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ABSTRACT

In this paper we explore three research areas in
the development of design and analysis tools required
for asynchronous or free transport automatic assembly
systems. These areas include (1) the use of simulation
analysis for the investigation of subsystems for a
special class of automatic assembly stations - the
"tunnel-gated" or "High~Lift" station, (2) the
development of a theory of analysis for assembly
systems based on the theory of closed networks of
G1/G/1 queues and (3) methods for the optimization of
assembly systems.

1. INTRODUCTION

Since the introduction of assembly line concepts
into automobile assembly in the early 1900's, the
organization of the production flow shop has become
increasingly automated and sophisticated. In the
earliest forms of assembly systems there was little
automation except & tow line that pulled the under-—
carriage of the item to be assembled (the automobile)
along at a constant rate and forced the manual assembly
tasks to be executed at a predetermined rate. By the
1940's, one saw the emergence of more automated forms
of assembly including totally automated assembly
machines for the assembly of such items as artillery
shell fuses. These systems were mechanical marvels but
were totally specialized in the sense that they could
produce only one type of assembly per machine albeit at
a very high rate. More recently one sees an increasing
sophistication in both the variety and technology of
assembly systems concepts.

Boothroyd, Poli, and Murch (1982) classify assembly
systems or machines into two primary classes. These
include synchronous and asynchronous systems. By their
very nature the synchronous systems are totally auto-
mated and often are "hard-automated" i.e. capable of
assembling only a single product type. These systems
are currently used in both mechanical and electrical
assembly work with outstanding success in tasks which
involve components with low mass and high production
volume requirements. Assembly machines currently exist

in electronic circuit board assembly which permit the
exact placement of up to 600,000 surface mounted
electronic devices per hour. The major disadvantages
of synchronous systems are (1) that if a single station
in the machine jams or malfunctions, however briefly,
the entire system is forced to a halt and (2)
especially in the area of mechanical assembly, most of
these systems are not flexible or reprogrammable. A
product change usually requires a complete redesign and
modification of the machine.

Within the general category of asynchronous
machines, we may distinguish several subtypes according
to the types of assembly stations that are installed
and also according to the type of transfer mechanism
used., The individual assembly stations may consist of

a "hard-automated" machine, programmable automated
station or human assembler. The transfer mechanism on
the other hand may be of the type where the transfer
occurs at a constant rate and the work is removed from
the transfer device to perform the assembly task as in
the case of circulating conveyer baskets on manual
assembly systems., A second type of transfer mechanism
is often used which is referred to a "free transfer" or
"power free" and occurs on assembly machines where the
assembly circulates on a palliet to be queued up at an
assembly station and which waits for the assembly
station to finish all of the assemblies ahead of the
last assembly in the waiting line. This type of
transfer permits stations to work at randomly varying
rates and permits individual stations to be jammed or
broken for briet periods without requiring the complete
shutdown of the remainder of the line.

While asynchronous machines seldom approach the
very high production rates of the synchronous machines,
still this class of assembly systems can often reach
production rates of 100 to 1000 assembliers per hour on
assemblies with considerable mass and complexity.
Machines of this type with from 20 to 100 assembly
stations are relatively common today.

2. STUDY OF THE PERFORMANCE OF PARALLEL PROCESSING
CONCEPTS IN POWER-AND-FREE AUTOMATIC ASSEMBLY
SYSTEMS

Traditionally the design of AAS has centered on
configurations consisting of a circular or oval shaped
transfer line with assembly stations placed at
intervals around the oval, with each of the stations
operating asynchronously. As the applications of such
systems has expanded outside the automotive industry it
has been founa that various forms of parallel
processing are desirable or required.

Multiple In-Line Station vs. High-Lift Stations

It is clear that in some sense no AAS can run
faster than its slowest station. As a consequence, if
in the design process, the design engineer finds one or
two stations with much longer cycle times than the
remainder of the stations he is faced with the problem
of how to speed up these slow units. He may either try
to decompose the original assembly tasks into shorter
subtasks that can be broken into two or more new
stations with shorter cycle times or he can install two
or more identical stations in series to form a type of
parallel processing system. If the parts feeding
systems for these new stations work with few or no
problems and the input parts quality is high and if the
stations themselves are extremely reliable then this
arrangement may work well. However, whenever the first
station in this series arrangement is busy or down then
all of the downstream stations are blocked from
receiving additional fixtures and eventually will go
into a starved down condition. If this is a problem, a
highlift or tunnel gated station has the considerable
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advantage that it permits the same parallelism that is
inherent in the multiple in-line station concept, but
the work on the highlift stations is done above the
transfer line thus permitting fixtures to flow beneath
the station ana to reach downstream stations.
Consequently busy or down time on the highlift station
need not shut down the remainder of the line.

In fact several tunnel-gated stations can be
installed in series to accommodate assembly tasks that
bave cycle times that are much longer than the average
cycle time for the rest of the line.

There are a number of analysis tasks that accompany
theé insertion of a serieé of tunnel-gated stations in
an assembly system. First of all, one would like to be
able to predict the productivity of a series of tunnel-—
gated stations as a function of the (common) cycle
time, the mean jam rate, the distribution of the time
required to clear a jam, the transport speed, the total
buffer space allocated to the set of stations and the
relative spacing of the stations within the total
buffer capacity. In addition to just being able to
predict the throughput, one would like to be able to
optimize the performance of the sector by determining
the optimal buffer requirements and the optimal buffer
spacing for each of the stations within the total
buffer capacity.

In an extensive series of simulation experiments,
Leung and Sanders (1986) have found that the behavior
of a series of tunnel-gated stations is quite different
than a similar series of standard assembly stations.
The productivity of a series of standard independent
stations is governed primarily by reductions brought on
by blocking and starvation effects induced by the jam
rate and clear time effects. On the other hand, a
series of tunnel-gated stations exhibit a type of syn—
chronization behavior which is not seen in a series of
standard stationms.

This synchronization in turn implies some unusual
properties for buffer allocation. Leung and Sanders
have found the optimal placement for tunrnel-gated
stations in a combined buffer space with one buffer
space between the previous (standard) station and the
group of tunnel-gated stations. Perhaps the most
interesting result is that the productivity of tunnel-
gated section is not a monotone function of the total
buffer space allocated to the section. This result can
be seen in the plots of figures 1 and 2.
Synchronization effects make certain buffer sizes less
productive than those that are smaller as well as those
that are larger. In addition they have developed some
simple mathematical models that predict these effects
and can be used by the machine designer to predict the
productivity of the tunnel-gated sectors of the machine

3. MODELING OF ASYNCHRONOUS ASSEMBLY SYSTEMS

Modern manufacturing systems pose a number of very
difficult problems for mathematical modeling. Major
classes of systems that are in use that present special
problems are flexible assembly systems (FAS) and
flexible manufacturing systems (FMS). These systems
consist of a closed network of assembly or fabrication
stations which are linked by an automated transport
system. Each processing stations is subject to random
jams and may take a random time to clear. The trans-
port systems introduces delays between the time a part
is finished by one station and the time it is available
for processing at the next station. This property p]:us
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the problems inttoduced by the finite buffers, finite
number of pallets and the randomness of the individual
stations makes the modeling process especially
challenging. In addition multiple types of parts may
be circulating in the system at any given time and each
part type will have its own characteristic cycle time
on each station.

Our goal here is the development of a set of
analysis tools which can be used to accurately predict
the productivity of a proposed or existing assembly
machine. Historically discrete event digital
simulation has been the only tool avaiiable for such
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analysis. While this class of techniques continues to
be a valuable set of tools it has some major
disadvantages. Development costs for simulators are
substantial, modification of existing models is often a
time consuming and expensgive task and analysis of
existing systems is often slow and expensive,
Evaluating tens or hundreds of alternative machine
configurations, as one is likely to want to do in
design analysis, may become impossible due to the
quantity of computer time required to pertorm the
analysis.

Consequently while we want to keep discrete event
simulation (DES) in the analysis tool kit, we really
need a set of methods that permit very rapid and
inexpensive (although perhaps necessarily approximate)
analysis of alternative designs. What we find is that
methods developed for the performance analysis of
computer systems and for the analysis of networks of
queues have excellent potential to provide just the
sort of fast approximate analysis that we desire in
many cases. These tools including DES we will refer to
as general purpose analysis tools. These tools on the
other hand require a number of assumptions that are
violated in certain specific problem areas. In these
contexts we need to develop special analytic tools. A
number of these special areas are enumerated in the
section on special purpose tools below.

Analysis Tools

A. General Purpose Tools

The most promising general purpose analysis tools
available for the study of asychronous assembly
machines are (in addition to digital simulation) the
MVAQ analysis (Suri and Hildebrant 1984) and a new class
of models based on second order approximations to net—
works of GI/G/1 queues (Whitt 1985).

a. MVAQ

The MVAQ (Mean Value Analysis of Queues) is a
method for the analysis of queueing networks based on
exponential service time assumptions. It uses a
variety of mean value techniques from the queueing
literature to derive the mean number of each queue in
the system, the main waiting time for customers at each
facility and it can be used in our problem to derive
the mean throughput for the systems. It is quite
simple to use but it does have the drawback that it is
based on exponential service time assumptions and hence
seriously overestimates the variance of the service
time for most assembly system problems. In addition,
it does not provide a method of estimating the second
moments of the important parameters of the system.

b. Second-Moment Models

One of the difficulties with the MVAQ analysis is
that it assumes that each station in the system has
exponential service time or more exactly it assumes
that the coefficient of variation service time is 1.0.
This creates problems for the analysis of assembly
syatems since certain stations have essentially zero
jam rates and consequently have a coefficient of
variation near zero where others have significant jam
rates and hence significant coefficients of variation.
Clearly to provide an analysis that takes the service
time variation of individual stations into account in
the analysis of the machine it is necessary to intro-
duce the possibility of differing station variances
into the analysis. Just such an analytic method was
developed by Whitt (1985) for the analysis of tele~
communication systems. He has developed a second order
approximation for the analysis of station delays for
GI/G/1 queues. He then proposes an approximate
analysis for networks of GI/G/1 queues. Recently,

Kamath and Sanders (1986) have applied these methods to
the analysis of assembly machines. The results are
given below.

These approximations assume knéwledge of mean
station cycle time and the variance of the station
cycle time. In open queueing network examples it is
also assumed that each external customer arrival
process is a renewal process and that the mean and
variance of each the interarrival processes is known.
All third order and higher moments of the arrival and
service distributions are ignored for the sake of
simplicity in the approximations. In the cage of an
assembly machine there are no external arrival
processes since the arrivals to each station come form
the discharge of the preceding station in the line.

We shall briefly review some relevant
approximations in a stable GI/G/1 queue. Let A
represent the mean arrival time and J the mean service
time. The utilization rate is P =AT< 1. We use the
squared coefficients of varjiation (yariance divided by
the square of the mean) ¢, and e “ to approximately
characterize the variability of the general inter—
arrival-time and service-time distributiomns. Let EW
denote the expected equilibrium waiting time (delay
excluding sexrvice time). The departure process is
approximated by a renewal process partially
characterized by the first two moments of the renewal
interval. The mean of the renewal interval in the
approximating renewal process is just the mean of the
interarrival time, so that the departure rate equals
the arrivael rate. The squared coefficient of variation
of the interdeparture time, cdz. is given by

eg? = g2 + 2pc 2 - 201-P)E/N. (L
This expression is originally due to Marshall
(1968); also see Whitt (1985).

Next, we proceed to analyze closed tandem networks
of queues.

Consider symmetric closed tandem networks of GI/G/1
queues with unlimited waiting room at each queue. The
service discipline 1s FIFO (first—in first-out). In
particular, we assume & closed tandem network with 'M'
service centers and a fixed number, 'N' of customers
who circulate in the system. In the following i =

1,2,...,M. We adopt the following notation.
T : mean service time at a service center
(same at each service center)
og : coefficient of variation of service time

at a service center
(same at each service center)

>

throughput (equilibrium) of the network
(equilibrium mean arrival rate at each
service station)

Cai : coefficient of variation of inter—arrival
time at service center i
g3 ¢ coefficient of variation of inter—

departure time at service center i

utilization of a service center
(all centers have the same utilization)

%

expected equilibrium waiting time (delay
excluding service time) at service center i
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It is easy to see that the following equalities
hold because of the symmetric nature of the tandem
network:

2 . 2 _ - 2 2
Ca1” T gt T e =gyt =y (2)
Cdlz = chZ = oee. = chZ = cdz. and (3)
By = EWg = ... = BW, = EW.

In closed tandem queueing networks since each
arrival process is the departure process from the pre-
vious queue and because of equalities (2) and (3), we
have

2. .2
e = eg

(4)

Focusing on a particular service center and using
formula (1) and equality (4) we get.

B = Tpel/-p). (5)

Using Little's formula and formula (5) for the
expected equilibrium waiting time in queue we have

M= NMT+Tpe 2/ (1-p)} (6)
Rearranging equation (6) we get:
Case (a) cszr <1

Purre?) -poem + 8= o.

It can be shown that the value of p from the solu—
tions to the above quadratic equation is

P o= L080) - VI0eN2 - 4(EMe AN / 208Me ?) ()

Case (b) c:s2 =1

P4+N) - N = 0.

or
P = N (M.
Case (¢} ¢ 251

s
PO 2w + pasn) - N = 0.

From the solutions to the above quadratic equation it
can be easily shown that the value of f is

P = Va2 + h0te T8 - 0] 7 204 21 (8)

Noting that equations (7) and (8) are the same, we
summarize the results as follows:

Service Center Utilization Rate

Case (a) e 2 =1

P = W/ ()

Case (b) csz 5& 1

P= V02 + 4c 20N - (8W)] / 2(c 2-1)

Throughput Rate

A=frT

Next, we apply the above formulas to predict the
performance of completely balanced AASs.

Consider an asynchronous AAS with M assembly
statione and a fixed number, N, of pallets circulating
in the AAS. The AAS is totally balanced, that is, all
assembly stations have identical characteristics. Let
us brietly analyze the dynamics of a typical assembly
station. The time to finish an assembly operation is
fixed and is usually known as cycle time. Let s repre-
sent the cycle time. Whenever a station receives a
defective assembly we say that the station is jammed.
The occurrence of jams is infrequent, but these events
have a significant influence on the performance of an
AAs. The percentage of total assemblies processed by
an assembly station that are defective is called the
percent defective and is denoted by p. It takes a
random amount of time for the station to be cleared of
,a defective assembly. Let r and v represent the mean
and variance respectively, of the clear time.

If D (mean = s, variance = 0) represents the deter—
ministic component and R (mean = r, variance = v) the
stochastic component of the total processing time T of
a station then we have

T=D+ OXR,

where, o is a Bernoulli random variable with parameter
p/100 (percent defective/100).

The random variables and R are stochastically
independent. Hence, the mean and variance of the
random variable T can be easily derived and are

E[T] = E[D] + ERJE[R] or
E[T] =g + (p/100)r
Var[T] = Var[D] + Var xR] or

Var[T] = 0 + {VarkX]Var[R] + Varkx] (E[R])?

+ (Elx])2var[Rr]}

or
VarlT] = (p/100) {v + r2(1-(p/100))}

For our example we assume that the time to clear an
assembly station of defective assembly is geometrically
distributed with parameter equal to 1/r. It is worth
noting that the clear times can follow any probability
distribution provided we are able to estimate the
required parameters. In fact, the mean and variance of
the clear times estimated for operating data would
suffice. TFor the special case of geometric clear
times, since v = r(r-1) we have

VarlT] = (p/100)r{r(2 - (p/100)) — 1}.
Results

The results of comparisons of the class of models
to both simulation and MVAQ models is shown in Table 1
for 10 station machines and in Table 2 for 100 station
examples for varying pallet loading, jam rates and
clear time assumptions.
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TABLE 1. 10-Station AAS Example for the Balanced Case

r
M| ® | SIMULATION MVAQ RENA  (Renewal Approximations)
Clea | Dete-

ctive lets Statloa Thruput Stalwon Thruput % Emorin| Staslon Thruput % Emror fa
Utilization{ Ratz Utilization| Rate Theuput Utillaatioa| Rate Thauput
6 Los |10 0563 S| s 4530
. . 00873 | - 453 0913 1514 -3,
+ 0010 | x 00016 ! 043 s
6 los |20 0993 CAEIS L g0 | ousad 305 099
. X X - 3050 £ . -0
s 0008 | 00008 CH XYY 02
¢ |30 |10 061 N .
. 00852 | - 3844 osis | o130 .
£ 0006 | 200014 s
6 |30 |2 036> ST 0 | ane 02:
X ! . - 2832 X . -0
s | & oo 55 | 0.as4s o
0.814 0.1315
36os |10 0526 | 00852 | -3521 0634 | 0,026 -un
40042 | t0.0070
36| as |2 o OIS e ] 2168
. X 0.1 - 28 (X} . -
s000 | + o0 14} 04317 58
|30 {10 o438 OO e z [
X 0073 | - 146 449 . - 15
coms | & osa A4 0.0634 1592
3 | 30 |20 0.663 00935 0 2
. .69 0.09° awr 0.608 . -
somd | £o0ms 0.0854 .66
** exact solution for the symmetric exponential cyclic neiwork
TABLE 2. 100-Station AAS Example for the Balanced Case
-
M| & | SIMULATION HVAQ RENA  (Renewal Appoximations)
(!
Clear | Dele-
e | 1| Staten | Tuwpnt | stion Thupst | %Emorin] Suton | Thwpw | % Evorie
erve Utilizatis Rate Rate Thoupst Udlization| Rate Thruput
0.9507 0,1504
6 {os | 100 0503 | 00833 | - 446l 0913 | 04514 0.66
+0005 | & 00009
094 01632
6 {os | 200 0669 | 0at09 | -3205 0991 | 0.1644 (%0
£0007 | 200010
0.806 0,1308
6 |20 | 100 0503 | coms | -3770 0816 | 0.1320 118
£0010 | 00015
0.949 0.1536
6 | 30 | 200 0.669 | 02082 | - 2956 0955 | 0.1536 0.63
£0010 | x 00010
0.619 0.0999
6] os | w0 0503 | 00813 | - 162 0634 | 01026 270
20015 | & 00026
0296 0.1282
36| 05 | 200 0.669 | 0.1082 | - 1560 o34 | 01317 n
20018 | 00028
0441 0.0612
36 | 30 | 100 050 | oomo 1601 0449 | 00634 3359
£002 | +00015
0.595 0.0832
36| 3.0 | 200 0.669 | 0.0948 1358 0605 | D.08S4 264
so0s | 20002

*¢ exact solution for the sysmmetric exponential cychc network

4. STOCHASTIC DESIGN OPTIMIZATION OF ASYNCHRONOUS
ASSEMBLY SYSTEMS

The Optimization Problem

Our purpose in this section is to investigate the
application of stochastic optimization to the improve-
ment of assembly systems. The problem is formulated as
a discrete Monte-Carlo optimization problem and is
solved using stochastic quasigradient methods (Ermoliev
1983). The objective functional we will use is the
expected rate of production of completed assemblies.
Our decision variebles will be the buffer sizes between
each pair of stations in the systems as well as the
number of pallets loaded on the line.

The only general analytical techniques for lines
with more than two unreliable stations and finite
buffers are tror special systems. In these systems the
probability that a machine is under repair during a
given cycle is independent of the state of that machine
during the previous cycle. There are relatively few
optamization studies in this area but in a paper whose
approach is similar in spirit to the methods presented
here, Ho, Eyler, and Chien (1979) use perturbation
analysig and gradient methods to study the effect of
buffer sizes, cycle times and clear times on the
production rate of open transfer lines.
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In this section we examine a closed AAS which has
both finite buffers and transport delays included
explicitly in the model. Our primary goal is to find
the optimal number of buffers between each pair of
stations and the optimal number of pallets to be loaded
on the system. Since there are no general analytical
methods available for this complex problem we attempt
the application of a general stochastic optimization
procedure (stochastic quasigradient method) to obtain
the solution. Since the model of the system is
obtainable only as a discrete event simulation we are
involved in a Monte Carlo optimization problem. In
addition, a further complication is present here since
the SQG method was not originally intended for problems
with discrete decision variables. As a consequence,
the original convergence proofs for the method do not
apply in our situation.

A wide range of engineering optimization problems
cannot be solved by using deterministic optimization
methods. The SQG method is a generalization of
standard gradient methods under conditions where direct
calculation of the gradient is not possible. The SQG
method substitutes estimate of the gradient for the
(unobservable) true value. In applications such as the
optimization of design parameters for manufacturing
systems both the values of the objective function it-
self as well as the gradient must be obtained from
multiple observations from a discrete event simulation
model. While under certain conditions (Glynn and
Sanders 1986) convergence proofs can be obtained,
matching the method for obtaining estimates of the
gradient to the problem type, determining the step size
and other parameters of the method appropriately for
the specific problems remains something of an art form.
Liu and Sanders (1986) have adapted the SQG method for
application to assembly system optimization.

The Model
The problem we are attempting to solve is to find
the optimum production rate of an AFAS with the buffer
size of each station and the number of pallets on the
entire system as decision variasbles. We can write:
max: Fx);

production rate = x in X

F(x) = B, £(x.w)

The production rate is the ratio of the expected
number of finished assemblies per unit time multiplied
by the common (station) cycle time. x is a vector of
the decision variables to be optimized. We will
consider a case with 5 assembly stations. In our case
x represents the capacities of the buffers in front of
stations 1,2,3,4 and 5 plus the number of assembly
pallets circulating on the entire system. X is a set
of constraints. In our case, it includes the maximum
and minimum buffer sizes for each station. The w is a
random variable belonging to the appropriate
probability space. In our case the randomness comes
from the random time between station jams (geometric
distribution) and the random time required to clear the
jam from the station (geometric distribution). For

example, for a particular set of buffer sizes and the
number of pallets, we can simulate the expected value
of f£(x,w) given the parameters of the jam and clear
distributions. Based on the value of f(x,w), and the
quasigradient obtained at each iteration, we can drive
the velue of x toward the optimum solution using the
standard constrained gradient procedures detailed below.
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3. The Algorithm

The stochastic quasigradient algorithm moves from
one feasible position to another as follows:

= = T ® - P
where X® ig the current approximation to the optimal
solution, P; is the step size, and V& is a random step

direction i.e. an estimate of the gradient direction at
the current point x® value within the constraint set.
The projection operator simply finds the closest point
inside X to the new point arrived at from moving from
x8 to x5+1,

3.1 Estimation of the production rate

A discrete event simulation model was developed in
Pascal to run on multiuser micro-computer running an
Intel 80286 microporcessor with a 80287 numeric
coprocessor. The problem is capable of simulating
assembly machines with from two to over a hundred
assembly stations with or without explicit
congideration of transport delays on the machine, We
assume 5 statiofis with transport delays of one time
unit per buffer space. Each station is assumed to have
a constant assembly cycle time of 5 units. The first
station in the line can be assumed to be a load-unload
station where new assembly bases are loaded on to
pdallets and where completed assemblies are removed from
the line. We assume as stated above that the time

- between station jams and the station clear time are
random variables with geometric distributions. Unless’
otherwise specified we assume that the jam rates are
(0,5%,0,5%,0) and the mean clear times are
(0,15,0,15,0) for the five stations. In summary,
stations 2 and 4 are "bottleneck" stations and the rest
are jam free. The constraint set X is represented by
upper and lower bound constraints on the buffer sizes
and the number of pallets. We assume that each buffer
gize is no smaller than one and no larger than 15. The
number of pallets on the system is assumed to be bet—
ween 1 and 30.

3.2 Choice of step direction

The step direction may be a statistical estimate of

the gradient of function F(x): then v& :—_:E‘s such that
B(E Slet, x2, .., ®) = Ry(®) + &°

Where g% is a statistical estimate of v5, a® de-
creases as the number of iterations increases. In this

case, v& is called a stochastic quasigradient of
function F(x).

There are several methods which can be used to find
the estimate of gradient direction: finite difference
approximations, analogues of random search methods,
etc. In this paper, we'll use forward finite
differences (FFD) and central finite differences, (CFD)
to obtain the step directions

(i) Forward finite differences approximation. The
forward finite differences method can be written in the
form:

£ x5+ &g ey, w?_.]_) - £( x5, w?_’z)

&

]

.§5 =

where the e; are unit basis vectors form R", gf is the
estimate of step direction at iteration s, &g is the
step i finite~difference approximation, w?_ 1 and w3 2
are stochastic random values generated for iteration &

(ii) Central finite differences approximation.
The central finite differences has the form:

n

>

i=1

£=F 4+ ey, wi]_) - £( x5 - &5 ey, w?_,z)

&

28,

where the notations are the same as forward finite
differences approximation.

3.3 Choice of step size

We start with a reasonable step size and then
modify it during the iteration process. The criterion
for modification is the ratio of the improvement of
function value to the path length, That is

Fs—M - g8
1 =
@ (=%, v%) 2 )
where
Q(S’Ms) = 52:1: ”xi+1 - xi”
i=s-Mg

and M. ig the number of iterations before every
performance evaluation.

3.4 Projection

In our example, we take on as the minimum value for
buffer sizes and the number of pallets. The upper
bounds for buffer sizes and the number of pallets are
set to 15 and 30.

3.5Stopping criteria

We use two stopping criteria: the maximum number
of iterations and the minimum step size. The algorithm
will stop when either condition is satisfied.

4.0 Results of an Example Optimization
4.1 Performance of the algorithm

Table 3 shows the results of 10 iterations of the
algorithm starting from an initial condition with 1
buffer space between each of the five stations and 4
pallets on the entire machine. The "observation"
column represents the current estimated machine
performance as a fraction of the maximum posaible per—
formance if no machine jams were to occur. This
estimate is based on 4000 time units of observation
with the first 400 omitted to reduce initialization
bias. The "performance" column represents the ratio of
cumulative length of the optimization path traveled to
that point. The "stepsize" column indicates the length
of the current move to be made in the decision variables.

The results of the process show an orderly and in
fact nearly monotonic convergence of the decision
variables to the final position so that the algorithm
appears to work reasonably reliably. However, further
experimentation has demonstrated that a number of
problems must be overcome with this approach in order
to attack machine optimization problems involving 50 to
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‘TABLE 3

Information for iterations using the CFDA method.

iter | b1 b2 b3

b4 b5 pal | observation | performance | stepsize |

0 1 1 1 1 1 4 0.6100 0.0000 4,0000
1 1 1 1 1 1 8 0.8522 0.0000 4.,0000
2 4 2 2 1 4 8 0.8578 0.0007 3.6000
3 3 2 2 1 3 12 0.8644 0.0017 3.6000
4 4 4 4 1 4 11 0.8756 0.0025 3.2400
5 4 4 4 1 4 14 0.8867 0.0034 3.2400
6 6 6 6 1 6 15 0.8889 0,0021 2.9160
7 6 6 6 1 6 17 0.8889 0.0004 2.9160
8 6 6 6 1 6 17 0.8889 -1,0000 2.6244
9 6 6 6 1 6 17 0.8889

a. Initial point = (11111 4),
b. Step in finite difference approximation = 2,00.

c. Initial stepsize = 4.00,

d. Stepsize multiplier = 0.90.

e. Frequency of stepsize change = 2.

f. Lower bond on function increase = 0.00400

g. 'starting point = (11111 4) - denotes the values for buffers
numbered 1 to 5 and the total number of pallets for the whole line,

h. 'b1, b2, b3, b4, b5’ denotes the ratio of the improvement of the
function value to the path traveled.

k. 'stepsize' denotes that step size for each iteration.

1. 'observation' denotes the objective value from single simulation run

100 assembly stations., Machines this size are well
within the practical realm of machines being built
today., The major problem is that in order to estimate
the quasi-gradient at each point it is necessary to run
2N simulations where N is the number of decision
variables. Further the run size of each simulation
needs to increase as the number of decision variables
increases. The results is an extremely slow
optimization process with immense computational
requirements at each stage. This comparatively simple
example required nearly 30 minutes for the 10
iterations on IBM-PC/AT class computer. Further
problems arise from the usually sources of difficulty
in any gradient based method. Convergence (or lack
thereof) is determined by the choice of starting point,
step size multiplier and a host of other factors.
Convergence is often very slow and erratic when the
algorithm get close to the optimum point.

In conclusion, while this method does show some
promise it clearly needs major work to becom? a
practical tool for large assembly machine optimization.
Some progress has been made in adapting a very
different optimization approach based on homotopy or
imbedding methods to this difficult class of problems.
It may be that quasi—gradient methods can be used in
conjunction with the homotopy formulation to arrive at
the "neighborhood" of the optimal «solutions where the
method can be switched to a Monte-Carlo version of what
is known in the homotopy literature as "path following"
to arrive at the tinal optimal solution. Research in
this area is reported in Glynn and Sanders (1986).
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