Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

SIMPLIFIED APPROACHES TO MODELING ACCUMULATING
AND NONACCUMULATING CONVEYOR SYSTEMS

James 0. Henriksen

Wolverine Software Corporation
7630 Little River Turnpike
Annandale, VA 22003, U.S.A.

ABSTRACT

In many systems (e.g., manufacturing
systems), transportation of work-in-process
is accomplished by the use of conveyors. The
modeling of objects as they move along
conveyors is logically demanding, especially
if an object-by-object, inch-by-inch approach
is taken. Two alternative and substantially
simplified modeling approaches for
representing movement of objects on conveyors
are presented in this paper: the "minimum
travel +time" approach is appropriate for
accumulating conveyors, and the
"follow-the-leader" approach is of use in
modeling nonaccumulating conveyors. These
modeling approaches are presented in
language-independent fashion. The
application of the approaches is illustrated
through a series of four hypothetical
conveyor systems and several variations on
them. Models for these conveyor systems are
built, implemented in GPSS/H, displayed, and
discussed. In a series of exercises, the
reader is challenged %o build and implement
models for these same conveyor systems in
whatever alternative simulation language(s)
may be of interest.

1. OVERVIEW OF THE PAPER

In Section 2 of the paper, characteris-
tics of conveyor systems are described, to
provide a basis for understanding certain
terms which are subsequently used in the
paper. The difficulties of representing the
movement of objects along a conveyor are
discussed in Section 3. The deficiencies of
a commonly used representation are discussed,
and two alternative techniques for simpli-
fying this representation are introduced. 1In
Sections 4, 5, 6, and 7, a series of conveyor
system problems is stated, and models using
the simplified representations of Section %
are presented and explained.. A collection of
conveyor exercises is offered in Section 8 as
a basis for reinforcing and extending
understanding of the approaches which have
been described and illustrated. Conclusions
and references are then given.

2. SOME CHARACTERISTICS OF CONVEYOR SYSTEMS

Think of a conveyor as consisting of a
transport medium onto which objects are
placed at one or more points, and from which
objects are removed at one or more points.
For purposes of this paper, we distinguish
among the following characteristics of

575

Thomas J. Schriber

Graduate School of Business
The University of Michigan
Ann Arbor, MI 48109, U.S.A.

conveyors:
(1) Number of entry and exit points

In general, objects may be placed on a
conveyor at an arbitrary number of entry
points and removed from the conveyor at
an arbitrary number of exit points. In
this paper, our discussion is limited to
single-entry, single-exit conveyor
gystems

(2) Positions of entry and exit points

In general, the positions of entry and
exit points may not stationary. For
example, if objects are placed onto
and/or removed from a conveyor by human
workerss, it is highly unlikely that the
workers will assume strictly stationary
positions along the conveyor. In this
paper, our discussion is limited to
conveyors with stationary entry and exit
points. Furthermore, we assume that
entry and exit points are always at the
extreme, opposite ends of the conveyor.

(3) Number of simultaneous entries and
removals

In general, one or more objects at a
time can be placed onto a conveyor at an
entry point, and removed from the
conveyor at an exit point. An entry and
a removal may or may not be able to
occur simultaneously. The models here
assume there can be only one entry at a
time per entry point, and only one
removal at a time per exit point, bdbut
that an entry and a removal can occur
simultaneously.

(4) Continuous motion vs. interrupted motion

The belt on some conveyors moves
continuously. On other conveyors, the
belt may have to be stopped when one or
more of these conditions occurs:

(a) Objects are being placed onto and/or
removed from the conveyor.

(b) An object bumps up against a stop at
the conveyor exit. (Continuous belt
motion would then cause the belt to
slide under one or more objects on
the belt, which might not be allowed
in some systems.)

(e¢) A conveyor breakdown occurs.

(5)

(6)

(7)

(8)

(9)

(10)

J. O. Henriksen and T. J. Schriber

The models presented in this paper
include cases of both continuous and
interrupted motion, but do not inelude
conveyor breakdowns.

Single conveyors vs.
systens

multiple~conveyor

A mulfiple-conveyor system consists of
two or more conveyors in series, and/or
may involve junctions, with two or more
single conveyors feeding a junction or
emanating from a junction. Only single-
conveyor systems are discussed in this
paper.

Segmented vs. nonsegmented conveyors

A segmented conveyor is divided into a
series of physical segments. No
overlapping of objects Dbetween
consecutive segments is permitted. (An
overhead conveyor taking the form of a
moving chain, with objects placeable
only on hooks which are spaced at
intervals along the chain, is an example
of a discretely-segmented conveyor.) In
most systems, +there is no such
partitioning of the conveying medium
into physical segments. Only models of
nongsegmented conveyors are presented
here.

Homogeneous vs. heterogeneous objects

Some conveyors are used +to transport
identical (homogeneous) objects, whereas
others transport nonidentical (hetero-
geneous) objects. We assume that
objects are homogeneous in +the models
presented in this paper. The assumption
that objects are homogeneous allows +the
use of an attribute-~free representation
of objects; i.e., properties of
individual objects do not have to be
modeled.

Unit width vs. multiple-width conveyors

Objects cannot be placed side-by~-side on
a unit-width conveyor, whereas two or
more objects can be placed side-~by-side
in multiple-width systems. We assume
the unit-width case in the models
presented here.

Removal order

Objects
conveyor can be

reaching the exit from a
removed in first-on,
first-off order, or they can (in
general) be removed in random order. We
assume first-on, first-off order in this
paper.

Accumulating vs. nonaccumulating convey-
ors

When an object reaches the exit of an
accumnlating conveyor and stops moving
while waiting to be removed, the belt
nevertheless continues to move, sliding
under the stationary object at the exit.
In general, the continued belt motion
then eventually brings the following

576

object up against the first object, the
third object against the second object,
and so on. Hence, objects can
accunulate at the exit, one against the
other, with no intervening gaps.

In contrast, when an object reaches the
exit of a nonaccumulating conveyor, the
belt must be stopped at least until the
object can be removed from the conveyor.
This means that when once an object is
placed ‘on +the conveyor, its position
relative to other objects on the
conveyor is fixed.

3. THE CHALLENGE IN CONVEYOR MODELING
Modeling objects as they move from point
to point on a conveyor offers a number of
interesting logical challenges. Prequently,
representing the current whereabouts of each
object on the conveyor is accomplished by
partitioning physical space into small
increments, e.g., inches, and modeling motion
on an inch-by-inch basis. Such an approach
may result in excessive model complexity and
excessive consumption of CPU time. By taking
approaches more circumspect than those which
require tracking information on an
object-by~object, inch-by~inch basis, models
can be simplified, and CPU time requirements
can be reduced. Representative comparisons
and contrasts are drawn at a finer level of
detail in the following subsections.

3.1 Accumulating Conveyors

Consider an accumulating conveyor with
one entry and one exit. When an object is
placed on the conveyor, the object moves
continuously forward until it either reaches
the exit or, before reaching the exit, butts
up against the object in front of it (that
ig, reaches the tail of the queue of one or
more abubting objects positioned between it
and the exit). How-'is the current position
of such an object to be tracked as simulated
time elapses? Ideally, one would like to
compute the simulated time +that would be
required for an object to reach either (1)
the conveyor exit or (2) the end of the queue
of objects. If such a time could be
computed, then motion could be modeled as a
simple time delay. Unfortunately, the
mechanism by which objects gueue up in front
of conveyor exits is too complex to allow
modeling motion as a simple time delay. For
example, in general, the end-of-queue is a
moving target. If objects are not removed
from the conveyor rapidly enough, the
end-of-queue position will advance upstreanm
as additional objects join the queue. If the
end~of-queue advances upstream, then a
previously calculated time required to reach
the end-of-gqueue must be shortened.

As a consequence of these difficulties,
a modeling approach frequently taken is +o
partition physical space into small
increments, e.g., inches, and %o model the
progress of objects on an inch-by-inch basis.
Bach time an object's position is updated, a
check can be made to see whether the object
has reached either the end-of-queue position

Modeling Conveyor Systems

or the end of the conveyor. This may be the
approach which naturally comes first to mind.
But the negative aspects of such a "natural"
approach include these:

(1) The logical requirements of the model
can be very demanding. For example, if
object positions are updated in an
unspecified order, the modeler mnmust
handle time ties very carefully. If the
status of a particular inch of space is
tested and/or updated in the same
ingtant of simulated time for more than
one object, but in the wrong order,
difficulties may arise. For example,
the first inch required by an upstreanm
object may not yet have been vacated by
a downstream object, if the upstreanm
object's position is updated first. If
objects queue up at the conveyor exit,
time ties are certain to occur: when the
first object 1in the queue is removed
from the conveyor, all objects in the
queue will advance in lock-step.

(2) The CPU time requirements of the model
can also be significant. An
object-by-object, inch-by~inch approach
requires scheduling an event for every
inch of progress for every moving
object.

The discussion which follows presents a
better approach for coping with accumulating

conveyors. In the discussion, the following
assumptions are made:

(1) An object is propelled onto the conveyor
by the conveyor itself; i.e., objects
are not "lifted" onto the conveyor. In
other words, the leading (downstream)
edge of +the object is brought into
contact with the upstream end of the
conveyor, and the object moves onto the
conveyor at the conveyor's speed.

(2) An object is propelled off the conveyor

by the conveyor itself; i.e., objects

are not "lifted" off the conveyor. 1In
other words, the object is fully removed
from the conveyor when its trailing

(upstream) edge clears the exit point.

Let us now reconsider the "moving
target" problem. Knowing exactly where (and
when) an object reaches the end-of-queue may
be unnecessary. Qur major obhjective is to
properly model the capacity of the conveyor
and to properly model +the transit times of
objects on the conveyor. If meeting these
objectives is sufficient, we can take a more
abstract view of conveyor operation and
ignore the end-of-gueuwe problen.

If an object encounters no blockages
enroute to the conveyor exit, its transit
time 1is determined by the distance between
the entry and exit points and the speed of
the conveyor. In other words, it experiences
the minimum time to travel the length of the
conveyor. Objects which encounter blockages
experience a transit time equal to the
minimum time plus the time required for all
predecessor Fdownstream) objects to be
removed from the conveyor. This suggests the

577

following simple model approach:

to
is
on
is

(1) The entire amount of space required
hold an object on the conveyor
requested prior to placing the object
the conveyor. If the total amount
not available, the object must wait.

(2) The space occupied by an object is

relinquished in its entirety when the

object begins to exit the conveyor.

(3) Bach object placed on the conveyor first

experiences the minimum travel time.

(4)

The time required to remove objects at

the exit point (in FIFO order) is
modeled explieitly.
(5) The time-in-queue for objects 1is

implicit in the removal times of all
predecessor objects.

Parts (1) and (2) of the approach
outlined above are a consequence of the
assumpbtions that objects are propelled onto
and off of the conveyor. Releasing the space
about to be vacated by an object being
removed allows consumption of an equal amount
of gpace at the entry point. If the conveyor
is full, as soon as removal of the leading
object begins, another object can start its
entry onto the conveyor. If the objects are
all of the same length, this approach models
conveyor space properly. The approach is
inaccurate when the conveyor is full, and an
object being removed is shorter than an
object entering the conveyor. As the smaller
object is propelled off the conveyor, the
larger object could be propelled partially
onto the conveyor, but part (1) above does
not allow this. FPor modeling systems with
objects of unequal length, this modeling
inaccuracy could be removed by reverting o
inch-by~inch modeling of objects' entry %o
the conveyor.

We now consider the +timing aspects of
the above modeling approach. Assume that a
1-foot long object is placed onto a conveyor
that moves at one foot per second, at a
distance of ten feet from the exit. Assume a
time unit of seconds, and further assume that
the object is placed on the conveyor at time
100. Assume that no blockages occur, and the
object reaches the exit at time 110. Assume
that another 1-foot object is placed on the
conveyor at time 102. The separation between
this object and the previous object must be 2
feet. Assume that the first object has to
wait until time 119 for removal to start. As
the first object is propelled off +the
conveyor, the second object moves into +the
space occupied by the first object. The
second object reaches the exit at time 120.
Knowing that the second object butts up
against the first object at time 112 is
probably of little value.

The "minimum travel %ime"
described is much simpler +than the
inch~by-inch approach. The minimum travel
time approach is illustrated in this paper in
models 1{a), (b), (c), and 2. Note that as
described, the approach is language-

approach Jjust

J. O. Henriksen and T. J. Schriber

independent. Although the illustrations
provided here are modeled in GPSS/H, the
"minimum travel time" technique clearly can
be followed in other languages, e.g., SIMAN
or SLAM.

3.2 Nonaccumulating Conveyors

Consider a nonaccumulating conveyor with
one entry and one exit. When an object is
placed on a non-accumulating conveyor, the
object cannot move relative to the conveyor;
i.e., obstruction of +he object's motion
necessitates stopping the conveyor. Object
motion must be modeled in a fashion which
reflects the conveyor halts which occur (1)
whenever an object has reached the exit and
has to wait to be removed, and (2) during
entries and removals, if conveyor motion must
be halted during these activities. The
object-by-object, inch-by-~inch approach
described above, if applied in +his case,
would have disadvantages similar to those
already indicated.

A markedly superior approach to modeling
& nonaccumulating conveyor is to focus
‘attention entirely on the single object which
"leads" the other objects on the conveyor in
the sense of being the one closest to the
exit. 1In general, an object has already been
on the conveyor for some time before its turn
comes t0 be the "leader." When it becomes
the leader, the remaining time needed for it
to reach the exit can be computed this way:

(1) Start with the minimum travel time
needed for an object t0 move from its
original entry position to its exit
position.

(2) Subtract the time it has already spent

on the conveyor.

(3) Add any conveyor halt %time already

experienced by the object as of the time

it becomes the new leader.

(4) As the simulation proceeds, add any

additional conveyor halt time which the

hew leader experiences before it reaches
the exit.

An object's minimum travel time is known
from system data. The time an object has
spent on the conveyor is easily determined by
recording the time at which an object is
placed on the conveyor, and then subtracting
this value from the time at which the object
becomes the new leader. The conveyor halt
time experienced by an object is also easily
computed by recording the conveyor's total
halt time (accumulated from the start of the
simulation) when the object is placed on the
conveyor, and then subiracting this value
from the total halt time observed at the time
at which the object becomes the new leader.

Whereas steps (1), (2), and (%) above
are straightforward, the ease (or lack
thereof) of implementing step (4) may be
language—dependent. Some languages provide
the capability of temporarily suspending-the
elapsing of simulated time being experienced
by an object. For example, suppose an object

578

reaches a point in a model (e.g., becomes the
leader on a conveyor) at simulated time 500,
and is to be held at that point in the model
for 25 simulated time units (e.g, is to reach
the conveyor exit 25 time units later,
agsuming there are no conveyor halts in the
interim). Purther suppose that at simulated
time 510, +the elapsing of simulated +time
being experienced by this object is suspended

for 5 time wunits (e.g., the conveyor halts
for 5 time wunits). Then, because of the
5-time-unit halt, the object should not (try
t0) exit the conveyor until simulated time
530 (e.g., the leader will not reach the exit
until time 530). This additional halt time
can be taken into account easily in some
languages, whereas doing so may require extra
effort in other languages.

We term the above four-step approach to
modeling nonaccumulating conveyor systems the
"follow-the-leader" approach. This approach
is straightforward in a language which
provides the time-suspension capability
corresponding to (4) above, and can be
implemented in other languages as well.
Concentrating on the timing of +the leader
allows the placing of upstream objects into a
data structure which is time-invariant, i.e.,
does not require updating over simulated
time. The data structure is updated only
when new objects are placed on the conveyor
and when the leader object is removed from
the conveyor. The problem of delaying all
objects on the conveyor when a stoppage
occurs is reduced to the problem of delaying
the leader object.

The implementation language used in this
paper, GPSS/H, offers +the time~suspension
capability through the concept of Pacility
“availability" and "unavailability," and the
corresponding PFAVAIL and PFUNAVAIL Blocks.
GP3S User Chains are used to contain
non-leader objects. These language features
are used in this paper in three
nonaccunulating conveyor models.

4. THREE MODELS OF A SIMPLE ACCUMULATING
CONVEYOR SYSTEM

Three models of a simple accumulating
conveyor system are presented in. this
section. The second and +third of these
models are variations of the first. Each
model is described and presented in its own
subsection.

Throughout the paper, discussion of GPSS
aspects of the models presupposes a reader
who 1is conversant with GPSS. Tutorial
information about GPSS is available 1in
textbooks (e.g., Bobillier, Kahan, and Probst
(1976); Gordon (1975); Schriber (1974)) and
in professional short courses (Schriber
(1986)).

Output from simulations performed with
models presented in the paper is described
and discussed briefly when appropriate, but
because of space limitations is not shown.

Modeling Conveyor Systems

4.1 Model 1(a): A Simple Accumulating
Conveyor System

4.1.1 Statement of the Problem

An accumulating conveyor is used +to
trangport widgets (objects) from a single
producer to a single consumer. The conveyor
has one entry, one exit, and a capacity for 6
widgets. It takes 20 +/- 5 +time units to
produce a widget, and 20 +/- 15 time units %o
consume one. Minimum travel time on the
conveyor is 10 time units. It takes 2 time
units to place a widget on the conveyor, and
2 time units to remove a widget from the
conveyor. An entry and a removal can take
place (either partially or entirely) at the
same time. The conveyor continues to move
while an entry and/or a removal occurs. The
producer does not start producing the next
widget until after the most recently produced
widget has been placed on the conveyor.

Build a model for the producer and
consumer and the conveyor which links them.
Design the model so that a simulation
performed with it will stop when a specified
number of widgets (e.g., 1,000 widgets) have
been consumed.

4.1.2 Presentation and Discussion of the
Model

The listing of a GPSS/H model for this
system is shown in Pigure 1. In the Producer
Segment (statements 26 through 37), a single
Transaction (the producer) repeatedly cycles
through the steps of producing a widget,
waiting (if necessary) for the conveyor space
needed to place the widget on the conveyor,
splitting off another Transaction +to
represent the widget on the coanveyor, and
then returning to start production of another
widget. The capacity of the conveyor is
modeled by using a Storage of capacity 6
(named ACCUM) to represent the conveyor. The
ENTER Block (statement 34) causes the
producer to be delayed when attempting to
place an object onto the conveyor at a time
at which the conveyor (the ACCUM Storage) is
full.

The Conveyor Flow Segment implements the
"minimum travel +time" approach described in
Section 3.1, and so consists of a single
ADVANCE Block (statement 43, Figure 1).

The Consumer Segment (statements 45
through 54, Figure 1) uses the CONSUMER
Facility to represent the consumer. Having
experienced the minimum travel time needed %o
reach the conveyor exit, widgets capture the
CONSUMER Pacility first-come, first-served
(first-on, first-off), go +through the
consumption cycle, and then release the
CONSUMER and leave the model.

The model's Run Controls (statements 56
through 66, Figure 1) specify simulating
until 1,000 widgets have been consumed when
the conveyor has a capacity for six widgets
(statement 19), then repeating the simulation
with the conveyor's capacity reduced to five
widgets (statement 64).

579

4.2 Model 1(b): A GPSS-based Variation
on Model 1(a)

4.2.1 Statement of the Problem

In conveyor model 1(a), Transactions
representing widgets available for
consumption remain on the Current Events
Chain until they succeed in capturing the
consumer. Show how to modify model 1(a) so
that such Transactions are kept on a User
Chain (rather than on +the Current Events
Chain). The result may be to improve the
model's run-time performance by keeping such
blocked Transactions off the Current Bvents
Chain. Note that because of +the
straightforward nature of +the consumer,
introduction of a User Chain into the model
means that no Facility need be used %o
simulate the consumer. (See Schriber (1974),
Section 7.6.2.)

4.2.2 Presentation and Discussion of the
Model

Figure 2 shows statements 45 through 54
(the Consumer Segment) for model 1(b). The
other model 1(b) statements are identical
one-for-one to those in model 1(a), and are
not repeated in Figure 2.

In the Figure 2 Consumer Segment, a LINK
Block (statement 49) has replaced a
corresponding model 1(a) SEIZE Block
(statement 49 in Pigure 1), and an UNLINK
Block (statement 53) has replaced a
corresponding model 1(a) RELEASE Block
(statement 53 in Figure 1). The other
corresponding Blocks in the PFigure 1 and 2
Consumer Segments are identical.

All numeric results from the model 1(b)
simulation match those from the model 1(a)
simulation {as should be the case, given that
the random number generators have the same
starting points and +that these are
pseudo-random simulations).

In simulations performed under GPSS/H,
Release 2, on an Amdahl 470/V8 computer,
models 1(2) and 1(b) consumed 0.130 and 0.121
seconds of CPU time, respectively. As
expected, model 1(b) runs somewhat more
efficiently than model 1(a) In conveyor
models with larger numbers of objects, the
improvement would be more dramatic.

4.3 Model 1(e): A Second GPSS-based
Variation on Model 1(a)

4.3.1 Statement of the Problem

In model 1(a), Transactions represent
widgets available for consumption, and +the
consumer 1is modeled passively with a
Facility. Show how to modify model 1(a) so
that the current contents of a Storage
represents the number of widgets available
for consumption (meaning that when widget
Transactions reach the conveyor exit, they
can simply execute an ENTER Block and then
leave the model). Use a Transaction %o
represent the consumer in the modified model.
When the consumer Transaction has finished a
consumption cycle, it can then try to move

J. O. Henriksen and T. J. Schriber

GPSS/H VAX/VMS RELEASE 0.96 (UG176) 15 AUG 1986 07:49:52 FILE: CONVAC1A.GPS

LINE# STMT#

N =

1
2

IF DO BLOCK#

RN =W N =

Pigure 1:

*LOC OPERATION A,B,C,D,E,F,G COMMENTS

SIMULATE
RMULT 111111111,333333333 RN1, RN2 INDEPENDENT

FREXIMRANI TN EINN TN NI N0 0600 0TI 0063636906 3006 3696 96 3606 .96 36 06 .06 006 30060 36 6 36 6 96 6
GPSS/H MODEL OF A SIMPLE ACCUMULATING CONVEYOR SYSTEM
[* [. *

* PRODUCER #—~->| >|—~~% CONSUMER ¥
| ZSON— * | *

RULES: 1. THE ENTIRE LENGTH OF THE CONVEYOR IS AN ACCUM-
ULATION ZONE.
2., THE PRODUCER STOPS ONLY WHEN THE CONVEYOR
COMPLETELY FILLS UP,

* ok K K W K Ok K ok K K K
® ok o o ok Kk koK W M K

HRERRRRHH LR ERRRRNR R RN RN KNI RIENRRN RN R NI NI KNNE N NN

ACCUM STORAGE 6 ROOM FOR 6 WIDGETS

PTIME FUNCTION RN1,C2 PRODUCER CYCLE TIME
0,15/1,25 20 + ~ 5

CTIME FUNCTION RN2,C2 CONSUMER CYCLE TIME
0,5/1,35 20 + - 15

BT I IEIEIEIE I IEIE 06 I IE I IEJEIE I IE 3636 36 I 060606 3696 36 96 06 36 06 06 36 0 8 36 36 36 36 36 36 36 06 96 96 96 26 36 96 9696 36 96 36 96 36 06 36 36 36 06 36 06 6

* PRODUCER SEGMENT *
FRRTRIERIE RN NI NI M NI T I 060 06 002600 0606 3006 606 00 06 066NN RN

GENERATE vl SINGLE PRODUCER

PLOOP ADVANCE FN$PTIME TIME TO PRODUCE A WIDGET
QUEUE ACCUM CONVEYOR QUEUE
ENTER ACCUM MAY BE COMPLETELY FULL
DEPART ACCUM WE CAN GET ON NOW
ADVANCE 2 LOAD TIME
SPLIT 1,FLOW OFFSPRING MODELS FLOW
TRANSFER + PLOOP CYCLE ENDLESSLY

MMM TN HIEII NI NN IHIIIEIEIM NI N NN NRAERRRRRRNRRRRNN

* CONVEYOR FLOW SEGMENT *
FRRRININIIN NN RNIIII I I I N IR IR RN N RN R R RN R RNRNRNRNRL RN

FLOW ADVANCE 10 MINIMUM TRANSIT TIME

HRRRRARNN RN 36 2636363036 9696060026 90 969636 36 36 6 36 96 96 36 3638 26 36 3630 36 36 36 96 96 3636 6 96 06 36 96 36 96 96 96 96 36 36 % % %

* CONSUMER SEGMENT *
HRXRRRIHININ N RN RN IH RN RN RN IR RHRNRE TR R

SEIZE CONSUMER EXIT ONE-AT-A-TIME

ADVANCE 2 TIME REQUIRED TO UNLOAD

LEAVE ACCUM ALLOW ENTRY OF ANOTHER WIDGET
ADVANCE FN$CTIME CONSUMER CYCLE TIME

RELEASE CONSUMER THIS WIDGET HAS BEEN CONSUMED
TERMINATE 1 EXIT THE MODEL

HHNNENMN NI NI 000 00060000000 00000606 366 96 36 06 36 3 36 36 36 36 36 36 30 3696 96 36 26 3696 00 96 36 36 96 36 96 0636 36 6 %6 3¢

* RUN CONTROLS *
BRI I I T I I DI 36 60T 69600606 0606063600 06 0660006 6 36 90 36 36 96 6 96 06 69696 6 96 06 6 6 06 06 096 6 2 06 %6 6

START 1000 CONSUME 1000 WIDGETS
RMULT 111111111,333333333 SAME SEEDS FOR 2ND RUN
CLEAR

ACCUM STORAGE 5 TRY WITH ROOM FOR 5 WIDGETS
START 1000 CONSUME 1000 WIDGETS
END '

Model 1(a): A Simple Accumulating Conveyor System

580

Modeling Conveyor Systems

1‘5 "‘5 363636 6 3896 36 6 36 36 36 36 36 2 36 36 36 3696 38 36 36 36 36 6 36 36 36 36 36 6 36 36 6 36 I 96 36 36 36 36 36 6 36 3 36 36 36 36 36 36 36 36 36 36 3 3 36 36 36 36 36 396 3 26 36 3 N
46 46 * CONSUMER SEGMENT *
47 uy BRRERRER IR RIS IO R R
49 49 10 LINK CONSUMER,FIFO,NEXTC EFFICIENT GPSS
50 50 11 NEXTC ADVANCE 2 TIME REQUIRED TO UNLOAD
51 51 12 LEAVE ACCUM ALLOW ENTRY OF ANOTHER WIDGET
52 52 13 ADVANCE FN$CTIME CONSUMER CYCLE TIME
53 53 14 UNLINK CONSUMER,NEXTC,1 EFFICIENT GPSS
54 54 15 TERMINATE 1 EXIT THE MODEL

Figure 2: Model 1(b): A GPSS-Based Variation on Model 1(a)
40 10 3636 6 338 3 36 26 36 36 36 36 3 3K 36 36 36 36 36 36 36 98 36 3 3636 96 36 36 36 36 36 36 96 3 36 36 36 3 36 36 36 30 36 36 36 36 06 36 36 36 36 3 0 I 36 36 36 3 3 36 2 3 K K Kk MW XN
41 L3 * CONVEYOR FLOW SEGMENT *
42 b2 339 6 26 3636 36 96 % 3 36 36 96 96 3 36 26 36 3 26 96 36 36 36 36 3436 3 36 30 36 98 36 30 36 36 36 36 6 30 36 36 3 36 36 336 36 36 26 36 96 36 36 J 36 3 36 36063 K KX NHNNN
4y iy 9 FLOW ADVANCE 10 MINIMUM TRAVEL TIME
45 45 10 ENTER AVAIL WIDGET AVAIL FOR PROCESSING
46 46 11 TERMINATE 0 EXIT THE MODEL
48 48 266 I 36 I 3606 I 366606 JE 26 006 3 20 6 T P66 J6 366636 6636 96 30 626 06 I 26 36 06 36 96 36 06 36 36 36 06 3 63 I 6 H KKK NN
n9 49 * CONSUMER SEGMENT *
50 50 26362626 26 36 36 36 36 36 36 36 26 36 3 36 26 36 36 26 36 36 36 36 30 36 3 9 6 36 30 38 36 36 36 36 36 36 3 36 36 36 36 36 30 36 6 36 36 36 3 30 36 36 30 36 36 3 3 3 36 3 0636 3K 3 226N H
52 52 12 GENERATE P | SINGLE CONSUMER
53 53 13 ASSIGN 1, 1000, PH CONSUME 1000 WIDGETS
sY 54 14 CLOOP GATE SNE AVAIL WAIT FOR SOMETHING TO DO
55 55 15 ADVANCE 2 TIME REQUIRED TO UNLOAD
56 56 16 LEAVE ACCUM ALLOW ENTRY OF ANOTHER WIDGET
57 57 17 LEAVE AVAIL INDICATE THIS ONE USED
58 58 18 ADVANCE FN$CTIME CONSUMER CYCLE TIME
59 59 19 LOOP 1PH, CLOOQP CONSUME N WIDGETS
60 60 20 TERMINATE 1 SHUT DOWN THE MODEL

Figure 3: Model 1(c): A Second GPSS-Based Variation on Model 1(a)

into a refusal-mode GATE to test for the
presence of one or more additional consumable
widgets. (See Henriksen (1981).)

4.35.2 Presentation and Discussion of the
Model

Figure 3 shows statements 40 through 60
(the Conveyor Flow Segment and the Consumer
Segment) for model 1(e¢). The other model
1{c) statements are identical one-for-one to
those in model 1(a), and so are not repeated
in Figure 3.

As was the case in models 1(a) and 1(d),

a Storage (named ACCUM) is used to model +he -

capacity of +the conveyor. In the Conveyor
Flow Segment, a gecond Storage (named AVAIL)
is used %0 model the supply of widgets
available for consumption at the conveyor
exit. A widget which has spent the minimum
travel time needed to reach the conveyor exit
executes an ENTER Block (statement 45, Pigure
3) to update the count of widgets available
for consumption, then leaves the model.

In the Consumer Segment, a single
Transaction loops 1,000 times in the process
of consuming 1,000 widgets (statements 54
through 59, PFigure 3), then terminates to
stop the simulation (statement 60). Note how
the consumer uses a refusal-mode GATE (state-

581

ment 54) to test for the availability of
another consumable widget, and how it updates
the count of consumable widgets by executing
an appropriate LBAVE Block (statement 57).

To summarize this modeling approach, a pair
of Storages is used to model +the conveyor,
one as a constraint on object entry and the
other as a constraint on the consumer. An
object cannot enter the conveyor when the
former Storage is full, and the consumer
cannot consume until the latter Storage is
non-enpty. This approach is applicable only
to systems in which objects are homogeneous,
because the objects are represented entirely
by the contents of Storages. If the
consumer's behavior depends on the attributes
of nonhomogeneous objects, a different
modeling approach may be required. If the
behavior of nonhomogeneous objects can be
modeled by a random sampling process, the
consumer can generate the required attributes
on demand; i.e., attributes needn't be stored
in data structures used to explicitly
represent objects.

All numeric results from the model 1(ec)
simulation match those from the model 1(a)
and (b) simulations, as is to be expected.

J. O. Henriksen and T. J. Schriber

5. A MODEL FOR A MODERATELY COMPLEX
ACCUMULATING CONVEYOR

5.1 Statement of the Problem

An accumulating conveyor is used %o
trangport widgets from +two (potential)
producers to two (potential) consumers. The
conveyor has one entry, one exit, and a
capacity for 20 widgets. It takes 20 +/- 5
time units to produce a widget, and 30 +/- 20
time units to consume one. Minimum travel
time on +the conveyor is 40 time units. It
takes 2 time units to place a widget on the
conveyor, and 2 time units to remove a widget
from the conveyor. Not more than one entry
and one removal can take place at any one
time, but an entry and a removal can take
place (either partially or entirely) at the
same time. The conveyor continues to move
while an entry and/or a removal occurs. At
the earliest, a producer does not start
producing its next widget until after the
widget it most recently produced has been
placed on the conveyor.

As shown in the upper part of Figure 4,
the length of the conveyor is divided into
four logical zones of equal capacity (10
widgets per zone), with zone 1 at the
conveyor entry and zone 4 at its exit.
Normally, both producers make widgets,
whereas only one consumer consumes them. If
zone 3 fills wup, however, the idle consumer
begins to consume (so that there will be two
active consumers temporarily). Later, when
zone 4 is no longer full, the consumer who
had most recently been officially idle
continues +to consume, whereas +the other
consumer becomes officially idle (after
finishing its current consumption cycle).

The potential also exists for having one
or both producers become temporarily idle.
If zone 2 fills, the producer who has been
producing for the longest +ime (since its
immediately preceding period of official
idleness) stops producing temporarily, and
then starts producing again when zone 3 is no
longer full. If zone 1 f£ills, +then the
single producer who is active at that time
necessarily stops producing (because of the
requirement that it must be able to place its
most recently completed widget onto the
conveyor before starting its next production
cycléy.

Build a model for +he producers and
consumers and the conveyor which links them.
Design the model so that a simulation
performed with it will stop when a specified
number of widgets (e.g., 1,000 widgets) have
been made available for consumption.

5.2 Presentation and Discussion of the Model

The listing of a GPSS model for +this
gystem is shown in Pigure 4. 1In the Producer
Segment (statements 46 through 62, Figure 4),
two Transactions represent the two producers.
These two producers are tagged as PROD! and
PRODZ in their respective PRODNO Parameters
(see statements 36, 37, and 51 in Pigure 4).
When the PROD1 or PROD2 Logic Switch is Reset
(zero), then the associated producer can

start a production cycle (refusal mode GATE,
statement 53). After capturing the
corresponding PFacility (PROD!1 or PROD2) a
producer proceeds with production of a
widget, (eventual) capbure of the conveyor
entry, waiting (if necessary) for space in
zone 1, placing the widget on the conveyor,
splitting off another Transaction to
represent the widget on the conveyor, and
then returning to wait (if necessary) to
start production of another widget. Note
that the SBEIZE Block (statement 54) never
denies entry to a producer Transaction; its
sole purpose is to gather producer
statistics.

In the Pigure 4 Conveyor Flow Segment
(statements 64 through 80), widgets go
through a sequence of appropriately layered
ENTER, ADVANCE, and LEAVE Blocks to model
their progress through conveyor zones 1
through 4. The "minimum travel time"
approach discussed in Section 3.1 is used for
each zone. A widget which has eventually
spent the minimum travel time needed in zone
4 to reach the conveyor exit executes an
ENTER Block (statement 79, Figure 4), thereby
updating the current contents of a Storage
used to model the number of widgets available
for consumption. (Phe approach here is
analogous to that in model 1(c).) The widget
Transaction then terminates.

The Consumer Segment in model 2
(statements 82 through 99, Figure 4) is
analogous +to the Consumer Segment for model
1(e) in +that consumers are modeled by
Transactions which use a refusal-mode GATE
(statement 89) to test for the availability
of another consumable widget, and update the
record of consumable widgets by executing an
appropriate IBAVE Block (statement 93). The
model 2 Consumer Segment also bears
similarities to the model 2 Producer Segment
in that the consumer Transactions are tagged
as CONS1 and CONS2 in their respective CNSNO
Parameters (see statements 38, 39, and 87,
Figure 4). When the CONS1 or CONS2 Logic
Switech is Reset (zero), then the associated
consumer can start a consumption cycle
(refusal-mode GATE, statement 89). After
capturing the corresponding PFacility (CONS1
or CONS2), the consumer Transaction proceeds
through the remainder of its consumption

cycle. (Note that the SEIZE Block (statement
90) never denies entry to a producer
Transaction; its sole purpose is to gather

producer statistics.) After completing the
remainder of +the consumption cycle, the
consumer Transaction then returns to wait (if
necessary) to sbtart its next consumption
cycle.

Zones 2 and 3 are monitored by a monitor
Transaction which loops in the Producer
Monitor Segment (statements 101 through 113,
Figure 4). The monitor Transaction controls
producer Transactions by setting and
resetting the PROD1 and PRODZ Logic Switches,
which are "sensed" by producer Transactions,
ag dicussed above. The monitor Transaction
alternates between PROD1 and PROD2 to
accomplish +the idling of the appropriate
producer (when zone 2 fills) and then the
eventual restarting of that producer (when

582

Modeling Conveyor Systems

GPSS/H VAX/VMS RELEASE 0.96 (UG176) 15 AUG 1986 07:50:37 FILE: CONVAC2.GPS

LINE# STMT# IF DO BLOCK# *LOC OPERATION 4,8,C,D,E,F,G COMMENTS
1 1 STMULATE
2 2 RMULT 111111111,333333333 RN1, RN2 INDEPENDENT
u I E I 333323332 223222222 22222231323 2222232222223 222222232 2223223 1]
5 5 * *
6 6 * GPSS/H MODEL OF A MODERATELY COMPLEX ACCUMULATING CONVEYOR *
7 7 * *
8 8 LK * [* *
9 g * % PRODUCER 1 *—--¥ %___% CONSUMER 1 * #
10 10 L J SR * | ZONE1 ZONE2 ZONE3 ZONE4 | ¥ommm—ooemme * x
11 1 * * > > > * *
12 12 f SR S —— * H ! L 2 — * *
13 13 % % PRODUCER 2 ¥---¥ ¥_._¥ CONSUMER 2 * *
14 14 K ¥ cm————— * B e e e e * %
15 15 * *
16 16 * RULES: 1. NORMALLY, BOTH PRODUCERS RUN CONTINUOUSLY. *
177 * 2. NORMALLY, ONLY ONE CONSUMER OPERATES AT A TIME. *
18 18 * 3. IF ZONE3 FILLS UP, THE IDLE CONSUMER STARTS UP. *
19 19 * AS SOON AS ZONE4 BECOMES NOT FULL, THE CONSUMER *
20 20 * WHICH WAS RUNNING WHEN THE IDLE CONSUMER WAS *
21 21 * RESTARTED IS STOPPED. *
22 22 * 4, IF ZONE2 FILLS UP, THE PRODUCER WHICH HAS BEEN *
23 23 * RUNNING FOR THE LONGEST TIME IS FORCED TO STOP *
24 24 * UNTIL ZONE 3 IS NOT FULL. *
25 25 * 5. IF ZONE1 FILLS UP, THE SINGLE ACTIVE PRODUCER *
26 26 * STOPS. *
27 27 * *
28 28 RRERREREREERERXEREREERRERRX RN ERNRHRREREERRRREERNEERENNRERRRRERREARNRER
30 30 ZONE1 STORAGE 5 ZONE1 HOLDS 5 WIDGETS
31 31 ZONE2 STORAGE 5 ZONE2 HOLDS 5 WIDGETS
32 32 ZONE3 STORAGE 5 ZONE3 HOLDS 5 WIDGETS
33 33 ZONE4 STORAGE 5 ZONE4 HOLDS 5 WIDGETS
3B 3y ENDY STORAGE 5 WIDGETS AVAIL FOR CONSUMPTION
36 36 PROD1 EQU 1,F,L PRODUCER 1
37 37 PROD2 EQU 2,F,L PRODUCER 2
38 38 CONS1 EQU 3,F,L CONSUMER 1
39 39 CONS2 EQU 4,F,L CONSUMER 2
51 M PTIME FUNCTION RN1,C2 PRODUCER CYCLE TIME
42 42 0,15/1,25 20 + - 5
43 43 CTIME FUNCTION RN2,C2 CONSUMER CYCLE TIME
uyouy 0,10/1,50 30 + - 20
46 46 HREERRRRRE RN R NIRRT RN R NIRRT NI KKK 6K RHINR
57 47 * PRODUCER SEGMENT *
48 48 REERARERRERERERAEERERRERRERRERERXRRRRER XA RRRRRRRREREERARRRERARRREERERRRKE
50 50 1 GENERATE ver2 TWO PRODUCERS ACTIVE
51 51 2 ASSIGN PRDNO,PROD1+N(*) ,PH PRODUCER ID (PROD1 OR PROD2)
53 53 3 PLOOP GATE LR PH$PRDNO WAIT UNTIL MACHINE ACTIVE
54 54 y SEIZE PH$PRDNO INDICATE PRODUCER ACTIVE
55 55 5 ADVANCE FN$PTIME TIME TO PRODUCE A WIDGET
56 56 6 SEIZE ENTRY ONE-AT-A-TIME
57 57 7 GATE SNF ZONE1 MAY BE COMPLETELY FULL
58 58 8 ADVANCE 2 PLACE ON CONVEYOR
59 59 9 RELEASE ENTRY ALLOW ANOTHER WIDGET TO ENTER
60 60 10 SPLIT 1, INTO1 ROUTE WIDGET TO THE CONVEYOR
61 61 11 RELEASE PH$PRDNO INDICATE PRODUCER IDLE
62 62 12 TRANSFER ,PLOOP GO PRODUCE ANOTHER WIDGET

Figure 4: Model 2: A Moderately Complex Accumulating Conveyor System

583

64
65
66

68
69
70
71
72
73
74
75
76
17
78
79
80

82
83
8k

86
87

89
90
91
92
93
94
95
96
97
98
99

101
102
103

105
106
107
108
109
110
111
112
113

115
116
117

119
120
121
122
123
124
125
126
127

129

130.

131

133
134
135

105

113

115
116
1T

119
120
121
122
123
124
125
126
127

129
130
131

133
134
135

13
13
15
16
17
18
19
20
21
22
23

25

26
27

28

30
31
32
33
34
35
36
37
38

39
40
49
12
43
1y
15
16
u7

48
49
50
51
52
53
54
55
56

J. O. Henriksen and T. J. Schriber

26969636 96 3606 96 36 36 3096 96 36 36 36 36 6 36 36 36 36 36 96 36 36 96 36 36 36 306 36 06 36 98 16 36 36 36 36 36 30 06 36 6 36 36 6 36 36 36 36 36 36 36 3¢ 36 36 36 06 36 30 36 36 96 36 36 30 ¢ 2

* CONVEYOR FLOW SEGMENT *
FERHIHI NI NI NI IR IR I N NI IR IINN I IEI I N I NIINER RN N NN

INTO1 ENTER ZONE1 ENTER FIRST ZONE
ADVANCE 10 ZONE 1 MIN TRANSIT TIME
ENTER ZONE2 POSSIBLE BLOCKAGE
LEAVE ZONE1 LEAVE PREVIOUS ZONE
ADVANCE 10 ZONE 2 MIN TRANSIT TIME
ENTER ZONE3 POSSIBLE BLOCKAGE
LEAVE ZONE2 LEAVE PREVIOUS ZONE
ADVANCE 10 ZONE 3 MIN TRANSIT TIME
ENTER ZONEY POSSIBLE BLOCKAGE
LEAVE ZONE3 LEAVE PREVIOUS ZONE
ADVANCE 10 ZONE 4 MIN TRANSIT TIME
ENTER ENDY WIDGET AVAIL FOR CONSUMPTION
TERMINATE 1 END OF THE LINE

P TS T T TR st e eSS 222232 3223232228222 2222222322222 2232222224

* CONSUMER SEGMENT *
BRI NIRRT NI NI NI R NI R I IR I M NNR NN NA RN EER RN RAR

GENERATE 199241 TWO CONSUMERS ACTIVE

ASSIGN CNSNO,CONS1+N(*) ,PH CONSUMER ID (CONS1 OR CONS2)
CLOOP GATE LR PH$CNSNO WAIT UNTIL OK TO CONSUME

SEIZE PH$CNSNO INDICATE CONSUMER ACTIVE

SEIZE EXIT EXIT ONE-AT-A~TIME

GATE SNE ENDY4 WAIT UNTIL A WIDGET AVAIL

LEAVE ENDU REMOVE FROM CONVEYOR

ADVANCE 2 WIDGET REMOVAL TIME

LEAVE ZONEY ALLOW ENTRY OF ANOTHER WIDGET

RELEASE EXIT ALLOW ANOTHER EXIT

ADVANCE FN$CTIME CONSUMER CYCLE TIME

RELEASE PH$CNSNO INDICATE CONSUMER IDLE

TRANSFER ,CLOOP LOOP CONTINUOUSLY

FEFERERERRRENEERRRRRR RN R RN R R R RN AR RERNHH XX RRRNNRRINH NN NN EE

* PRODUCER MONITOR SEGMENT *
FREREERHNERR RN RN RN RE RN ERRNIRER R TIIOIIIII ER RN R RN RN RN

GENERATE 191 1,2 HIGH PRIORITY MONITOR

ASSIGN STOP,PROD1,PH ID OF CONSUMER TO STOP
MFULL3 GATE SF ZONE2 WAIT FOR ZONE2 TO FILL

LOGIC S PH$STOP STOP APPROPRIATE PRODUCER

GATE SNF ZONE3 WAIT UNTIL ZONE3 NOT FULL

LOGIC R PH$STOP RESTART APPROPRIATE PRODUCER

ASSIGN STOP,PROD 1+PROD2-PH$STOP "FLIP" PRODUCER ID
GATE SNF ZONE2 WAIT FOR ZONE2 FLOW INTO ZONE3
TRANSFER ,MFULL3 GO MONITOR ZONE2

FUR M HIININH IR IR RN R RN N NI RRRENERRX

* CONSUMER MONITOR SEGMENT *
HEREIEHRN IR RN IRR IR NI RN I N I R I R RN RN R R RR RN RN AR R

GENERATE y191,2 HIGH PRIORITY MONITOR
ASSIGN STOP,CONS2,PH ID OF CONSUMER TO STOP

STOPC LOGIC S PH$STOP STOP APPROPRIATE CONSUMER
GATE SF ZONE3 WAIT FOR ZONE3 TO FILL
LOGIC R PH$STOP START APPROPRIATE CONSUMER
GATE SNF ZONEY WAIT UNTIL ZONE4 NOT FULL
ASSIGN STOP, CONS1+CONS2~PH$STOP "FLIP" CONSUMER ID
GATE SNF ZONE3 WAIT FOR ZONE3 FLOW INTQ ZONE4
TRANSFER 4 STOPC GO STOP THE OTHER GUY

B NRHRI IR H NI N IR NI ERNNRRRERRRRRNRRRR

* RUN CONTROLS

*

363696 3636 36 96 36 36 36 96 96 36 36 3696 96 36 36 36 36 30 36 36 36 96 06 96 96 36 06 30 36 90 6 3¢ 6 36 26 30 30 96 36 38 0696 26 36 06 36 06 30 96 30 96 36 96 96 36 96 36 36 36 3 9636 36 36 36 6

START 1000

END

MAKE 1000 WIDGETS AVAILABLE
FOR CONSUMPTION

Figure 4: Model 2: A Moderately Complex Accumulating Coﬁveyor System (Continued)

584

Modeling Conveyor Systems

zone 3 is no longer full).

In an analagous manner, zones 3 and 4
are monitored by a monitor Transaction which
loops in the Consumer Monitor Segment
(statements 115 through 127, Figure 4). The
nonitor Transaction controls producer
Pransactions by setting and resetting the
CONS1 and CONS2 Logic Switches, which are
"sensed" by consumer Transactions, as
discussed above. The monitor Transaction
alternates between CONS1 and CONS2 to
accomplish the activation of the appropriate
consumer (when zone 3 fills) and then the
eventual idling of the other consumer (when
zone 4 is not full).

Model 2 is a natural extension of models
1(a), (b), and (c) with respect to use of the
"minimum travel time" concept to model widget
movement along a conveyor, and is a natural
extension of model 1(c) in terms of the
mechanism used to reflect the availability of
widgets for consumption, and the
representation of producers and consumers
with Transactions. Most of the complications
in the model 2 logic involve the monitoring
of the status of conveyor zones and the
resulting need to control movement of +he
consumer and producer Transactions. Although
this monitoring and control is not intrinsic
to conveyor modeling as such, it 1is
representative of the types of logical issues
which frequently occur in +the modeling of
moderately complex systems in general.

In output produced when model 2 was run
under GPSS/H, Release 2, the simulation
stopped at clock +time 15,993.6. The average
number of widgets in zones 1 through 4 was
4.3%, 4.92, 4.96, and 4.98, respectively.
Average times in these respective zones were
68.2, T77.9, 78.8, and 79.6 time units per
widget. Producers 1 and 2 were officially at
work T7.5 and 78.2 of the time, whereas
consumers 1 and 2 were officially at work
100 and 98.8 of the +time, respectively.
The conveyor entry and exit were utilized
27.4 and 12.8 of the time, respectively.

The disparity between the entry and exit
utilizations is explained as followes. The
entry is utilized not just while being
actively used, but also while a producer is
waiting for space in zone 1 into which a
widget can be placed (see statements 56
through 59 in PFigure 4). Zone 1 is
frequently full, resulting in a relativel
long space-wait on average and a relatively

igh aggregate entry-utilization statistiec.
The exit is likewise utilized not just while
being actively used, but also while a
consumer is waiting for availability of a
consumable widget at the end of zone 4 (see
statements 90 +through 98 in Figure 4).
Consumable widgets are usually available at
the end of zone 4, however, resulting in a
relatively short consumable-widget wait on
average, and a relatively low aggregate
exit-utilization statistic.

585

6. TWO MODELS OF A SIMPLE NONACCUMULATING

CORVEYOR SYSTEM

Iwo models for a simple nonaccumulating
conveyor system are presented in +this
section. The second of these models is a
variation of the first. Each model 1is
described in its own subsection.

6.1 Model 3(a): A Nonaccumulating Conveyor
which Moves During Entries and Removals
6.1.1 Statement of the Problenm

A nonaccumulating conveyor is used to
transport widgets from a single producer to a
single consumer. The conveyor has one entry
and one exit. It takes 20 +/- 5 time units
to produce a widget, and 20 +/- 15 time units
to consume one. Minimum travel time on the
conveyor is 30 time units. It takes 2 +ime
units to place a widget on the conveyor, and
2 time units to remove a widget from the
conveyor. Not more than one entry and one
removal can take place at any one time, but
an entry and a removal can take place (either
partially or entirely) at the same time. The
conveyor must be moving while an entry and/or
a removal occur. (Think of this as meaning
that to place a widget on the conveyor, the
producer first places the leading edge of the
widget on the trailing edge of the moving
belt, with the belt's motion then helping
pull the rest of the widget along until the
entire widget is in contact with the belt.)
A producer does not start producing its next
widget until after the most recently produced
widget has been placed on the conveyor.

As explained in Section 2, a nonaccumu-
lating conveyor is one which must be stopped
when an object which has reached the conveyor
exit has to wait for a consumer to remove it.
When +the removal occurs, however, the
conveyor must have resumed its motion.
(Think of this as meaning that to remove a
widget from the conveyor, the consumer first
lifts the leading edge of the widget from the
leading edge of the belt, with the belt's
motion then helping move the rest of the
widget along until none of the widget is any
longer in contact with the belt.)

The simple condition needed to place a
widget on the nonaccumulating conveyor in
this problem is that the conveyor be moving.
This means the capacity of +the nonaccumu-
lating conveyor need not be incorporated
explicitly into a model of the system, and
need not even be formally known. The
conveyor's capacity can be deduced, however,
from knowledge of the time required %o place
a widget on the conveyor, the minimum +ime
then required by a widget to travel to the
exit, and the time required fto remove it from
the conveyor. The entry and removal times of
2 time units imply that the conveyor travels
one widget-length every 2 +time units. The
minimum travel time of 30 time units +then
means the conveyor moves a distance equal %o
the length of 15 widgets while minimum travel
time elapses. The conveyor consequently has
a capacity of 17 widgets (1 for entry, 15 for
traveling, and 1 for removal).

J. O. Henriksen and T. J. Schriber

Build a model for the producer and
consumer and the nonaccumulating conveyor
which links them. Design the model so that a
simulation performed with it will stop when a
specified number of widgets (e.g., 1,000
widgets) have been consumed.

6.1.2 Presentation and Discussion of the
Model

The listing of a GPSS model for this
system is shown in Pigure 5. In the Producer
Segment (statements 23 through 35), a single
producer Transaction loops repeatedly through
the steps of producing a widget, waiting (if
necessary) for the moving- conveyor condition
needed ‘o place the widget on the conveyor,
splitting off another Transaction +to
represent the loaded widget, and +then
returning to begin producing another widget.

Whether or not the conveyor is moving
(so that an entry can take place) is
reflected by the status of +the CONVEYOR
Pacility. When the conveyor is moving, this
Pacility is idle, and so can be captured by
the producer who wants to place a widget on
the belt. When +the conveyor is halted,
however, the CONVEYOR Pacility is placed into
a state of unavailability. This has one of
two alternative effects on the producer:

(1) If the producer is producing, it cannot
later capture the CONVEYOR Pacility, and
80 cannot place a widget on the halted
conveyor. (A Transaction cannot capture
a Pacility unless it is both idle AND
available.

(2) in the process of

the conveyor when

If the producer is
placing a widget on
the halt occurs, it controls the
CONVEYOR Pacility at the +time. When
this Pacility becomes unavailable at the
time the conveyor halts, this results in
a "time suspension" (the suspending of
ongoing simulated time) for the
producer, which means the ongoing entry
step is suspended and will not resume
until the conveyor later starts to move
again (at which time +the CONVEYOR
Facility will again be placed into a
state of availability).

In the Conveyor Flow Segment (statements
37 through 54), an arriving widget (which has
just been placed on the conveyor) records its
time of arrival (statement 41) and the
conveyor's total halt time measured from the
start of +the simulation (statements 42 and
4%). It then either becomes the "leader" on
the conveyor (see the Section 3.2 discussion
and statements 44 and 46) or goes to the back
of the BEL? User Chain (statement 44) if
there is already a leader.

After the current leader has reached the
conveyor exit, (comes out of the statement 46
ADVANCE Block), it examines the consumer's
status (statement 49) and immediately
captures the consumer if it is idle
(statement 60) or records the time (statement
50), halts the conveyor (statement 51), and
waits (statement 52) for the busy consumer to
become idle. In this latter case, when the

586

consumer does become idle the leader restarts
the conveyor (statement 53), updates the
conveyor's total halt time (statement 54),
and captures the consumer (statement 60).

When the leader has captured +the
consumer, it UNLINKs the next leader from the
BELT User Chain (statement 61). If the BELT
Chain is empty, the attempted unlink Resets
the Chain's Link Indicator. This means that
when the producer later places the next
widget on the conveyor, the widget won't go
onto the User Chain (at statement 44), but
will immediately take on the role of leader.

In the Consumer Segment (statements 56
through 65, Figure 5), the CONSUMER Facility
is used to model the consumer. The first two
Blocks in this segment (statements 60 and 61)
have already been commented on in the above
Conveyor Plow Segment discussion. The
remaining Blocks in +the Consumer Seguent
(statements 62 +through 65) are straight-
forward.

As discussed earlier, the producer
Pransaction must capture the CONVEYOR
Facility (statement 30) as a prerequisite %o
placing a widget on the conveyor, +thereby
satisfying the requirement that the conveyor
be moving when a widget is placed onto the
conveyor. The reader may wonder why the
consumer Transaction deesn't also have to
capture some TFacility before initiating a
removal, corresponding to the requirement
that the conveyor be moving when a widget is
removed. The consumer need not check for
conveyor movement prior to a removal, hecause
the old leader widget who has just captured
the CONSUMER PFacility (statement 60) has
either just restarted the conveyor (statement
53) or, upon arriving at the exit, found the
consumer to be idle and so didn't have to
halt the conveyor in the first place.

In output from a model 3 simulation
performed under GPSS/H, Release 2, the
simulation stopped at clock +ime 24,352.2.
The conveyor's total halt time as of then was
6,385.9 time units. which means the conveyor
was in a halted state somewhat more than 25%
of the time. The consumer was capitured
(either removing or consuming) 90% of the
time. The BELT User Chain had an average
content of 0.8 widgets, with an average
widget residence time on the User Chain of
18.7 +time units. The User Chain's maximum
content was 2, meaning there were never more
than 3 widgets on the conveyor (1 leader
widget, and 2 widgets waiting their turn to
become the leader). The interested reader
can easily determine from the model's initial
conditions (empty conveyor), cycle times for
production and consumption, and minimum
conveyor t%ravel time that the above numbers
are reasonable.

6.2 Model 3(b): A Nonaccumulating Conveyor
which is Halted During Entries and
Removals

6.2.1 Statement of the Problem

In nonaccumulating conveyor model 3(a),
widgets could not be placed onto or removed

LINE# STMT#

WO

10

12
13
14
15
16

18
19

20

IF DO BLOCK#

Modeling Conveyor Systems

GPSS/H VAX/VMS RELEASE 0.96 (UG176) 15 AUG 1986 07:50:55 FILE: CONVNAC1.GPS
#L0C OPERATION 4,B,C,D,E,F,G GOMMENTS
SIMULATE
RMULT 111111111, 333333333 RN1, RN2 INDEPENDENT

***************l*********l***i****!**********ii****!****************i**i
* *
* GPSS/H MODEL OF A SIMPLE NON-ACCUMULATING CONVEYOR SYSTEM *
* *
* [J— * | * *
* * PRODUCER *-—->! >1=——* CONSUMER * *
* [O * L * *
* *
* RULES: 1. IF A WIDGET REACHES THE CONSUMER END OF THE *
* CONVEYOR, AND THE CONSUMER IS BUSY, THE CONVEYOR *
* IS HALTED. *
* *
*iﬁ******i****************i***************!************l****************
PTIME FUNCTION RN1,C2 PRODUCER CYCLE TIME

0,15/1,25 20 + - 5

CTIME FUNCTION RNZ,C2 CONSUMER CYCLE TIME

0,5/1,35 20 + - 15

Pigure 5:

21
23
25

27
28
29
30

32
33

35

37
38
39

1
2
13
1y

46
47
48
49
50

52
53
54

56
57
58

60
61
62
63
64
65

WO~V &EWND -

20
21
22
23
24
25

Model 3(a):

ENRAHNAERRNERARNER RN RERRRER R R AR RERERRERARNRERERRRRXERRE RN RERRRNRR

* PRODUCER SEGMENT ¥
BRI NINH N R KA R RN RN RN IR NER RN ERRRLRRRERKRFEREARRRRRRERRR

GENERATE s22 1y, 1PL SINGLE PRODUCER
PLOOP ADVANCE FN$PTIME PRODUCTION CYCLE TIME
QUEUE ENTRY MEASURE TIME TO GET ON CONVEYOR
SEIZE CONVEYOR CONVEYOR MUST BE MOVING
ADVANCE 2 PLACE WIDGET ON CONVEYOR
RELEASE CONVEYOR IT'S ON NOW
DEPART ENTRY MEASURE DELTA T
SPLIT 1,FLOW OFFSPRING XACT MODELS FLOW

TRANSFER , PLOOP PRODUCER CYCLES ENDLESSLY

ERRRRRRRFRNNNERERARE R KR RERR RN RN RN R R RN NRR RN N RN RN NN NN

* CONVEYOR FLOW SEGMENT *
NN NI NI NN RN RN RN RN T RRERERRRRRRTRRRERRRRARRRARNE

FLOW MARK SAVE TIME ONTO CONVEYOR

’
ASSIGN SAVESUMH,_ SAVE TOTAL CONVEYOR
XL$SUMHALTS,PL HALT TIME TO DATE
LINK BELT,FIFO,NEW1ST NEW LEADER -> NEW13T
NEW1ST ADVANCE 30-M1_ TRAVEL TIME = 30 - TIME ON
+(XL$SUMHALTS-PL$SAVESUMH) SO FAR + HALT TIME
* SO FAR WHILE ON
GATE U CONSUMER , CONSUME SKIP IF CONSUMER IDLE
MARK , START OF HALT INTERVAL
FUNAVAIL CONVEYOR STOP THE CONVEYOR
GATE NU CONSUMER WAIT FOR IDLE CONSUMER
FAVAIL CONVEYOR RESTART THE CONVEYOR
SAVEVALUE SUMHALTS+,M1,XL ACCUMULATE HALT TIME

FRRRHERRRERN RN E R AR RHR RN RN ER RN R R RN RXXNRRXARNRUR RN RN NRRER

* CONSUMER SEGMENT *
*********!***********i!****!***ll***!*****i**l*****!!***ii******!****!**

CONSUME SEIZE CONSUMER WIDGET AVAILABLE; GET CONSUMER
UNLINK BELT,NEW13T, 1 UNLEASH A NEW LEADER
ADVANCE 2 TAKE WIDGET FROM CONVEYOR
ADVANCE FN$CTIME CONSUMPTION CYCLE
RELEASE CONSUMER DONE
TERMINATE 1 WIDGET CONSUMED

A Nonaccumulating Conveyor which Moves During Entries and Removals

587

J. O. Henriksen and T. J. Schriber

67 67 ********************************!**'********i******i****‘***‘**‘**}i****
68 68 * RUN CONTROLS *
69 69 FIE 26 I3 0636 3636 36 36 36 3636 36 36 36 6 36 20 36 3696 9636 36 96 36 36 36 96 36 3036 36 6 36 36 36 36 36 96 36 366 36 6 36 36 36 36 96 9636 9636 36 36 36 96 36 96 36 96 6 36 96 36 % 3 %
71 71 START 1000 CONSUME 1000 WIDGETS
72 72 END

Figure 5: Model 3(a) (Continued)

from the conveyor unless the conveyor was
moving. Show how to modify model 3(a) under
the assumption that widgets cannot be placed
onto or removed from the conveyor unless it
is not moving. Assume the producer cannot
begin a production cycle until the previously
produced widget has been placed onto the
halted conveyor and the conveyor has been
restarted.

6.2.2 Presentation and Discussion of the
Model

The reader who has carefully followed
the reasoning presented thus far in the paper
may want to try his or her hand at building a
model for this problem before reading on (1).

This problem presents several
complications above and beyond +those of the
system of model 3(a). A first complication
is that there are now two independent reasons
for stopping the conveyor:

(1) As in model 3(a), the conveyor might
have to be stopped because the leader
has reached the exit when the consumer
is busy consuming some other widget.
(This was +the only reason for stopping
the conveyor in model 3(a).

(2) The conveyor might have to be stopped

for purposes of placing a widget on it.

Note that the conveyor never has to be halted
by anyone for purposes of removing a widget
from it; if there is a widget ready %o Dbe
removed, then the conveyor has already been
halted because of (1)

A second complication is +that if the
conveyor happens to be halted for reason (1)
above (or, having been halted for reason (1),
continues in a halted state because a removal
is taking place), then the producer can at
least start to place a widget on the conveyor
without having to halt it first.

When a removal concludes, the conveyor
normally can be restarted. This is not the
case, however, if an entry is in progress at
the time a removal concludes. This another
complication.

Yet another complication is that when an
entry concludes, the conveyor can be
restarted if there is not a widget at the
conveyor exit and no removal is in progress,
but cannot be restarted otherwise.

As indicated abgve, there may be
overlapping reasons for the conveyor to be
halted. This affects the accumulation of

588

total conveyor halt time, simply because two
different Transactions (the producer, and the
leader widget) may be taking responsibility
at one and the same time for wupdating the
conveyor's total halt time, and yet double-
counting during periods of overlap must be
avoided.

In the model, the current content of the
STOPPER Storage is used to count the number
of Transactions which are currently causing
the conveyor to be halted. A current content
of zero indicates that the conveyor is
moving; a current content of one indicates
that the conveyor is halted on behalf of
exactly one Transaction (the producer, or the
leader widget at the exit, or the leader
while it is being removed); and a current
content of two indicates that the conveyor is
halted for each of two independent reasons
(because of an entry; and because there is a
leader at the exit or because the leader is
being removed). A halted conveyor cannot be
restarted until the STOPPER Storage is empty.

The LEADER Facility is used in the model
to represent the conveyor. To stop the
conveyor for an entry, the producer
Transaction simply renders +the LEADER
Facility unavailable. (I+ is not an error to
redundantly (try to) place a PFacility into a
state of unavailability when the PFacility
already is unavailable. This explains why
the producer and leader Transactions simply
execute FUNAVAIL Blocks in the model when iit
is logically appropriate for them %o do so,
without regard to the current availability
status of the ILEADER Facility.)

When the producer has finished an entry,
or the leader has been removed, the
corresponding Transaction should restart the
conveyor (by rendering the LEADER Facility
available again) only if the conveyor is not
to remain stopped for some other reason (that
is, because an entry is ongoing when a
removal finishes; or because there is a
leader at the exit; or because a removal is
ongoing when an entry finishes). The
producer or leader Transaction, after leaving
the STOPPER Storage discussed above, can
condition the return of the LEADER Facility
to an available state on whether or not the
STOPPER Storage is empty. An empty Storage
means there is now no reason why the conveyor
is halted, and so it should be restarted; a
nonempty Storage means there continues to be
another reason why the conveyor is halted,
and so it should not be restarted.

As for accumulating total conveyor halt
time, this is easily done in GPSS/H, Release
2, which offers a Standard Numerical

Modeling Conveyor Systems

Attribute whose class name is FUT (for
Facility Unavailable Time). The FUT attri-
bute of the LEADER PFacility (PUT$LEADER) is a
direct measure of the total conveyor halt
time. Hence, the simulationist does not have
to provide logic to avoid double counting
when the conveyor is halted for +two
independent reasons at one and the same time.

A listing of model 3(b) is given in
Figure 6. The ways in which the special
logical complications of the problem have
been accounted for in the Figure 6 model have
been outlined above in some detail. The
reader should study the particulars of the
model and interpret them in light of the
above discussion.

7. A MODEL OF AN AIRPLANE BAGGAGE LOADING
CONVEYOR SYSTEM
7.1 Statement of the Problem

A nonaccumulating conveyor is used to
transport baggage from ground-level baggage
carts up into the underbelly of an airplane.
The conveyor has one entry and one exit.
Minimum transit time on the conveyor is 12
time units. It takes a (human) loader 10 +/-
4 +time units to obtain a bag from a baggage
cart and another 1 +/- 0.5 time units to
place the bag on the conveyor. Not more than
one entry can take place at a time.

Two loaders work at obtaining bags from
the baggage carts and placing them on the
conveyor.

At the conveyor exit, bags fall off the
head of the conveyor into a small buffer area
which has a capacity for 3 bags. If +this
buffer is full when a bag reaches the exit,
then the conveyor must be halted until the
buffer is no longer full. (Note, then, that
this system takes the form of a
nonaccumulating conveyor which feeds into a
capacitated accumulation buffer.) When the
buffer becomes no longer full, the conveyor
is then restarted, and things proceed from
there.

Two (human) unloaders work at transfer-
ring bags from the buffer at the head of the
conveyor to a storage area in the plane. The
time required to accomplish this bag transfer
is 1 + 0.5 time units per bag. Unloader
access to the buffer is unrestricted. That
is, the +two unloaders can remove bags from
the buffer simultaneously.

Build 2 model for +the loaders and
unloaders and the nonaccumulating conveyor
and capacitated accumulation buffer which
link then. Design the model so that a
simulation performed with it will stop when a
specified number of bags (e.g., 200 bags)
have been transferred into the plane.

7.2 Presentation and Discussion of the Model

Pigure 7 shows the listing of a GPSS
model for the baggage transfer system. The
Bag Loading Segment is shown in statements 15
through 27. Each of the two loaders is

589

gimulated by a Transaction. Time elapses
while a loader Transaction grabs a bag, waits
(if necessary) for exclusive access to the
conveyor, places the bag on the conveyor,
splits off another Transaction to represent
the loaded bag, and then returns to grab the
next bag if there are more bags left. Fach
loader updates a bags-left counter as it
cycles. When there are no more bags lefd,
the loader Transaction exits the model.

The Conveyor Flow Segment appears as
statements 29 through 45 in Pigure 7. The
concept of a leader bag and the follow-the-
leader approach, first discussed in Section
%.2 and already illustrated in models 3(a)
and (b), is applied again in straightforward
fashion in model 4. And as also previously
discussed and illustrated in models 3(a) and
(p), access to the conveyor entry is
temporarily denied, or the ongoing placing of
a bag onto the conveyor is temporarily
suspended, by having the leader bag render
the HEAD PFacility (which simulates the
conveyor entry) unavailable (statement 43,
Pigure 7) when it reaches the conveyor head
and finds that it cannot drop into the buffer
because it is already full (statement 44).

The Bag Unloading Segment (statements 47
through 57, Figure 7) is straightforward in
terms of earlier examples and discussion, and
will not be discussed further.

GPSS/H, Release 2, uses a double-
precision floating point clock. This
explains why floating point holding times at
several ADVANCE Blocks in model 4 (statements
23 and 53, Pigure 7) are valid.

When model 4 was executed under GPSS/H,
Release 2, the simulation stopped at clock
time 1144.8. The HEAD Facility was in an
unavailable state (that is, the conveyor was
halted) 2.3% of the time. The accumulation
buffer at the head of the conveyor had an
average content of 1.5 bags, and an average
residence time of 8.6 time units per bag.
The BELT User Chain had an average content of
1.2 bags, with an average residence time on
the User Chain of 6.9 time units per bag.
The User Chain's maximum content was 3,
meaning there were never more than 4 bags on
the conveyor (1 leader bvag, and 3 bags
waiting their turn to become the leader).
Note that, per reasoning provided in the
discussion of model 3(a), the conveyor in
this problem has a capacity of 14 bags (1
being placed upon, 12 in transit, and 1
dropping off).

8. EXERCISES

In this section, exercises are presented
to suggest ways in which the ideas applied in
the preceding conveyor models can De
reinforced and extended.

(1) Build a model for the Section 4.1.1
accumulating conveyor problem in your
choice of a simulation language other
than GPSS, e.g., MAP/1; SIMAN;
SIMFACTORY; SIMSCRIPT; SLAM.

J. O. Henriksen and T. J. Schriber

GPSS/H VAX/VMS RELEASE 0,96 (UG176) 15 AUG 1986 07:51:04 FILE: CONVNAC2.GPS

LINE# STMT# IF DO BLOCK# #*LOC OPERATION A,B,C,D,E,F,G COMMENTS
1 1 SIMULATE
2 2 REALLOCATE COM, 25000 REQUEST MORE MEMORY
3 3 RMULT 111111111,333333333 RN1, RN2 INDEPENDENT
5 5 *!&****!*&***!**&**!*l****ii*******ii*l**i***i**!!il*!!*i&*l!*!i**!i*i**
6 6 * *
7 7 * GPSS/H MODEL OF A SIMPLE NON-ACCUMULATING CONVEYOR SYSTEM *
8 8 * *
9 9 * [S | . * *
10 10 * * PRODUCER *—-->! >}—=—¥% CONSUMER * *
11 1 * e * ¥ e * *
12 12 * *
13 13 * RULES: 1. IF A WIDGET REACHES THE CONSUMER END OF THE *
14 14 * CONVEYOR, AND THE CONSUMER IS BUSY, THE CONVEYOR *
15 15 * IS HALTED. *
16 16 * 2. WIDGETS ARE HEAVY. ACCORDINGLY, EACH TIME THE *
17 17 * PRODUCER PLACES A WIDGET ON THE CONVEYOR, OR *
18 18 * THE CONSUMER REMOVES ONE, THE CONVEYOR MUST BE *
19 19 * STOPPED., *
20 20 * *
21 21 *!*****i***!*&**********l*i*i*i*!i*l******ll***l*l*&***!!*!lli!*l***l*l*
23 23 STOPPER STORAGE 2 ' REASONS FOR STOPPING
25 25 PTIME FUNCTION RN1,C2 PRODUCER CYCLE TIME
26 26 0,15/1,25 20 + - 5
27 27 CTIME FUNCTION RN2,C2 CONSUMER CYCLE TIME
28 28 0,5/1,35 20 + - 15
30 30 *i*******!*****i***l*&***l**l**lli******l!**l*l***i**!**!****i!i*l*!*i!i
31 31 * PRODUCER SEGMENT *
32 32 ***!***l*!**!**!******i!!**&!*******l**i**!*******Ii*!***!****ili**!***l
34 34 1 GENERATE 1391, 1PL SINGLE PRODUCER
35 35 2 PLOOP ADVANCE FN$PTIME PRODUCTION CYCLE TIME
36 36 3 QUEUE ENTRY MEASURE TIME TO GET ON
37 37 4 ENTER STOPPER ANOTHER REASON TO STOP
38 38 5 FUNAVAIL LEADER BE SURE THE CONVEYOR IS STOPPED
39 39 6 ADVANCE 2 PLACE WIDGET ON CONVEYOR
40 40 T LEAVE STOPPER ONE LESS REASON TO STOP
41 41 8 GATE SE STOPPER, ¥+2 SEE IF WE'RE RESTARTING
42 42 9 FAVATIL LEADER RESTART THE CONVEYOR
43 43 10 GATE SE STOPPER WAIT FOR RESTART
4y 4y 11 DEPART ENTRY MEASURE DELTA T .
45 45 12 SPLIT 1,FLOW OFFSPRING XACT MODELS FLOW
46 46 13 TRANSFER , PLOOP PRODUCER CYCLES ENDLESSLY
48 48 ***********!*****************************!i***ili!****i*********!!*li***
49 49 * CONVEYOR FLOW SEGMENT *
50 50 ********!*iil**!*i*l***i!!************************i*********************
52 52 14 FLOW MARK , SAVE TIME ONTO CONVEYOR
53 53 15 ASSIGN SAVESUMH,_ SAVE TOTAL CONVEYOR
54 54 15 FUT$LEADER, PL HALT TIME TO DATE
55 55 * ("FUT" => Facility
56 56 * Unavailable Time)
57 57 16 LINK BELT,FIFO,NEW1ST NEW LEADER -~> NEW1ST
59 59 17 NEW1ST SEIZE LEADER NEW LEADER WIDGET
60 60 18 ADVANCE 30-M1_ TRAVEL TIME = 30 -~ TIME ON
61 61 18 +(FUT$LEADER~PL$SAVESUMH) SO FAR + HALT TIME
62 62 * SO FAR WHILE ON
63 63 19 ENTER STOPPER ANOTHER REASON TO STOP
64 64 20 RELEASE LEADER WILL GET A NEW LEADER
65 65 21 FUNAVAIL LEADER STOP THE CONVEYOR

Figure 6: Model 3(b): A Nonaccumulating Conveyor which is Halted During Entries and Removals

590

GPSS/H VAX/VMS RELEASE 0.96 (UG176)
LINE# STMT#

(2)
(3)
(4)

(5)

(6)

(7)

(8)

(9)

Modeling Conveyor Systems

IF DO BLOCK# *LOC OPERATION

15 AUG 1986

A,B,C,D,E,F,G

07:51:04

FILE: CONVNAC2.GPS

COMMENTS

67 67 **i***********************
68 68 * CONSUMER SEGMENT *
69 69 ***ﬁ********************
71 71 22 SEIZE CONSUMER
T2 72 23 ADVANCE 2 UNLOADING TIME
73 73 24 LEAVE STOPPER ONE LESS REASON TO STOP
T4 T4 25 GATE SE STOPPER, ¥42 SEE IF WE'RE RESTARTING
75 75 26 FAVAIL LEADER RESTART THE CONVEYOR
76 76 27 UNLINK BELT,NEW1ST, 1 UNLEASH SUCCESSOR XACT
K44 17 28 ADVANCE FN$CTIME UNLOADING CYCLE
78 78 29 RELEASE CONSUMER DONE
79 79 30 TERMINATE 1 WIDGET CONSUMED
81 81 FRRERREERERERRRERREEEEE RN AR R RRRERERRARERRERRRR RN RREEEXRRRE
82 82 * RUN CONTROLS *
83 83 HHNERERNRRNRERRRIERE RN RRR TR RN RN ERRERERERREREERERRRNS
85 85 START 1000 CONSUME 1000 WIDGETS
86 86 END

Pigure 6: Model 3(b): (Continued)

Repeat exercise (1), but for the Section
5.1 accumulating conveyor problem.

the Section
problem.

Repeat exercise (1), but for
6.1 nonaccumulating conveyor

the Section
problem.

Repeat exercise (1), but for
7.1 nonaccumulating conveyor

Assume that the accumulating conveyor in

the BSection 4.1.1 problem is in
operating condition for 1000 +/- 100
time wunits, then breaks down. After

taking 50 +/- 20 time units to repair
the conveyor, it then returans +to
operating condition for another 1000 +/-
100 time units, breaks down again, etc.
Assume further that when the conveyor
breaks down, ongoing production and
consumption cycles continue +to
completion, but then are suspended until
operation of the conveyor is later
resumed. Show how to model +this
modified problem in the language of your
choice.

Repeat exercise (5), but for the Section
5.1 accumulating conveyor problem.

Compose a problem similar to exercise
(5) for the Section 6.1 nonaccumulating
conveyor system, then show how to model
the problem in the language of your
choice.

If you use GPSS but the FUT Standard
Numerical Attribute is not offered by
your GPSS implementation, show how
models 3(b) and 4 can be modified so
that they do not use FUT.

In model 3(b), the producer does not
begin the next production cycle wuntil
the most recently produced widget has
been placed on the conveyor AND the

591

(10)

(11)

(12)

conveyor has been restarted. Using the
language of your choice, build a model
for the system if it is assumed the
producer begins the next production
cycle as soon as the most recently
produced widget has been placed on the
conveyor, whether or not the conveyor
has yet been restarted.

{Caution: when the producer has produced
the next widget, it can't be placed on
the conveyor unless the conveyor has
operated long enough in the interim to
move the preceding widget away from the
entry point.

Using the Section 4.1.1 accumulating
conveyor problem as a basis, compose a
problem of your own along the following
lines: Add a second producer to the
system. Have the first and second
producers produce different types of
widgets, types which differ in their
production cycle times and in the
capacity of the conveyor for them. For
example, the conveyor might have a
capacity of 6 for one type widget, and a
capacity of 11 for another type. Using
a language of your choice, build a model
for the problem you've composed.

Build 2 model for the Section 4.1.1
accunulating conveyor problem in a
language of your choice. Instead of
using the "minimum ‘ravel time" approach
described in Section 3.1, however, itry
an alternative approach in which the
model keeps information about the
conveyor state on an object-by-object,
inch-~by-inch basis. How easy or
difficult do you find it to do this?

Build a model for the Section 6.1.1
nonaccumulating conveyor problem in a
language of your choice. Instead of

LINE# STMT#

e

IF DO BLOCK#

J. O. Henriksen and T. J. Schriber

GPSS/H VAX/VMS RELEASE 0.96 (UG176) 15 AUG 1986 07:51:15 FILE: CONVNAC3.GPS

*¥L0C OPERATION 4,8,C,D,E,F,G COMMENTS

SIMULATE
HHR NI NRN NN IR SA NIRRT R NIRRT RAR R R RN RE RN RN RN NRNRR
* GPSS/H MODEL OF AN AIRPLANE BAGGAGE LOADING CONVEYOR SYSTEM *
* *
* (A NONACCUMULATING CONVEYOR WITH A CAPACITATED ACCUMULATION *
* BUFFER AT THE RECEIVING END) *
L E e e T T E P T T ey P

INITIAL X$BAGSLEFT, 200 LOAD 200 BAGS

INITIAL X$LOADERS, 2 TWO LOADERS

STORAGE S$UNLOADER, 2 TWO UNLOADERS

STORAGE S$BUFFER, 3 3 BAG BUFFER AT TOP

VYOV =W -

10

11

12

13
13

4
15
16

17
18
19
20
21

23

Pigure T:

FNIHF TN NI IE I I I IEIE I 6 I T 06369696066 060660606 06006 069606 060600606

* BAG LOADING SEGMENT *
RN TN TN IEIEI I 6066 I 00006 6T 00606 06006006 U0 060 I 006 066 0606 IR NN

GENERATE »» » X$LOADERS, , 1PL N WORKERS LOADING BAGS
LOAD SAVEVALUE BAGSLEFT-, 1 ANOTHER BAG

ADVANCE 10,4 GRAB IT; TAKE TO BELT

SEIZE HEAD ACCESS TO LOADING END

ADVANCE 1.0,0.5 PLACE BAG ON BELT

RELEASE HEAD RELINQUISH CONTROL

SPLIT 1,FLOW OFFSPRING XACT = BAG

TEST E X$BAGSLEFT,0,LOAD LOAD N BAGS

TERMINATE 0 ALL BAGS ON THE WAY

FIEANIIE NI NI IE I I 636603636066 3666 I I IE I I 606 060 96 3036 20 3600 36 00 3030 63030 36 96 06 K 36

* CONVEYOR FLOW SEGMENT *
FRERERNRHRHR RN IN NI NI IR IF KNN3 206 296069606060 M2 W

FLOW MARK , SAVE TIME ONTO CONVEYOR
ASSIGN SAVESUMH, SAVE TOTAL CONVEYOR
FUT$HEAD,PL HALT TIME TO DATE
* ("FUT" => Facility
* Unavailable Time)
LINK BELT,FIFQ,NEW1ST NEW LEADER ~> NEW1ST
NEW1ST ADVANCE 12-M1_ TRAVEL TIME = 12 - TIME ON
+(FUT$HEAD~PL$SAVESUMH) SO FAR + HALT TIME
* S0 FAR WHILE ON
FUNAVAIL HEAD TENTATIVELY STOP CONVEYOR
ENTER BUFFER TEST FOR ROOM IN BUFFER
FAVAIL HEAD RESTART CONVEYOR

Fe 3636 366 36 96 36 38 36 36 36 36 36 36 36 36 98 36 36 36 36 36 36 36 36 36 96 36 96 36 96 36 96 6 30 26 36 36 36 06 96 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 96 36 36 30 36 96 30 9 36 36 36 06 2 3¢

* BAG UNLOADING SEGMENT *
RN ISR R TN NN IINR R R ER R RARRRRERERA RN RN

UNLINK BELT,NEW1ST, 1 UNLEASH SUCCESSOR XACT
ENTER UNLOADER ONE WORKER REQUIRED
ADVANCE 1.0,0.5 GRAB BAG

LEAVE BUFFER FREE UP BUFFER SPACE
ADVANCE 10,8 STOW THE BAG

LEAVE UNLOADER AVAIL FOR NEXT BAG
TERMINATE 1 THIS BAG IS LOADED

BN T M NI NI IR NERRNRNERR
* RUN CONTROLS *
FEIE I3 I3 03636 36 36 36 36 36 96 3696 3 3636 30 36 36 36 36 36 36 3636 36 36 36 36 36 36 30 36 26 90 36 30 30 30 36 36 36 06 36 96 30 96 36 36 36 96 36 36 96 36 36 06 36 36 36 36 36 36 6 06 30 6 3¢

START X$BAGSLEFT LOAD N BAGS
END

Model 4: An Airplane Baggage Loading Conveyor System

592

Modeling Conveyor Systems

using the "follow-the-leader" approach
described in Section 3.2, however, try
an alternative approach in which +the
model keeps information about the
conveyor state on an object-by-object,
inch-by-inch basis. How easy or
difficult do you find it to do this?

{(13) Read the description of the conveyor
system in Henriksen (1986). Build a
model for that system in a language of
your choice. If you build the model in
GP8S, compare your model with +he GPSS
model which Henriksen gives.

9. CONCLUSIONS

Some of the characteristics of conveyors
have been described, and two relatively
gsimple techniques for modeling +the movement
of objects on conveyors have been introduced
and discussed. The "minimum travel time"
technique is appropriate for modeling
accumulating conveyors, and the
"follow-the-leader" technique is applicable
to the modeling of nonaccumulating conveyors.
Applications of +these two techniques have
been illustrated in a collection of seven
models corresponding to four conveyor systems
and variations on +them. Although the
illustrative models have been implemented in
GPSS/H, the techniques themselves are
language-independent, and so have broad-based
applicability. Demonstration of this fact is
called for in a series of exercises
challenging +the reader to build models in
alternative languages both for +the
illustrative problems used here, and for
other problems which are given as well.

REFERENCES

Bobillier, P. A., Kahan, B. (., and Probst,

A. R. (1976). Simulation with GPSS and
GPSS/V. Prentice-Hall, Englewood Cliffs,
New Jersey.

Gordon, G. (1975). The Application of GPSS
V to Discrete Systems Simulation.
Prentice-Hall, Englewood Cliffs, New
Jersey.

Henriksen, J. 0. (1981). GPSS ~ Pinding
the Appropriate World-View. In:

Proceedings of the 1981
Conference (®. I. Oren, C. M. Delfosse,
and C. M. Shub, eds.). Society for
Computer Simulation, San Diego, California.

Henriksen, J. 0. (1986). You Can't Beat
the Clock: Studies in Problem Solving. In:
Proceedings of the 1986 Winter Simulation
Conference (S. D. Roberts and J. 0.
Henriksen, eds.). Society for Computer
Simulation, San Diego, California.

Winter Simulation

¢. (1986).

Wolverine

Henriksen, J. 0., and Crain, R.
GPSS/H User'spManual, 3rd ed.
Software Corporation, Annandale, Virginia.

T. J. {(1974).
Wiley, New York.

Schriber,
GPSS3.

Simulation Using

593

Schriber, T. J. (1986). Introduction to
GPSS. In: Proceedings of the 1986 Winter
Simulation Conference (8. D. Roberts and
J. 0. Henriksen, eds.). Society for

Computer Simulation, San Diego, California.

AUTHORS' BIOGRAPHIES
JAMES O. HENRIKSEN is +the president of
Wolverine BSoftware Corporation, located in

Annandale, Virginia (a suburb of Washington,
D.C.) Wolverine Software was founded in 1976
to develop and market GPSS/H, a state-
of-the-art version of +the GPSS language.
Since its introduction in 1977, GPSS/H has
gained wide acceptance in both industry and
acadenia. Mr. Henriksen is an Adjunct
Professor in the Computer Science Department
of the Virginia Polytechnic Institute and
State University. He teaches courses in
simulation and compiler construction at the
university's Northern Virginia Graduate
Center. Prior to forming Wolverine Software,
he worked for CACI, Inc., where he served as
project manager for development of the Univac
1100 Series version of Simscript II.5.
Mr. Henriksen is a frequent contributor to
the literature on simulation. He has given
invited presentations at the Winter
Simulation Conference, the Summer Simulation
Conference, and at the Annual Simulation
Symposium. Mr. Henriksen is a member of ACM,
SIGSIM, SCS, the IEEE Computer Society, ORSA,
and SME.

James 0. Henriksen

Wolverine Software Corporation

7630 Little River Turnpike - Suite 208
Annandale, VA 22003-2653

(703) 750-3910

THOMAS J. SCHRIBER is a professor in
the Graduate School of Business at The
University of Michigan. He holds B.S.
(University of Notre Dame) and M.S.E., M.A.,
and Ph.D. degrees (University of Michigan).
Professor Schriber teaches, does research,
and consults in the area of discrete-event
simulation. He has published over 25
articles, and has authored or edited nine
books.

Thomas J. Schriber

Graduate School of Business Administration
The University of Michigan

Ann Arbor, MI 48109, U.S.A.

(313) 764-1398

