Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

MobeLING TOTE STACKER OPERATION
AS A WIP STORAGE DEVICE

PHiLiP CoBBIN
SIERRA SIMULATIONS & SOFTWARE
3 ESTHER AVENUE
CampBeLL, CaLIFORNIA 95008

ABSTRACT

This paper summarizes the modeling of a tote stacker
device in support of manufacturing operations on a
micro—computer using the SIMPLE 1 simulation
environment. Animation of the model was obtained
utilizing high level language concepts for animation
of system operation. The results presented are an
overview of the modeling techniques and statistical
results that can be obtained for stacker crane type
material handling and storage devices. A serial
process feeding automated testing devices is used for
illustrative purposes. The dynamic behavior of the
system is illustrated visually in real time with the

graphic system display augmented by collection of
statistics on system performance.

INTRODUCTION

Crane type materials handling equipment and

associated control systems have been in existence for
some time. System designers have recognized the need

to model the performance of such systems yet
simulation of materials handling systems has proven
to be a difficult undertaking in many instances.

Much of the difficulty encountered in
modeling of materials handling equipment

simulation
in general

is due to logistics details that overrun the
capabilities of simulation software or the user, or
both. Recent developments in software have tended to

attack the material handling modeling problem by
building into simulation software canned constructs
to represent elements of a generic materials handling
hardware/software world view. An alternative
approach to supporting material handling systems
modeling is to provide general purpose modeling and
programming features which facilitate modeling such
complex systems. The SIMPLE 1 modeling environment
contains features particula;iy useful in modeling
material handling and manufacturing systems. This
paper presents a model of a tote stacker type crane
system in support of an idealized assembly and test
process to illustrate the ability to model complex
materials handling systems on a micro—computer with
animation.

Simulation of material handling systems can be
thought of as an embedded modeling process where a
model of the material handling system is coupled to a
model of the production process. Accordingly,
material handling system models tend to exhibit extra
run time due to the increased event calendar traffic
required to handle production process and wmaterial
handling system events.

In modeling the operation of a tote stacker type
crane one can view the crame as a key resource which
interacts with multiple work centers located
throughout the system. What tends to complicate the
modeling of such a system is the necessity to keep

597

track of where every thing is, what state the
crane/system 1is in, and merging/separation of
entities in the system with the crane. The logic
employed to manage wusage of the crane has a

significant bearing on the overall performance of the
system. An element to consider in model coastruction
is the evaluation of crane routing strategy to manage
the overall production process.

The approach taken here is to tailor a model of the
cranes operation to the nuances of a production
process. The crane serves as an effective production
control device which regulates the flow of materials
throughout the system. The decision making process
for

routing the crane among competing task
alternatives is an integral part of the modeling
process.

SYSTEM DESCRIPTION

Initial stacker crane installations were to provide a
automated storage and retrieval function in
warehousing. Recently, tote stackers have been
employed to support material transport and work in
process storage to manufacturing operations directly.
In the electronics industry functional testing of
electronic devices tends to be highly automated and
in one case the testing equipment was located in
storage cells mnormally wused for WIP storage. The
hypothetical process modeled for this paper involves
two sequential production steps which are performed
at separate work stations and a functional test of
the product. There are 20 functional testers located
in WIP storage cells which are automatically plugged
into by the tote stacker. Figure 1 is a schematic of
the production process. The 1loading of the system
simulated was periodic with work introduced once a
day during the graveyard shift. The first two work
stations were used only during first shift and the 20

testers were available 24 hours a day and are
automatically plugged and un-plugged wusing the
stacker crane. The Removal and introduction of new

materials to the system occurs only once a day.

The shop loading scheme modeled involved introducing
new work at the start of the third shift and removing
completed items only during the first shift. The
loading scheme employed illustrates the ability to
level workload on the crane by shifting tasks to an
off demand period. The shop 1loading scheme and
parameters of the production process introduce
periodic demands for work in process (WIP) storage.

The tote stacker delivers and picks up materials from
works stations at locations designated for each work
station. The dinput and output interfaces between
work station and tote stacker have a fixed storage
capacity of three wunits. When storage 1s not
avallable at a work station the stacker stores work
in process inventory items into general storage with
storage cells allocated in FIFO manner over time to

P. Cobbin

balance usage. When the stacker delivers an item to
one of the functional testers the crane goes to the
specified storage cell and "plugs in" the unit. In a
gimilar fashion the crane dis-connects a completed
device from the tester and routes it to a packing
station or to storage.

The work stations are used to produce an entire days
supply of parts im one shift. The work stations are
staffed during first shift and work off the inventory
loaded into storage during the previous third shift
by the crane. During the first shift the work
stations over run the capacity of the functional
testers and work is banked into storage. During the
second and third shifts the automated functional
testers work off the inventory. Table 1 is a summary
of process times and yield parameters used in the
model. Note that the tote stacker type system has an
inherent advantage in this type of situation being
able to use WIP storage racks for different purposes
throughout the day. During the animation of the
model it becomes readily apparent that the storage
cells are used differently during each shift.
Statistics collected during the simulation verify
these observations.

Part processing through the model involves routing
PART entities to work station sub-models using the
crane entity. The PART entities are combined with
the CRANE entity to form a group which travel
together through the network model representing the
material transport phase. When parts are delivered
to a work station, storage location, etc. the part
is split from the crane. When the part/crane entity
group is split both entities maintain their original
attribute information and go their separate ways.

The introduction of parts to the system involves
creation of a group of part entities once a day. The
group, or lot, of 25 parts are created and introduced
into the system via the code & network diagram
fragment illustrated in Figure 2. The code fragment
represents creation of the parts as a lot, settiag
the create time attribute and splitting the lot up
into individual entities. TIn addition a CHART block
is used to update the screen using ASCII character
number 127 to represent the number of parts
introduced into the system. The SHOW block employed
in the fragment is used to display in numeric format
a count of total number of parts introduced into the
system.

Automated

Plug In Packaging

Testers Station

(20

il —

The part entity is routed to the the WaitEntry
labelled Queue where it resides untll grouped with
the crane entity. When the crane is assigned to pick
up and incoming part a CONDITIONS block in the model
controls grouping of the crane and part entities and

Parts: Work Station Work Station
Lot slze: 25 ——JemE 1 #2
Timing: 16:00
Figure 1 - Production Process
ITEM Mean Std. Dev. Distribution I
Work Station #1 15.0 2,0 Lognormal
Work Station #2 20.0 2.5 Lognormal

Functional Test 960
(Yield: 80% pass, 207 fail)

Constant (pass)
Uniform (fail)

Table 1 ~ Process Parameters
MODEL BUILDING

The production procéss 1is relatively simple in this
case, and readily modeled. Model development
revolved around the operation of the crane. The
code was developed in stages with the basic operation
of the crane modeled first. In the initial code the
crane merely loaded items into storage and later
retrieved them. From the initial crane model a
series of embellishments were made to add in the
production process. Production items were modeled
as an entity of type PART which were introduced to
the system in lots of 25 once a day. Part entities
required two attributes to maintain the time the part
entered the system and a part destination code.

routing them to the appropriate block in the model.
When the part arrives to the first work station it is
processed through the network and code fragment
depicted in Figure 3. Two pairs of SET & CLONE
blocks are used in the network fragment. The SET
block establishes display values and the CLONE block
creates a copy of the part. The cloned part is
routed to a section of the model which controls
updating the screen to display the current state of
the work station. Two sets of these blocks are used
to update the screen at the start and completion of
the work station operation cycle. At a block labeled
Show Station, CHART blocks are used to display
characters on the screen to represent the state of
the work stations. Three CHART blocks are employed
to update the number of parts in service, and waiting
in the work statioms input and output queues

The input and output queues employed by the work
stations provide an interface between work station
operation and the material handling activities
associated with the tote stacker. Once an 'item is
deposited by the crane into a stations input queue
the part is processed independent of the crame until

598

cce

Modeling Tote Stacker Operation

Ci J BRANCHmy
Cl25,PART, 1440, 96! >RSptitParts] SPLIT ->| SplitParts
o

CHART
7.14,1,127,

cce

SplitParts
NewPart

WaltEntry

CREATE, 25,PART, 1440,960;

SPLIT,PART, 1,NewPart; BRANCH ,Spli14Parts;
CHART,7,14,1,127,NUM(Wa11Entry)/2,10,14,0;
SHOE, 3, 16,COUNT(Wal tEntry)+1,4,0,4,0;

SET PART(START_TIME) :=STIME;

QUEUE , FIFO;

lPART. 1, NewParj-—->-—-———-——-—>

———= CODE FRAGMENT www—wm

NUM(Wa T$+Entry)/2,
10,14,0

SHOWm
3,16,
ICOUNT (Wa HEntry)+1,
4,0,4,0

h A

E PART(START_TIME) 1=5TIME

[——>gHattEntry @

Figure 2 — Network fragment to load parts

TASK

Storage to Exit

Move from tester

Move from Sta #2

Storage to Tester
Storage to Sta #2
Storage to Sta #1

Move from Sta #1

i Move from Input Q

Decision Rule Priority

NUM(Exit Q) < 10 1
NUM(EmptyCells) > 0 OR NUM(Exit Q) < 10 2
AND NUM(FinishedTest) > 0
NUM(EmptyCells) > O OR NUM(IdleTesters) > O 3
AND NUM(Station20utput) > O
NUM(TesterWip) > O AND NUM(IdleTesters) > O 4
NUM(Station2Input) < 2 5
NUM(StationlInput) < 2 6
NUM(EmptyCells) > O OR NUM(Station2Input) < 3 7
AND NUM(StationlOutput) > 0
NUM(EmptyCells) > O AND NUM(WaitEntry) > 0 8

- —————————nll

Table 2 - Crane allocation rules

599

P. Cobbin

¥ —
leaﬂonl Input:NUM(Station10utput)<3:WS1 STﬂ- -

I (NUM(WS1_ACT)<STAFFING(1,SHIFT_INDEX))
CONDITTONS . -

e ——— —" —— — — —— — — —— o—f——— —
WS1_STARTRE SHOW_STA:=1 ¢ SHOW IN:=NUM(Statlon1Input):
T SHOH__ACT:-NUM(HSl_ACT): SHOW_OUT:=NUM{StationiOutput)
-
1
SHOH_STATION > *Cloned Entities update screen™

|N51_ACT

NORMAL(OP_TIME(I,‘).OP_TIME(1,2).1)

E SHOW STA:=1 ¢ SHOW IN:=NUM(Stationtinput):
T SHOH_ACT:-NUM(HSI_ACT): SHOW_OUT:=NUM(StationiOutput)

SHOH_STATION > " Cloned Entltles re-update screen®

Statlon10utput

StationlWip QUEUE,FIFO;
StationlInput QUEUE, FIFO; {AT WORKSTATION}
CONDITIONS, (NUM(WS1_ACT)<STAFFING(I,SHIFT INDEX)),
StationlInput,NUM(StationlOutput)<3,WS1 START;
WS1 START SET SHOW STA:=1l: SHOW IN:=NUM(StationlInput): SHOW ACT:=NUM(WS1_ACT):
- SHOW OUT:=NUM(StationlOutput);
CLONE, 1,SHOW STATION;
WSL ACT ACTIVITY NORMAL(OP TIME(1,1),0P TIME(1,2),1);
- SET SHOW STA:=1: SHOW IN:=NUM(StationlInput): SHOW ACT:=NUM(WS1 ACT):
SHOW OUT:=NUM(StationlOutput);
SET PART(DEST):=2;
CLONE, 1,SHOW STATION;
StationlOutput QUEUE,FIFO; {AT WORKSTATION}

FiGURE 3 - NETWORK FRAGMENT FOR WORK STATION # 1 OPERATION

600

Modeling Tote Stacker Operation

routed to the work stations output queue for crane
pick up.

The operation of the functlional test equipment is
dependent on the tote stacker to perform the hook up
and un-hook task. When a tester is hooked up by the
tote stacker part processing 1s modeled with the code
and network fragment illustrated in Figure 4. The
testing of non defective items d1nvolves a constant
run time modeled with the OK Test activity block.
Defective items are processed by the Test Defect
labelled activity block which i1avolves a uniform
distributed test time.

The crane is viewed as performing ten key tasks. The
tasked performed by the crane were the basic material
moves and crane actlivities associated with:

1) Move to input queue for new material

2) Move to work station to deliver

3) Move item to storage

4) Move from storage to work station

5) Move to station to pick item up

6) Move to test to load

7) Move to tester to unload

8) Move tested item to exit or storage

9) Move tested item from storage to exit

10) Move from storage to test cell for loading

The crane was modeled as an entity of type CRANE
with four attributes. Attributes of the crane
include the current X & Y coordinates of the crane,
it“s destination, and travel time information. The
status of storage cells was monitored using an array
with 3individual elements set to 2zero or one to
represent empty/idle states.

Crane usage 1s modeled as a series of SIMPLE_1l
conditions block to prioratize crane activities.
Eight CONDITIONS blocks were wused to model crane
allocation rules. The rules for assigning the crane
to availlable tasks wutilized a pull strategy.
Preliminary model results indicated a pull allocation
strategy provided a more effective wuse of system
resources by attempting to vacate the system, thus
tending to keep parts in the output queues rather
than in work in process at the beginning of the
system. The crane rules used and their relative
priority of application are summarized in Table 2.
The crane rules were implemented using eight
CONDITIONS block to release the crane from an
Idle Crane queue to merge with part entities and
perform selected tasks. Figure 5 is a SIMPLE 1 code
fragment 1listing the CONDITIONS blocks used in the
model. Re-prioratizing the rules in the model
involves altering the order of the conditions blocks
listed in figure 5.

When a crane 1s allocated to perform a task, the
responsible CONDITIONS block routes the crane, or
crane and part entities, to the specified block in
the model. The blocks specified as the targets label
in the CONDITIONS blocks are entry points of
sub—networks which model crane task elements. For
example, when the crane is assigned the task of
moving an item from a storage location to a tester
the counditions block:

CONDITIONS,NUM(TesterWip)>0 AND NUM(IdleTesters)>0,
TesterWip,,STORE_TO TEST:
IdleCrane,,STORE_TO TEST;

routes the crane entity and the item going to a
tester to the STORE TO TEST labeled block in the
model. The referenced block and associated code is

illustrated in Figure 6. The move time for the crane
to reach the cell is calculated first. Subsequent
blocks model the activity time to move to the cell
and remove the item. A CLONE block is used to route
a copy of the crane to a section of code starting
with the block labelled DRAW CRANE. At Draw Crane a
sub-network manages ACTIVITY, SHOW and CHART blocks
with update the cranes position on the screen using
arrow characters to indicate crane position. The
BRANCH block terminating the code section routes the
crane to MoveToloadTester which executes the moves
from the storage cell to the tester and performs the
plug 1in activity. When the crane is ready to unload
an 1tem, a SPLIT block 1is used in the model to
control breaking the crane/part entity group into the
original entities and routing them to seperate blocks
in the model.

The CLONE block in affect is being used as a
subroutine to "call" a section of code with a copy of
an entity group. Throughout the model CLONE blocks
are used to manage animation of the model to
compartmentalize code. The compartmentalization
served two purposes: to avoid adding redundant coding
and secondly, to allow shutting off the graphics by
conversion of a few specific blocks to KILL blocks.
A sample printout of the screen while the model is
running is illustrated in Figure 7. Owing to the
methods used to produce this paper the illustration
in the figure provides a limited image of what is
actually displayed.

A series of background screens were used to construct
a schematic of the system. Over the background
screens the animation of the model was created using
the CLONE block technique to manage updating the
screen. The animation of the model was developed
concurrently with the code to simulate the crane and
process interactions, The animation of the system
was implemented as a validation exercise to visually
verify system operation. During the development of
the model a number of problems were discovered and
corrected based on feedback obtained visually.

RESULTS

The part loading mechanism had a significant impact
on the behavior of work in process inventory levels
over time. Banking of inventory upstream of the
testers was observed during the first shift as
expected. In addition to the casual feedback
obtained by watching the animation, statistics were
collected on inventory levels and cell utilization.
Key inventory levels were sampled on half hour
intervals using an the array TransientData
dimensioned 48X8. In affect, the array was used to
collect 48 snapshots per day for the eight key
inventory levels:

1) Parts waiting in the input area

2) WIP Storage of items for station #1

3) WIP Storage of items for station #2

4) WIP Storage for testers

5) Number of testers inm use

6) Number of testers with a completed part
7) WIP waiting to leave system

8) Part queued at exit station

The utilization of individual storage and tester
cells was collected using the array CELLS dimensioned
14X5. The TransientData and CELLS arrays were used
to collect observational and time persistent
statistics by appending key words to their definition
in the DECLARE portion of the model. The key word
OBSERVE_STATS appended to the TransientData

601

@stOperation

P. Cobbin

[TestYleld, 0K Test

SRANCH
> PTestTime >ERPART(DEST) :=EXI >|Fln|shedTes]—>

,Test Defec

~>ITes'f_DefechIUNlFORM(O,Tes?Tlme,!)'—> PART(DEST) :=EX1 —BrinishedTes @
T

L e e (0 0 oY R —

TesterWip
TestOperation

oK Test
Test Defect

FinishedTest
TesterOutput

QUEUE,F IFO;
BRANCH TestYleld,0K Test:
JTest Detect;
ACTIVITY TestTime; SET PART(DEST) :=Ex1t;
BRANCH,F IntshedTest;
ACTIVITY UNIFORM(0,TestTIme,1); SET PART(DEST) :=REWORK;
QUEUE,FIFO;
QUEUE,F IFO;

FIGURE 4 - NETWORK FRAGMENT FOR TESTER OPERATION

CONDITIONS,NUM(Exit_Q)<10,
TesterQutput,,STORE TO EXIT:
IdleCrane,, STORE_TO_EXIT;

CONDITIONS, NUM(EmptyCells)>0 OR NUM(Exit Q)<i0,
IdleCrane,NUM(FinishedTest)>0,HandleMoveFromTest;

CONDITIONS,NUM(EmptyCells)>0 OR NUM(IdleTesters)>0,
IdleCrane ,NUM(Station20utput)>0,HandleMoveFrom2;

CONDITIONS ,NUM(TesterWip) > O AND NUM(IdleTesters) > O,
TesterWip,,STORE_TO TEST:
IdleCrane,,STORE_TO_ TEST;

CONDITIONS,NUM(Station2Input)<2,

Station2Wip,, STORE_TO WS:
IdleCrane,, STORE_TO WS;

CONDITIONS,NUM(StationlInput)<2,

StationlWip,,STORE TO WS:
IdleCrane,, STORE_TO WS;

CONDITIONS,NUM(EmptyCells)>0 OR NUM(Station2Input)<3,
TIdleCrane ,NUM(StationlOutput)>0,HandleMoveFroml;

CONDITIONS,NUM(EmptyCells)>0 AND NUM(WaitEntry)>0,IdleCrane,,HandleEntry;

Freure 5 - CONDITIONS BLOCKS USED TO PRIORITIZE CRANE ALLOCATION

602

Modeling Tote Stacker Operation

- DR

I
I

TORE TO TESTRERCRANE(DEST) :=PART(DEST):

TRCRANE (MOVE_TIME) :=MAX(ABS(CRANE(X)~STORAGE CELL(X)*X SCALE)/100,ABS(CRANE(Y)~STORAGE CELL(Y)*Y SCALE}/50)
iCRANE(X) :1=STORAGE > CELL(X)*X SCALE: CRANE(Y s=STORAGE = CELLCY)*Y SCALE;

N DRAW CRANE
2

> "Cloned Entitles update screen™

CRANE(MOVE TIME) lLoadForTestC]
T
SET RANCH
>FELLS(STORAGE CELL(X),STORAGE CELL(Y)):=0 |—>I SPLIT I—> MoveToLoudTem——

STORAGE CELL,1, IDLE CELLI

PullForTes LOAD TIME

§———- MOVE FROM STORAGE LOCATION TO A TEST CELL ——-—t

STORE TO_TEST SET CRANE(DEST):=PART(DEST): CRANE(MOVE TIME) :=
MAXCABS (CRANE(X)~STORAGE_CELL(X)*X SCALE)/100,
ABS (CRANE(Y)-STORAGE CELL(Y)*Y SCALE}/50:
CRANE{X) :=STORAGE CELL(XT*X SCALE:
CRANE(Y) :=STORAGE CELL(Y)*Y SCALE;
CLONE 1,DRAW CRANE; -
PullForTest ACTIVITY CRANE(MOVE TIME);
LoadForTestC ACTIVITY LOAD TIME;
SET CELLS(STORAGE CELL(X),STORAGE CELL(Y))z=0:
SPLIT,STORAGE CELT, 1, IDLE CELL;
BRANCH, MoveToLoadTes*sr,

FIGURE 6 ~ NETWORK FRAGMENT TO MOVE ITEM FROM STORAGE TO A TEST CELL

TIME : 3,00 HR. SHIFT #:

FIGURE 7 - SAMPLE OF SYSTEM ANIMATION PRODUCED BY MODEL

603

—=~ TRANSIENT INVENTORY STATISTICS ~--—

P. Cobbin

Station Station Tester # Testrs # Tesirs Tester Exit
Hour Entry F1 WP #2WIP WiP In use finished WIP Out WiP
0.50 : 0.0 21,0 0.4 0.0 12,3 0.0 5.6 10.0
1,00 : 0.0 19,5, 0.3 0.0 13.1 0.0 3.6 10.0
1.50 : 0.0 17.9 0.1 0.0 14.0 0.0 1.7 10.0
2.00 0.0 16.4 0.1 0.0 15.1 0.0 0.3 9.2
2.50 : 0.0 15.1 0.0 0.0 16.0 0.0 0.0 7.3
3.00 : 0.0 13.4 0.0 0.0 1741 0.0 0.0 4.8
3.50 : 0.0 11.7 0.1 0.3 18.0 0.0 0.0 2.0
4.00 : 0.0 10.1 0.0 1.0 19,1 0.0 0.0 0.3
4.50 3 0.0 8.4 0.1 2.0 19.5 0.0 0.0 0.0
5.00 : 0.0 7.0 0.0 3.5 19.9 0.0 0.0 0.0
5.50 3 0.0 5.6 0.0 4.8 19.9 0.0 0.0 0.0
6,00 : 0.0 4.0 0.0 6.4 20,0 0.0 0.0 0.0
6,50 : 0.0 2.5 0.0 8.0 20.0 0.0 0.0 0.0
7,00 0.0 0.7 0.0 9.6 20.0 0.0 0.0 0.0
7.50 @ 0.0 0.0 0.0 10,9 19.9 0.0 0.0 0.0
8.00 3 0.0 0.0 0.0 12.6 20,0 0.0 0.0 0.0
8,50 0.0 0.0 0.0 13,0 19.5 0.0 0.0 0.3
9.00 : 0.0 0.0 0.0 11.8 19,6 0.0 0.0 1.5
9450 3 0.0 0.0 0.1 10.4 19.7 0.0 0.0 2.8
10,00 : 0.0 0.0 0.1 8.9 19.9 0.0 0.0 4.2
10,50 : 0.0 0.0 0.2 7.8 1946 0.0 0.0 5.1
11,00 : 0.0 0.0 0.2 7.3 20.0 0.0 0.0 5.6
11,50 3 0.0 0.0 0.2 7.2 20.0 0.0 0.0 5.6
12,00 : 0.0 0.0 0.3 7e1 20.0 0.0 0.0 5.6
12.50 : 0.0 0.0 0.3 7.0 20.0 0.0 0.0 5.6
13,00 : 0.0 0.0 . 0.4 6.8 19.9 0.0 0.0 5.6
13,50 : 0.0 0.0 0.6 6.6 20.0 0.0 0.0 5.6
14,00 : 0.0 0.0 0.7 6.5 20.0 0.0 0.0 5.6
14.50 : 0.0 0.0 0.8 6.4 19.9 0.0 0.0 5.6
15.00 : 0.0 0.0 0.9 642 20,0 0.0 0.0 5.6
15,50 : 0.0 0.0 1.0 6o1 20.0 0.0 0.0 5.6
16,00 : 0.0 0.0 141 6.0 20.0 0.0 0.0 5.6
16,50 ¢ 16.4 5.7 1ol 5.3 20.0 0.0 0.0 6.3
17,00 : 83 13.8 1.1 3.7 19.6 0.0 0.0 7.9
17450 3 0.5 21,5 1.1 2.3 19.6 0.0 0.5 8.8
18.00 ¢ .0.0 22.1 1.2 1.3 19.2 0.0 1.2 9.4
18.50 3 0.0 22.1 1.3 0.3 1847 0.0 2.0 9.9
19.00 : 0.0 22.1 1.3 0.0 17.5 0.0 3.6 10.0
19.50 : 0.0 22.1 1.3 0.0 1644 0.0 4.8 10.0
20,00 : 0.0 22.1 1.3 0.0 15.1 0.0 6.0 10.0
20,50 : 0.0 22.1 1.3 0.0 14.5 0.0 6.7 10.0
21.00 : 0.0 22.1 1.3 0.0 14.0 0.0 7.2 10.0
21.50 0.0 22,1 1.4 0.0 13,5 0.0 7.6 10.0
22,00 : 0.0 22,1 1.5 0.0 1341 0.0 7.9 10.0
22,50 3 0.0 22,1 1.5 0.0 13.1 0.0 7.9 10.0
23,00 : 0.0 22,1 1.5 0.0 12.9 0.0 8.1 10.0
23.50 : 0.0 22,1 1.6 0.0 12.7 0.0 8.2 10.0
24,00 3 0.0 22.1 1.6 0.0 12.5 0.0 8.3 10,0
-—~ STORAGE CELL % UTILIZATION STATISTICS —-
< STORAGE CELLS: TESTERS:
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
1400 5 26,2 33.4 28,4 32,9 40,3 35.9 34.3 35,9 33.9 33.0 91.6 88,5 90.4 90.7
2.00 : 35.8 35.6 27.1 38.3 34,7 37.2 25.4 3642 35.6 34.9 913 91.8 87.6 89.5
3.00 3 33.9 32,9 304 25,2 28,6 36.2 36,2 35,8 35,7 28.3 89,9 89.4 85.4 90.5
4400 3 3641 30.6 27.6 36.8 35.3 36.9 35.1 27.3 37.4 29.9 86.0 89.2 88.5 88.8
5.00 : 34.8 33.3 30.9 27.8 3644 35.9 36.2 35.8 34,7 29.1 87.0 89.8 88.9 87.3

Fieure 8 - CusTomizep SUMMARY REPORT OF MODEL RESULTS

604

Modeling Tote Stacker Operation

declaration specified collection of observations
statistics to be collected on each element of the
TransientData array. The TIME STATS key word was
employed to trigger collection of time welghted
statistics on individual elements of the CELLS array.
A large number of statistics are accordingly produced
by the standard report. A custom report was written
to a disk file which summarizes the WIP and
utilization statistics. A sample report is
illustrated in Figure 8. The main result obtained
was with regard to the time varying behavior of the
inventory levels and the uniform utilization of
storage cells. In addition to the custom summary
report, the individual observations £for inventory
levels were written to a disk file in addition to
time in system observations.

Due to the FIFO allocation strategy for re-using idle
testers and storage cells the results obtained
indicated a uniformly distributed utilization of
storage cells., The overall utilization of
approximately 30 percent for storage cells must be
interpreted with caution, The aggregate utilization
statistics are a conglomeration of cell usage across
all three shifts. The utllization of storage cells
is dependent on time of day as indicated by the
transient inventory statistics sampled on half hour
intervals. For example, with the start of the first
shift occurring at hour 0.00, the maximum average
utilization of storage cells occurred 1.5 hours into
the third shift with almost 90 percent of the cells
in use., Conversely, storage cell usage 1.5 hours
into the first shift was approximately 40 percent.

The results obtained were from a :simulation of 12
days operation of the system with statistics cleared
at the end of the second day. The execution time for
the model was calculated wusing the SIMPLE 1 fumction
SYS TIME which returns the time from the operating
system of the computer. For the simulation of the
pull strategy for crane allocation the model produced
a file with the message:

CRANE .MDL RAN FOR 3 2.3090 HOURS...

The run time was obtain running SIMPLE 1 on an AT&T
PC 6300. The run time observed was for the animated
model collecting all of the array statistics and
writing observations to disk files.

The standard SIMPLE 1 report for all statistics
collected was outputed to disk. One of the
rationales for producing the custom formated report

illustrated in Figure 8 is the volume of the standard
report. For this example, the standard report prints
full statistics on all array elements, blocks etc,
and is nominally 800 lines in length.

CONCLUSIONS
The ability to model complex material handling
systems has been demonstrated. The initial model

summarizes modeling technique and is re-usable as a
"tool box" for building models of similar systems.
Follow on developments suggested by the results
obtained is a generalization of the model for use ia
a library of "tool box" programs for analysis of
materials handling systems. The approach taken to
model the system tailored the crane allocation logic
to the nuances of the system thus allowing the
analysis and design of the control strategy for crane
allocation. The ability to collect detailed
statistics on the time varying behavior combined
with an animation of the system was found

particularly useful. Animation of the system in

605

particular aided the understanding of the statistics
obtained and their limitations in one case. Finally,
animation of the model was found extremely helpful in
validation of the models operation.

REFERENGES
Cobbin, Philip, '"SIMPLE l: A simulation
environment for the IBM PC", Modeling and
Simulation on Microcomputers, Claude, C,
Barnett, Editor, Society for Computer

Simulation, La Jolla, 1986, pp 243-248.

Cobbin, Philip, "Applying SIMPLE 1 to
manufacturing systems"”, Summer Computer
Simulation Conference, July 28-30 1986, Reno,
Nevada, Roy Crosble and Paul Luker, Editors,
Society for Computer Simulation, La Jolla, pp
724-730.

Cobbin, Philip, * A tutorial on the SIMPLE 1
simulation environment" To be published in:
Winter Simulation Conference proceedings,

December 1986, Washington D.C.

Sierra Simulations & Software: SIMPLE 1 User”s
guide and reference manual, 1985.

Starr, Patrick, Skrien,Douglas, and Meyer,
Robert,"Simulating schedule recovery strategies
in manufacturing assembly operations" To be
published in: Winter Simulation Conference
proceedings, December 1986, Washington D.C.

Philip Cobbin is the owner of Sierra Simulations &
Software and is the developer of SIMPLE_l. Phil has
developed and taught simulation to students and
industry. He holds a Master of Science in Industrial
Engineering from Purdue University, a Bachelor of
Science in Industrial Engineering and Operations
Research from the University of Massachusetts at
Amherst, and an Associate in Science degree in
Manufacturing Engineering Technology from Waterbury
Connecticut State College. Phil is a native of Los
Angeles and has been previously employed by the
General Products Division of the International
Business Machines corporation performing simulation
modeling and material handling engineering
activities.

