Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

SOFTWARE CHARACTERIZATION INDEPENDENT OF HARDWARE

Lawrence L. Rose
Computer Science Department
University of Pittsburgh
322 Alumni Hall
Pittsburgh, PA 15260

ABSTRACT

This paper describes a software simulation methodology
which is being developed for flexible, macro-level computer
systems modeling. This methodology enables one to vary
the host hardware configuration under consideration without
requiring alterations to the software system characterization,
or vice versa. The SOFT-SIM methodology forms the basis
for a computer systems simulator which will exhibit
independent, data-defined software and hardware
specifications. Fully defined software systems and/or
probabilistic job mix scenarios can be addressed with this
methodology.

1. INTRODUCTION

Computer systems simulation is becoming an
increasingly more difficult endeavor as software and
hardware systems grow in complexity. This research
emanates from efforts to solve the problem of hardware
sizing for proposed software system designs. Given a
detailed software specification, how does one determine the
proper host hardware system, or choose among alternatives?
Historically, vendors have provided benchmark data on
various software functions such as searching, sorting, matrix
inverting, etc. to give an indication of execution speeds and
i/o requirements (Arbuckle 1965, Drummond 1969, Lucas
1971, Buzen 1978).

-

However, one can readily observe that a complex set of
interconnected software routines in an on-line man-machine
environment cannot be accurately assessed by modeling
each software process in isolation. Furthermore, one cannot
model software processes accurately without defining the
specific hardware resources to be utilized by each process.
The result is that most simulation models of large, complex
hardware/software systems are complicated, unique, and
ungeneralizable. This is due to the complexity of the
hardware/ software definitions afid to the specificity
requirements that bind the sofiware processes to the
hardware resources.

One objective of this author’s research over the past
several years has been to reduce the complexity of
producing accurate software characterizations for computer
systems simulation. This has been achieved, at.thé macro
level, through hierarchical é&vent-oriented modeling
techniques (Rose 1981, 1982, 1984). Recent research has
focused upon a general solution to the software-hardware
binding problem, the results of which are the domain of this
paper.

~1

It is clear that a simulation model comprised of separate
software and hardware component definitions provides the
desired flexibility of use for software or hardware systems
planning. The rub is that it is very difficult to define
software processes at a detailed level without knowledge of
the - host hatfiware configuration. If this knowledge is
explicitly used in the software definition, then it must be
altered every time a different hardware configuration is
considered. Given non-identical software definitions, it is
difficult to prove that the same workload is processed by the
different models.

This problem grows in complexity when the hardware
configuration is a network of cpu’s and devices. The
methodology described herein provides an approach to
properly binding independent software and hardware
definitions. This enables either definition to change without
requiring any alterations whatsoever to the other simulation
component, be it hardware or software. The focus of this
paper is on software specification, per se, and its binding to
the hardware configuration.

2. SOFTWARE PROCESS MODELING

Software systems can be considered to be comprised of
a network of low-level software functions (eg. job steps),
each characterized at the macro level by an input, compute,
and output cycle as shown in Figure 1 (Russ 1979). The
software function resources include: an Input Device, a
Cpu, Memory, and an Output Device. For full flexibility we
consider executing on a network; therefore we must model

Former
Dev([k]

Figure 1. Software Function Simulation

L. L. Rose

the data transfer required if an input dataset resides on a
device unattached to the host cpu.

This environment provides the flexibility requisite for
hardware-independent software characterization. We let
swcode be a unique encoding for each different software
function/job in the host software system. Methodologically,
we have the following sequence to follow in order to
simulate software execution at the macro level (ie, no
looping between steps 4-6):

1. [System Determination]Cpu i must be chosen based
‘upon the software residency preferences of swcode and
the residency of its input data set on Device k.

[Device Allocationl.Given the choice -of Cpu i, Devices
m and n (that are attached to this cpu) must be
selected and allocated for i/o.

[Data Transferllf m =/ k then the input data set must
be transferred from device k to device m.

{Input]Input is simulated for function swcode ; transfer
amount and channel attributes for connection and
current usage are used to determine the time required.

[Compute]Cpu execution is simulated; the cycle
requirements of swcode and hardware attributes of Cpu
i (cycle time and current usage) are used to determine
the time required.

[OutputlOutput is simulated, in a manner similar to
step 4 above.

[Device Release]Devices m and n are deallocated as
requested by the modeler.

Given this macro-simulator for software functions, a
solution is required that enables one to fully define a
software function without being overly specific in the
software definition. First, the i/o devices cannot be specified
below the generic class level(disk, tape, etc.) while still
retaining hardware definitional independence. Second, each
software function must be defined independent of the
execution configuration, with the i/o device allocation and
deallocation dynamically simulated to provide device and
channel capacity/utilization statistics.

Our solution is to define SW as the generic software

simulation function. It is invoked with the following
arguments:

SW(swcode,indev,outdev,disp)

where:
swcode = unique software function code
1)

indev = generic input device

outdev = generic output device

disp = device deallocation disposition .

Note that no mention of a specific cpu is made, nor are
specific devices referenced. Yet SW provides the modeler

[¢5]

the capability to invoke software with specific executional
attributes (indexed by swcode), to allocate and utilize a
specific class of input and output devices, and to deallocate
devices at job termination. Thus the SW construct enables
one to prescribe software functions in a detailed, yet
hardware-independent manner. The following section details
the additional constructs necessary during simulation to
provide hardware binding for proper modeling of software
execution.

3. SIMULATION-TIME BINDING

Generic software invocations such as those
characterizable by use of the SW construct cannot be
simulated without further support from the model in two
areas: hardware assignment and hardware usage. For
example, the call SW(SORTS,TAPE,DISK,NEW) requires the
model to assign a cpu, mag tape, and disk to carry out the
software function encoded as SORTS. After selecting this
subset of the defined hardware system, the model must
know something of SORT5’s i/o and cp requirements so that
hardware usage can be properly simulated.

These problems are solved by utilizing two additional
data structures whose contents are defined via model inputs.
The mapping FNCPU is user-defined to assign any subset of
the set of modeled cpu’s to each software function
referenced by the model. Thus if we have:

FNCPU(swcode) = dy dy .. dy ¢)]

then the software function sweode is restricted to the cpu’s
dl1l, dl2], ..dInl. Purthermore, Cpu d[1] is preferred (if
available) since it appears first in the FNCPU mapping for
this swcode. For every SW invocation, there is an implicit
guarantee by the modeler that indev and outdev are attached
to each of the cpw’s in the FNCPU mapping for this sweode.

Once a cpu subsystem in the network has been chosen
(using the above mapping) the hardware network must be
searched to find devices of type indev and outdev for specific
allocation requests to follow. In this way, we can make an
unambiguous (yet dynamic) transformation from a generic
software invocation to specific device utilization in a manner
controlled by the modeler with independent model input
describing the hardware network and the FNCPU mapping.

The second data structure requisite for simulating each
of n software functions is the software descriptor array:

SWDESC(1:n,1:8). 3)

The first dimension of SWDESC is indexed by the integer
code associated with each unique function name: swcode.
The eight function descriptors include: i/o allocation sizes,
i/o amounts, and cp cycle requirements
(A-+Bx+Cx**2+Dloglx]) where x is the size of the data set
invoking the software function.

The end result is that SWDESC, in conjunction with
the variable swcode of the SW invocation transforms a job
request into byte amounts for i/o timing and cp cycles for
cpu execution timing. Other data, defined by input
characteristics for the host hardware network being
modeled, is utilized to determine the effective i/o and cpu
time during the simulation. Thus the additional user-defined
data structures FNCPU and SWDESC provide adequate
binding during execution to simulate actual software

Software Characterization Independent of Hardware

functions on specific hardware devices.

4. INITIAL CONCERNS

The methodology outlined in the previous two sections
suggests that one can successfully imbed a great degree of
software/hardware independence into a software systems
simulator. In fact, the CSAR simulator (Computer Systems
AnalyzeR) developed at Battelle-Columbus Laboratories
reflected much of this methodology (Rose et al 1982a,b). It
was applied with reasonable success to the specific problem
domain of dedicated software systems sizing. However
shortcomings were encountered using this simulator that
could not be resolved without major changes to the
underlying methodology and the resultant implementation,
Let us revisit Figure 1 for a critical look at the software
characterization methodology and our initial implementation
thereof.

The major methodological drawback was the
requirement that each software job be characterized by a
single i/o pair, generalization to n logical inputs and m
logical outputs brings us closer to reality. This implies that a
job should be triggered by the arrival of all of its inputs
rather than invoked by the successful completion of its
software predecessor. This further generalizes the software
job structure to a fully connected network, with multiple
predecessors and successors possible for each job.

The major implementation drawback was the
requirement that the modeler definition of the software job
network be imbedded in the simulation code. This required
coding by a modeling specialist with extensive FORTRAN and
GASP expertise. A more generalized implementation would
be language-independent to enable the modeler to directly
implement the software definition.

A lessor drawback lies in the SWDESC definition. Its
cpu characterization of the algorithm order is in fixed terms
of A+Bx+cx**2-+Dloglx], where x is the size of the input.
A more general approach would input any algebraic
expression of this definition.

Finally the GASP language has been incorporated into
SLAM and is no longer supported; the latter is less oriented
to user systems programming. Further research will utilize
the process- oriented view as exemplified by SIMULA (Franta
1977) for computer systems modeling, in view of the above
implementation drawbacks experienced with the earlier
event-oriented effort.

5. SOFT-SIM PROCESS CHARACTERIZATION

Given the above mentioned concerns, a new
methodology has been developed to solve the problem of
modeling software processes independent of hardware. This
methodology is named SOFT-SIM , for software simulation,
and is in the process of being incorporated into a process-
oriented data-driven computer systems simulator (Rose
1986). Figure 2 illustrates the more general view of a
software job taken by this methodology. Based upon the
modeler-defined inputs that characterize each job, SOFT-SIM
derives the resultant network of software processes and
carries out a process-oriented simulation on the modeler-
defined hardware configuration.

In contrast to Figure 1, one observes that this new
approach characterizes each software process with multiple
(rather than singular) i/o datasets. The i/o logical dataset

729

i i
{lnam .. lmam} , r INPUTS
\ 1 n y
\
\ //
N ’
\
\ /
\ /
N/
AV IS
Job
[swcode]
EXECUTE
Core
P 7N
N
4 \
s,
7 \
’ kN
4lnam .., lnam} . OUTPUTS
1 m

Figure 2. SOFT-SIM Job Characterization

names /nam are unique in that they may appear at most
once as an input and at most once as an output. They serve
to link together the software process network. The solution
to process successor(s) is provided by the unique process
whose input dataset name equals the output dataset name.
An input dataset with no matching output dataset can be
considered exogenous; an output dataset with no matching
input dataset can be considered terminal.

The modeler thus defines the software system for
SOFT-SIM as an independent set of software jobs (processes),
each having a unique swcode and associated sets of logical
input and logical output datasets. Each software process is

data-defined, independent of other processes. This
sgeciﬁcation technique is sufficient to describe any
hierarchical/networked software system of arbitrary

he_terogeneous complexity. This power is derived from the
ability to hierarchically define the jobs to whatever level of
detail is desired.

6. HIERARCHICAL JOB DECOMPOSITION

THe motivation for hierarchical decomposition stems
not only from detail requirements, but also from the
dynamic nature of model specification in general. One does
not know enough about the system or its problems at the
onset to define it completely or determine the proper level
of detail. By moving the software specification from the
sourcecode medium to the date medium, we provide the
flexibility necessary to respond to the dynamics of model
construction and usage. Changes can be made to the
software specification without endangering the model
software validity.

Hierarchical decomposition or step-wise refinement of
the software characterization can be accomplished by simply
redefining a previously defined job. This enables an
expansion of job detail such as shown in the following

L. L. Rose

Figure 3. (Note that the exogenous i/o sets must remain
unchanged for both levels of definition.) This provides full
modeling flexibility for carrying out simulation experiments

- using SOFT-SIM: easy updates of the model definition with

" no source code modifications:

Sort
(m—{ % =)
| SEE—

Sort 31
(2nd Def) -

Figure 3. Hierarchical Job Definition Expansion

The updates are easy because we do not remove the
former job definition, we simply add a later redefinition. For
example, in Figure 3 we observe that Sort 31 has been
expanded to three jobs: Sort 31(2nd def) followed by 31_A
and 31_B. This is acomplished in the data definition by
naming Sort 31(2nd def) outputs to be different from the
original Sort 31 outputs, and sending some to 31_A and
others to 31_B. The combined outputs of 31_A and B must
be identical to the original outputs of Sort 31.

The fact remains that one could remove the entire
original definition of Sort 31 and replace it with the new
definition. It’s just that this sort of destructive update is
more prone to error, and it destroys the path of software
redefinitions.
furthermore it need not be revalidated whereas the
replacement (as opposed to the redefinition) software
definition may include errors at higher levels of definition.

The second sort definition illustrated in Figure 3 would
appear later in the input stream, and would be presumed to
‘be the start of a lower breakdown of the software job Sort
31. Statistics are provided only for the lowest-level
definition of a job. In this case, SOFT-SIM would derive
statistics for the network of processes: Sort 31(2nd Def),

This path serves as a historical marker;

730

31_A, and 31_B. Similarly, any of these three jobs could be
redefined at a lower level as detail so required.

Using this software process network scheme, one can
define hierarchical networks at heterogeneous levels of
detail. One can model as many job streams as desired.
Probabilistic job mixes can be viewed as a set of
independent software processes, with no
successor/predecessor relationships. The arrival rates of the
exogenous input datasets can be varied to provide the job
mix desired.

This extension to multiple i/o datasets for software job
characterization necessitated changes in the underlying
modeling tenets of CSAR. In fact, the event-orientation of
our earlier models was scrapped in favor of the more
general (and hierarchical) process-orientation. The final
section outlines the design for SOFT-SIM process modeling.

7. SOFT-SIM PROCESS SIMULATION

Given this more general data-defined process
characterization, the SOFT-SIM methodology must base
process invocation upon an extended SW construct which
will be derived from the input rather than explicitly invoked
from within modeler-defined source code. We can utilize
the SW construct of Definition(1) by interpreting the
arguments indev and outdev as pointers to the modeler-
defined sets of Imam objects. The FNCPU mapping of
Definition(2) remains unchanged, while the SWDESC
descriptor matrix of Definition(3) must also be expanded to
pointers for the multiple i/o attributes and the cpu cycle
expression.

A new data structure is required to bind the logical
dataset names within the modeler software definition to
physical device references during simulation:

DSGEN(Inam) = generic device.)

This data structure has important ramifications, for it shows
that SOFT-SIM invokes software processes based upon Ilnam
arrivals rather than the completion of a unique swcode
software process predecessor. The invocation of software
processes is handled implicitly in SOFT-SIM (based upon the
modeler-defined software network definition) whereas CSAR
explicitly invoked processes -by sequentially executing
modeler-defined source code using calls to the SW function.

SOFT-SIM initiates model simulation by analyzing the
swcode network definition, and triggering initial arrivals of
all exogenous /nam datasets. Any swcode whose inputs have
all arrived is immediately invoked using the expanded SW
construct. At swcode completion each of the Inam outputs is
routed (if non-terminal) to its successor swcode and the
procedure continues until halted under modeler control.

This methodology forms the basis for the development
of a SOFT-SIM simulator. Initial research has been carried
out, using the MODULA-2 language for testbed purposes.
This language has the necessary vitals for process-oriented
modeling using abstract structures and modular software. It
will enable the software realization to be developed
hierarchically.

Software Characterization Independent of Hardware

8. CONCLUSIONS

This new methodology for software systems simulation
fully addresses the shortcomings of our earlier research
effort. Of primary import is the fact that the requirement
for a modeler defined sourcecode software definition was
relaxed to a language and simulation-independent data
definition. Further, this new definition allows far more
complex software networks to be defined, and they can be
easily refined by the modeler during the duration of the
simulation exercise.

The objective of this research was to formulate a
general methodology for characterizing and modeling
software processes independent of hardware. The solution
was developed herein and is being implemented in the
SOFT-SIM model. Extending to a data-driven multiple i/o
software-hardware hierarchy while maintaining the necessary
bindings provides full modeler flexibility. The integrity of
model results is enhanced by the top-down structure of the
data-defined software hierarchy.

REFERENCES

Arbuckle, R. (1965). Computer Analysis and Thruput
Evaluation. NCC’65 Proceedings , pp. 66-75.

Buzen, J.P. et al (1978). BEST/1 - Design of a Tool for
Computer System Capacity Planning. NCC’78 Proceedings ,
pp. 447-455.

Drummond, M.E. (1969).
Performance Evaluation.
pp.252-263.

A Perspective on Systems
IBM Systems Journal 8(4),

Franta, W.R. (1977).
Elsevie, North Holland.

The Process View of Simulation ,

Kiviat, P.J. et al (1973). Simscript IL.5 Programming
Language , CACI, Arlington, VA.

Lucas, H.C.Jr. (1971). Performance Evaluation and
Monitoring. ACM Computing Surveys 3(3), pp.79-92.

Rose, Lawrence L. (1981). Hierarchical Modeling in GASP.
Proceedings of the Fourteenth Annual Simulation Symposium ,
Tampa, FL, pp. 199-213.

Rose, Lawrence L. (1982). TRM: A Resource Model for
Networked Processes. Proceedings of the Fifteenth Annual
Simulation Symposium , Tampa, FL, pp. 211-221.

Rose, Lawrence L. and Freuler, F. Theodore (1982). A
CPU Model for Concurrent Processing . Modeling and
Simulation 13(2), pp. 705-710.

Rose, L.L., Freuler, F. T., and Hochstettler, W.H. (1982).
The TES/EMPS-IFE Simulation System. Battelle Report ,
Battelle Columbus Laboratories, 55 pages.

Rose, Lawrence L. (1984). A Hierarchical Multi-Level
Interactive Systems Simulator. Modeling and Simulation
15(5), pp. 2011-2018.

Rose, Lawrence L. (1986). The Development of HP-SIM:
Hierarchical ~ Process-Oriented Simulation Software.

731

Technical Report 86(1) , University of Pittsburgh, 19 pages.

Russ, Teodor (1979). Data Structures and Operating Systems
, John Wiley & Sons, New York, NY.

AUTHOR’S BIOGRAPHY

LAWRENCE L. ROSE is an associate professor in the
Computer Science Department at the University of
Pittsburgh. He received a B.A. in mathematics from VMI
in 1965, and the M.S. and Ph.D. degrees in computer
science from Penn State University in 1967 and 1973
respectively. He was involved in personnel simulation
modeling studies while with the U.S. Army (1967-1969).
He was an assistant professor at SUNY-Binghamton (1973-
1975) and Ohio State University (1975-1979). From 1979
to 1984 he managed the systems simulation group at
Battelle-Columbus Laboratories. His current interests
include simulation language development, simulation
software engineering, and modeling computer systems. He
is a member of ACM, SCS, and SIGSIM.

Lawrence L. Rose

Computer Science Department
University of Pittsburgh

322 Alumni Hall

Pittsburgh, PA 15260

(412) 624-6475 x3343

