),
where f1 and gl are mappings. Then, 2 is fault simulated
and the output fault lists F(S1) and F{C1) are determined
as some function of F(A1), F(B1), and F(C0). There-
fore, F(S1) = f2(F (A1), F(B1), F(C0)) = f2(F(A1), F(B1),
g1(F(A0), F(B0), F(CIN))) = f2;(F(A1), F(B1), F(A0),
F(B0), F(CIN)), where £2 and f2; are mappings. Similarly,
F(C1) = g2;(F (A1), F(B1), F(A0), F(B0), F(CIN)), where
92; is 2 mapping. Fault models for 3 and 4 are executed in
order and finally, the fault lists F(S3) and F(C3) are ob-
tained as follows. F(53) = f4;(F(A0), .., F(A4), F(BO0),..,
F (B4}, F(CIN)) and F{C3) = g4,(F(A0), .., F(A4), F(B0),
-, F(B4), F(CIN)), where f4; and g4, are mappings.

Figure 8 contains the functional fault model of a four-
bit adder. The input(1) through input(9} and output(10)
through output(14) represent the nine inputs and five out-
puts respectively. The procedure p-fault-simulation cor-
responds to the model section for fault simulation. The
procedure adderl is responsible for fault simulating a one-
bit adder and has been detailed in an earlier section. The
p-fault-simulation calls adder1 four times; during each call,
the input fault lists are passed to the adderl and the result-
ing output fault lists are sent back to the p-fault-simulation
when adderl completes execution.

An Invariance Principle

While deriving the functional fault model for the adder,
the implementation details of these functional blocks have
either been ignored or a specific implementation have been
assumed. It is reasonable, however, to assume that there
could be more than one implementation or a different set
of Boolean equations for the same functional block. Func-
tional fault simulation in RDV will always yield the same
result despite the implementation or Boolean equations

749

chosen while deriving the fault model. Intuitively, because
the fault lists obtained include stuck-at faults at only the
input and output nodes, they should be unaffected by the
internal implementation. A formal proof of this invariance
principle, as applied to combinational and sequential cir-
cuits is detailed in [GS84).

I T
Four-Bit Adder

I

83 82 8180 COUT

S0 At st At s2 A3 by
A0
BO 1 -1 jjl_;2 ::[_3_};’ 4
Cir

<o l 1] _..J c2 c3

Figure 7: DECOMPOSED FOUR BIT ADDER.

| Task body four-bit-adder is

[input: array(i..9) of node;

| output: array(10..14) of node;

| procedure one-bit-adder(..);
begin .. end;

~- fault simulate first one-bit adder
one-bit~adder(...);

| -~ fault simulate fourth one-bit adder
| one-~bit-addex(...);

Figure 8: FAULT MODEL OF A FOUR-BIT ADDER.

3.3 Fault Models for other Functional Blocks and
Limitation of the Decomposition Principle

Functional fault models for shift-registers, synchronous and
asynchronous counters, memory elements, ALU units, and
multipliers are derived and detailed in [GS84]. Models for
multiplexers, combinational PLA’s and other functional se-
quential blocks that may be represented by a truth table
or a set of Boolean equations, may be derived using the
decomposition principle and is not presented in this pa-
per. For cases such as random logic and arbitrarily large
PLA’s whose Boolean equations may not be decomposed
structurally, the fault model must contain the entire truth
table and, therefore, may be complex.

S. Ghosh

4. Analysis of Results Obtained from Fault Simu-
lation in RDV

This section reports the CPU times taken for fault sim-
ulating circuits at the gate- and functional-level level in
RDV.

4.1 Fault Simulation of Adders

Figure 9 shows the normalized CPU times obtained from
executing fault simulation on a four-, eight~, sixteen-, and
thirty-two-bit adder. Because it is difficult to manually
describe the interconnection database for a large gate-level
circuit, the sixteen- and thirty-two-bit adder circuits are
not simulated at the gate-level in RDV. However, they are
simulated at the functional-level in RDV.

Adder Size
4 8 16 32
RDV Gate:-Level 356 54.28
RDV Functional-Level 68 89 1.4 7.6

Figure 9: CPU TIMES (IN SECONDS) FOR
DIFFERENT FAULT SIMULATORS.

For each of these simulations, a set of 240 test vectors
generated by a random 0,1 generator is used and the fault
coverage is 100 percent. For the thirty-two-bit adder con-
sisting of 336 gates, the total number of faults is 448 all of
which are detected by the test vector set. It is observed in
Figure 10 that the graphs are linear.

RDV Functional-Level
32

Adder
size

16

8
RDYV Gate-Level

0
o 510 s 50 100
CPU time (seconds)

Figure 10: GRAPHS OF PERFORMANCE OF
DIFFERENT FAULT SIMULATORS.

The linearity of the fault simulator in RDV may be ex-
plained as follows. Because each component in RDV is
simulated only once per vector, and as all necessary com-
putations are done within the component model, the total
CPU time will be proportional to the total number of de-
vices simulated.

It may be observed from Figure 9 that functional fault
models are faster than their equivalent gate-level mod-
els. The functional fault models in RDV of the four- and
eight-bit adders are faster than the corresponding gate-
level models in RDV, by factors of 5.2 and 5.4 respectively.
The ratio is likely to increase for fault models of functional
devices that represent larger number of gates.

4.2 Fault Simulation of the AMD2903 in RDV

A simplified AMD2903 bit-slice processor is functionally
fault simulated in RDV using the DEC-20 computer sys-
tem. The simplified architecture and the functional fault
models of the constituent.components of the AMD2903 are
given in [GS84]. A set of 240 input test vectors are used
and the fault coverage achieved, is 62%. The CPU time
taken is 29.6 seconds. '

5. References

{AD72} D.B:Armstrong, “A Deductive method of Simulat-
ing Faults in Logic Circuits,” IEEE Transactions on Com-
puters, May 1972.

[AD81] D.C.Luckham, H.J.Larsen, D.R.Stevenson and
F.Von Henke, “ADAM ~ An ADA Based Language for
Multi-processing,” Program Verification Group Report PVG-
20, OSD Report STAN-CS-81-867, Stanford University,
July 1981.

[AD83] U.S. Department of Defense, “Reference Manual
for the Ada Programming Language,” January 1983.

[BM76] M.A.Breuer and A.A.Friedman, “Diagnosis and
Design of Digital Systems,” Computer Science Press. Po-
tomac. Maryland. 1976.

[CG78] G.R.Case and J.D.Stauffer, “SALOGS-IV A Pro-
gram to Perform Logic Simulation and Fault Diagnosis,”
Proceedings of the 15th Design Automation Conference,
Las Vegas, June 1978.

[dM80] M.A.d’Abreu, “An Accurate Functional Level
Concurrent Fault Simulator,” Proceedings of the 17th De-
sign Automation Conference, 1980.

[HI83] Ibrahim Hajj and D.Saab, “Fault Modeling and
Logic Simulation of MOS VLSI Circuits based on Logic
Expression Extraction,” ICCAD 1983.

[GS84] Sumit Ghosh, “RDV: A Rule-Based Generalized
Design Verifier,” Ph.D. Thesis, Department of Electrical
Engineering, Stanford University, Stanford, CA - 94305,
1984.

Distributed Functional Fault Modeling

[HS83] S. Hirschhorn, “Fault Propagation Techniques in
a Functional Level Concurrent Fault Simulator,” ICCAD
1983.

[MA76] A.Miara etal, “Fault Propagation in digital net-
works using a deductive analysis,” CAD Seminar, Budapest,
1976.

[PM83] P.R. Moorby, “Fault Simulation Using Parallel
Value Lists,” ICCAD 83.

[8S65] S.Seshu, “On An Improved Diagnostic Program,”
IEEE Transactions on Electronic Computers, Vol EC-14,
1965.

[8872] Szygenda, S.A. and Thompson, E.W., “Fault In-
sertion Techniques and Models for Digital Logic Simula-
tion,” FJCC 1972,

[SS73] S.A. Szygenda and A.A. Lekkos, “Integrated Tech-
niques for Functional and Gate Level Digital Logic Simula-
tion,” Proceedings of the 10th Design Automation Work-
shop,June 1973. pp 159-172.

AUTHOR’S BIOGRAPHY

Sumit Ghosh graduated from the Indian Institute of Tech-
nology, Kanpur in May 1980 with a B.Tech. degree in
Electrical Engineering and the received the M.S. and Ph.D.
degrees from Stanford University, California, in 1981 and
1984 respectively. While at Stanford, he was affiliated with
the Computer Systems Laboratory and the Center for Inte-
grated Systems. Sumit then joined the Knowledge Systems
Research Department at Bell Laboratories as a Principal
Investigator-Member of Technical Staff. His interests are
in computer-aided design of digital systems and VLSI, dis-
tributed ezpert systems for design verification and synthe-
sis, behavior-level fault modeling, multiprocessor architec-
ture, and hardware description languages.

Dr. Sumit Ghosh

ATET Bell Laboratories Research

Room {G-634, Holmdel, NJ 07738, USA.
Tel. 201-949-8689.

751

