Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

SIMULATION MODELING IN AN OBJECT-ORIERTED
ENVIRONMENRT USIKG Swmalltalk-80

Onur M,
Timothy Thomasma
Department of Industrial and Systens
Engineering
University of Michigan-Dearborn
Dearborn, MI 48128

ABSTRACT

Object-oriented environment of
Smalltalk-80 is investigated as a potential
tool for simulation modeling. Basic features
of the Smalltalk-80 language are described
including messages, objects, classes, and
inheritance. A simulation comntrol framework
for Smalltalk-80 is explained using a simple
example. Smalltalk-80 language appears to
have a number of features that makes it
unique when compared to traditional
simulation languages. A comparison of
Smalltalk-80 with the traditiomnal simulation
software concludes the paper.

1. INTRODUCTION

In the last few years, the object~
oriented paradigm of computer programming has
been recommended as a development tool for
expert systems and knowledge-based systems
(Ruiz~-Mier, Talavage, and Ben-Arieh 1985),
system-theoretic modeling (Ziegler 1984) and
programming in general (Cox 1983, Love 1983,
Glinert and Tanimoto 1984, Finzer and Gould
1984). 1In this paper, we investigate the
Smalltalk-80 object-oriented programming
environment as a development tool for
building simulation models. We attempt to
achieve three goals in the paper. First we
will briefly look at the features of the
Smalltalk-80 object-oriented programming
language. Second, the simulation control
framework suggested by Goldberg and Robson
(1983) as a Smalltalk-80 application will be
investigated. A simulation model of the
widget problem from Banks and Carson (1985)
will be built in Smalltalk-80. Finally, we
will look at the graphical features of
Smalltalk~80 and compare the Smalltalk-80
environment to the environment of the
traditional simulation software (i.e.,
GPSS/H, SIMSCRIPT II.5, SLAM II/TESS,
SIMAN/CINEMA, SEE-WHY/WITNESS, and
AutoMod/AutoGram).

2. Smalltalk-80 ENVIRONMENT

Smalltalk-80 language has a history of
about 15 years (see Krasner 1983 for the
evolution of the Smalltalk-80 language).
object-oriented paradigm of Smalltalk-80
language replaces the operator/operand
concepts of conventional procedure-oriented
languages with message/object concepts (Cox
1983, Pascoe 1986). In the operator/operand
paradigm of procedure-oriented languages,
operators are applied to the operands. For

The

474

Ulgen

example, in the expression sin(theta), the
operator sin is applied to the operand theta.
The operand is passive and is passed to the
operator. Operators, on the other hand, are
active and make some predetermined change to
the operand. The data-type assumptions of
the operator have to be met by the operand
and the environment is responsible for
insuring it.

In the message/object paradigm of object
oriented languages, objects (data) are asked
to perform operations on themselves. The
syntax of the object-oriented command is

object message.

To compute the sine of the number named

theta, the command
theta sin
is used. The variable theta is asked to

perform the sim operation on itself. That
is, theta is the receiver of the message sin.
The object theta is an instance of a class.
Each object belongs to a class and a class
may have multiple instances. It is the class
of theta that provides the method for message
sin. Methods are procedures that are invoked
by sending messages to a class”s instances.
In other words, computation is performed by
sending messages to objects, which invoke
methods in their classes.

In Smalltalk-80, messages without
arguments are called unary messages (i.e.,
theta sin). Messages with one or more
arguments are called keyword messages.
example,

For

self holdFor: 0.04
is a single keyword message with the argument
0.04. The receiver of the holdFor: selector
is self. The double keyword message

self acquire: 1 ofResource: “machine A”
has the selector acquire:ofResource:. The
two arguments are 1 and “machine A” and the
receiver of the message is self.

The methods of the above messages are
defined in a class of Smalltalk~80. An
implementation of the method for selector
hold¥For: is (Goldberg and Robson 1983),

holdFor: aTimeDelay
ActiveSimulation delayFor: aTimeDelay

Simulation Modeling in Smalltalk-80

where aTimeDelay is the argument of the
method and refers to the argument of the
actual message (i.e. 0.04). The method for
selector holdPor: sends to receiver
ActiveSimulation the single keyword message
delayFor: aTimeDelay. The method for selector
delayFor: is described in some other class.
Table 1 gives the methods of a chain of
message—sends invoked by the selector
holdFor: (Goldberg and Robson 1983). The
corresponding class that defines each method
is given too. Note that the method of
selector delayFor: first sends the message

+ aTimeDelay to currentTime and the value
returned would be referred to as aTime in the
method of selector delayUntil: (Parsing rules
of Smalltalk-80 require binary messages to
take precedence over keyword messages).

There is no method description for + message
since this is a Smalltalk-80 primitive
method. Primitive methods are performed by
the Smalltalk~80 virtual machine. Examples
of messages in Table 1 that invoke primitives
are pause, new, and ~, There are about one
hundred primitive methods in Smalltalk-80.

In general, when an object receives a
message, it sends other messages unless the
method of the message contains only primitive
methods. Each message-send eventually
returns a result to the sender.

Smalltalk~80 system has a large number
(over 200) of predefined classes of objects.
These classes are arranged in a hierarchical
order to facilitate the inheritance of the
methods. Smalltalk~80 supports the
subclassing form of inheritance for its

Table 1: Methods of a Chain of Message-
sends of Selector holdFor:
(Goldberg and Robson).

Hessage Pattern Class

hold¥or: aTimeDelay

SimulationObject
ActiveSimulation delayFor: aTimeDelay

delayFor: aTimeDelay Simulation
self delayUntil: currextTime ¢+ aTimeDelay
delayUntil:aTime
ldelayEvent|
delaykveant <-- DelayedEvent omConmdition:
alime.

Simulation

eventQueue add: delayEvent.
self stopProcess.
delaykvent pause.
self startProcess

onCondition: onObject

DelayedXvent
4super nev setCondition:

an Object

setCondition: anObject
self imitialize.
resamptionCondition <~- eaObject

DelayedXvant

initialize

T P pb <=

DelayedKvent

stopProcess 8imulation
X C. t <-- pr C:

startProcess

Simulation
processCount <-~ processCosat + }

any instances of a class are also instances
of a superclass, then all instances of that
class must also be the instances of the
superclass. The subclassing concept is
‘illustrated in Figure 1 by the system class
Number and the user defined classes
SimulationObject and Simulation. In Figure
1(b) boxes represent classes and the small
circles represent instances. Class Number

classes A subclass is contained o letel has three subclasses; Float, Fractiom, and
within its superclass In o:he: v ggp ei; y Integer. Similarly, three subclasses are
P M ords, defined for class Imnteger too, namely;
Object
Number S8imnlation 8imulationObject
Yloat Fraction Integer VidgetProblem) 4 itor Statick
Smalllnteger LargePositivelnteger Vidget
LargeNegativeInteger
(a) Tree disgram of class hierarchy
Object
Numbex Simulation
° Float FPractiom ° o VWidgetProblem
o © ° o °
Integer SimulationObject
LargeNegativelnteger KventMonitor
Smalllnteger o o o
-] StaticResource|| |Widger O
o LargePositivelateger o o
o © o ° o °

b) Nested box representation of class beiraxchy

Figure l:

475

Subclassing in Smalltalk-80

O. M. Ulgen and T. Thomasma

Smalllnteger, LargePositivelnteger, and
LargeNegativeInteger. A number in the system
can be an instance of one of the five
classes; Float, Fraction, SmallInteger,
LargePositiveInteger, or LargeNegative-
Integer. Classes Number and Integer are used
to specify the shared methods of their
subclasses and they don”t have any of their
own instances. Such classes are known as
abstract superclasses. Class Number methods
include all the arithmetic operations and
mathematic functions (e.g., exp, 1lm, sqrt)

On the other hand, class Integer defines
methods which are unique to integers (e.g.,
factorial). Therefore, if an instance of
class SmallInteger receives the message sqrt,
it will look for sqrt method at its own class
(i.e., SmallInteger) first, then at its
superclass (i.e., Integer), and then at the
superclass of its superclass (i.e., Number).
The search for the method follows the
superclass chain until the method is found or
the class Object has been reached. Class
Object describes the similarities of all
objects in the system, so every class is at
least a subclass of Object. In other words,
Object is the single root class and the only
class without a superclass.

In describing a class in Smalltalk-80,
the programmer specifies the class name, its
superclass, variable names, and a set of
methods. Table 2 gives the description of
class Widget. Its superclass is
EventMonitor. A class may have two
categories of variables; clags and instance
variables. GClass variables are shared by all
the instances of a class while the instance
variables are unique to each instance.
Instance variables exist only during the
lifetime of the object . In Table 2, the
class variable WidgetCounter is used to
assign a sequence number to the Widget
objects as they are created. The instance
variable entryTime, on the other hand, stores
‘the creation time of each Widget object. The
methods of a class are also categorized into
class methods and instance methods. Class
methods are mainly used for creation of
instances and the initialization of class

' variables. In Table 2, class initialization
message category contains the message file:
‘aFile to specify a file (i.e., aFile) for
output data. Instance methods act uniquely
for each instance of a class. For example, a
Widget object may send the message self
"holdfor: 0.04 while another Widget object may
be sending the message self release:
holdAreaCell. Note that the Widget objects
have three message categories, namely,
initialization, accessing, and simulation
control. The "initialization" message
category contains the method for message
initialize, "accessing"” contains the methods
for entryTime and setLabel, and "simulation
control" contains the method for tasks.

3. SIMULATION USING Smalltalk-80

In this section, we will first describe
the simulation control framework suggested by
Goldberg and Robson (1983) for Smalltalk-80.
We will then use their control framework in

Table 2: Implementation Description of
Widget Class.

class name Widget
superclass EventMoritox
cless variable names WidgetCounter
instance variable names entryYime

class methods
class initislization
file: aFile

super Data¥File <-- aFile.
WidgetCountar <—~ 0

instance methods
initialization
initialixe

super initialixze.
entryTime <~— ActiveSimulation time

accessing
eatryTime
AentryTime
setlabel

WidgetCounter <—-WidgetCoumter + 1.
label <-- WidgetCounter printString

simulation control
tasks
| conveyorCell machineA holdAreaCell machined |

conveyorCell <-- self acquire: 1 ofResource: “comveyor cells”,
machined <-— self acquire: 1 ofResource: “machine A”.

self release: conveyorCell.

self holdFor: 0.04,

holdAireaCell <—- zelf acquire: 1 ofResomrce: “holding area cells”.
self release: machined.

machinel <-~ self acquire: 1 ofResource: “machine B”.

self release: holdAreaCell,

self hold¥or: 1/28,

self release: machinel®

building a simulation model for the widget
problem given by Banks and Carsom (1985).

The simulation control framework
developed for Smalltalk-80 in Part 4 of
Goldberg and Robson (1983) is based on the
framework used by Demos (Birtwistle 1979).
Goldberg and Robson (1983) indicate that
theirs is only one of the many ways one can
specify a simulation control framework for
Smalltalk-80 language. The Smalltalk~80
language can be effectively used in
developing a simulation control framework
that has one or more of the "world-views" of
simulation languages, including process
interaction, activity scanning, or event
scheduling approaches. The Smalltalk-80
language can also be used for discrete
change, continuous change and combined
discrete/continuous change models. The
language does not currently come with the
object classes that facilitate simulation
model building. In other words, it is like
using FORTRAN or PL/1 for simulation.

The simulation control framework
suggested by Goldberg and Robson (1983) can
best be described as object process
interaction. Whether the object is a
temporary entity (transaction) object (e.g.,
customers to be served, parts to be
processed) or a permanent entity (resource)

Simulation Modeling in Smalltalk-80

object (e.g., server, machine), one specifies
the set of tasks that each object has to go
through. Goldberg and Robson (1983) suggest
this mechanism especially if the permanent
entities have complex coordination
requirements (they call these "coordinated
resources"). On the other hand, permanent
entities with simple interaction with
temporary entities are not created, but a
count is kept on their usage (Goldberg and
Robson call these "static resources").

Goldberg and Robsom (1983) describe
seven main classes in their simulation
control framework as depicted in Figure 2.

Object

SimulationObject Simulation DelayedEvent Xesowrce

BtaticResource ResowrceProvider ResourceCoordinatox

Figure 2: Seven Main Classes of the

Simulation Control Framework
(Goldberg and Robson 1983)

Classes SimulationObject, Simulation,
DelayedEvent, and Resource are subclasses of
Object. SimulationObject has one subclass
StaticResource while Resource has two
subclasses, ResourceProvider and
ResourceCoordinator. Let us define

Table 3:

each of these classes briefly. Class
SimulationObject specifies a genmeral kind of
temporary entity object that might appear in
a simulation. The methods of Simulation-
Object provide a general contxol sequence by
which an object enters the system, carries
out its tasks, and leaves the simulation.
Table 3 gives the SimulationObject class
implementation description partially im
summary format. The startUp, tasks and
finishUp messages of the simulation control
message category of SimulationObject

gives the general life-cycle of a temporary
entity object in the model. The temporary
entity objects defined by the simulation
modeller for a specific problem can then be
placed as a subclass of SimulationObject so
that they inherit its generic methods (e.g

LI
holdfor:, acquire: ofResource:, release:).

Class StaticResource is a Simulation-
Object that holds resource quantities for
some other SimulationObjects that utilize
these resources (e.g. hold a machine for a
part while the part is being processed on
that machine).

Class Simulatiom controls the simulation
process and defines arrival schedules of
SimulationObjects, creates resources, queues
the delayed events and maintains a reference
to SimulationObject for synchronization
purposes. Table 4 gives a partial
implementation description of class
Simulation in summary format. Messages in
the initialization category of Simulatiomn
initialize simulation variables, including

Implementation Description of

SimulationObject Class
(Goldberg and Robson 1983)

class name SimulstionObject
superclass Object
class variable names ActiveSimulation

class methods

class initislization

activeSimulation: existingSimulation

instance creation

new

instance methods
simulation control

imtialize

taelf "Let subclass initialize the instance variables"

startUp

ActiveSimulation emnter: self.

self tasks.
self finishUp.

tasks
Aself

finishUp

ActiveSimulation exit: self

task language

holdFor: aTimeDelay

acquire; amount of Resource:

release: aStaticResources

"Let simulation class know I entered"
"Start performing the tasks”
"Time to leave the system"

"Let subclass specify the tasks"

"Let simulation class know I am dome"

resourceRame

O. M. Ulgen and T. Thomasma

Table 4:

Implementation Description of

Simulation Class
(Goldberg and Robson 1983)

class name Simulation

superclass Object

instance variable names resources
evantQuene

class wmethods
instance creation

instance methods
ipitialization
initialixe
cuxrentTime <-- 0.0.
processCourt <-- 0.

activate

SimulationObject activeSi
Resource activeSimulation: self

define ArrivalSchedule
fself '
defineResources
taelf
task language
produce: amount of: resourceName
scheduling
delayUntil: aYime
delay¥Yoer: timeDelay
staxtPxocess
stopProcess
simulation control
staxtUp
self activate.
self defineResources.
self definedrrivalSchedule
proceed
£inishUp
eater: anObject

exit: amObject

accessing
includesResourceFor: resourceRame
provideR For: T 3 §
time
feurrentTine

the simulation time (currentTime) and the
queue of simulation events to occur
(eventQueue), and inform SimulationObjects
and Resources about the specific simulation
activated (message activate). Definitions of
the arrival schedule of SimulationObjects and
the resource definitions are left to the
specific simuylation model to be defined as a
subclass of Simulation. The simulation
control message category specifies the
process that the simulation should go through
from its start up to its end (messages
startUp, proceed, and finishUp).

Instances of DelayedEvent are widely
used for representing SimulationObjects that
are delayed because they are getting service
or because they are waiting for a resource to
become available. Delayed tasks are the

Tesources

lation: self.

cerreatYime
processCourt

~ Set mew.
evertQuese <-- SortedCollection mew

"Let SimulationObject know that"
"this instance is active simulation™
"Also let Resource know about active™
“eimulation™

“Let subclass specify the arrival of"
"SimulationObjects”

"Let subclass specify the initially"
“available resourcea™

Mstart simulation procesa"

"Continue simulation process"

"End the simulation"”

478

tasks of the SimulationObjects that are
waiting for the time they should end. These
are known as scheduled or voluntary waiting
times in simulation, One example would be
waiting for the end of service invoked by the
message holdFor:. Involuntary waiting times
are the waiting times due to unavailable
resources., For example, a Widget object
(Table 1) may wait to acquire resource
“machine A" when executing its message
machineA <~- self acquire: 1 ofResource:
“machine A" .,

Class Resource and its subclasses
ResourceProvider and ResourceCoordinator
together with class StaticResource define the
message protocols required for allocating
static and coordinated resources in the
model. The message protocol for static

Simulation Modeling in Smalltalk-80

Object

SimularionObject Simulation DelayedEvent Resource (Ristogran)

StaticResource (EveamtMomitor

Figure 3:

ResourceProvider

ResosrceCoordimator

Simulation Control Framework

Including the Statistics Gathering
Classes (Goldberg and Robson 1983)

resources are defined in classes Static-—
Resource, Resource and ResourceProvider while
the coordinated resource messages are defined
in classes Resource and ResourceCoordinator.

Goldberg and Robson (1983) also defime a
number of classes for collection of
statistics in the simulation. Figure 3
depicts an updated simulation control
framework class hierarchy including two
classes related to collection of statistics
(new classes are circled in Figure 3(a)).
Class Histogram defines a histogram for a
simulation statistic. Class EBventMonitor
is designed to trace the progress of
simulation objects from their entrance to the
model to their exit. It basically defines a
file and overrides the messages of class
SimulationObject so that it can store to the
file information about the events that a
SimulationObject goes through. For example,
the message holdFor:aTimeDelay in Table 1 is
overridden in class EventMonitor as (Goldberg
and Robson 1983)

holdFor: a TimeDelay
self timeStamp.
DataFile nextPutAll:
aTimeDelay printOn:
super holdFor:

“holds for”.
DataFile.
aTimeDelay .

This message may produce a trace line in file
Datafile that looks like

0.115232 Widget 2 holds for 0.04 .

The simulation control framework defined
in Figure 3 gives the basic elements required
to build a discrete-event simulation model of
a system. First, the programmer has to
specify the simulation control enviromment by
defining the simulation problem as a subeclass
of class Simulation. Then, the programmer
has to identify the temporary entity objects
of the system and define them in a subclass
of EventMonitor (or SimulationObject, if no
trace needed). For similar objects, subclass
hierarchies of class EventMonitor may be
used. Finally, the programmer has to
identify the permanent entity objects as
resources. The programmer has the choice of
using a static resource or a coordinated
resource for each of the resources. In the
case of complex interaction between the
resource and the temporary entity objects in
the model, one should choose a coordinated
resource. For each coordinated resource used

479

in the model, a simulation object has to be
defined as a subclass of EventMomitor. On
the other hand, if simple interaction exists
between temporary entity objects and the
resource, a static resource should be used.
Counts, rather than simulation objects, are
used for static objects.

4. THE WIDGET PROBLEM

In their paper, Banks and Carson (1985)
compare the process interaction perspectives
of GPSS/H, SIMSCRIPT II.5, SLAM II, and SIMAN
simulation languages using a widget problem.
We use a simplified version of the same
widget problem in describing the simulation
environment of Smalltalk-80. The widget
problem assumes two serially connected
machines, machines A and B. The widgets
arrive randomly by conveyor to machine A at a
Poisson rate of 17 per minute. The conveyor
can hold a maximum of 50 widgets. Widgets
arriving when the conveyor is full wait until
a place becomes available on the conveyor.
After processing at Machine A is completed,
widgets go to machine B., The in- process
storage area between machines A and B has a
finite capacity of 40 widgets. If the
storage area is full when a widget completes
processing on machine A, then machine A
becomes blocked. Processing rates at A and B
are constant with rates 25 and 28 per minute,
respectively. The machines process one
widget at a time. The system will be started
at time zero under empty and idle conditions.
Statistics collected will include the
histogram of the widget residence time.

The simulation process for the widget
problem will be described in class Widget-
Problem defined as a subclass of Simulation.
The message protocol of class Simulation was
given in Table 4 and it basically defined the
default simulation control messages. Class
WidgetProblem overrides these messages as
required by the problem description. Table 5
gives the implementation description of the
WidgetProblem class. The initialization
message category of WidgetProblem describes
three messages, namely; initialize, define-
ArrivalSchedule, and defineResources. The
initialize message invokes two messages.
First, it sends to its superclass, class
Simulation, the message initialize. (super
in message initialize is a Smalltalk-80
pseudo~variable that refers to the receiver
of a message; it starts the search for the

O. M. Ulgen and T. Thomasma

method in the superclass of the class
containing the method in which super was
used.) The initialize message in Table 5
resets the default value of instance
variables of the simulation defined by
WidgetProblem (i.e., currentTime, process—
Count, resources, and eventQueue) . Second,
it defines statistics as an instance variable
that refers to a Histogram that tallies
values in the range 0.05 to 0.21 in intervals
of size 0.01. The defineArrivalSchedule
message defines the arrival of Widget objects
to the system according to an exponential
distribution. The defineResources message
defines the capacity of static resources in
the model. The four static resources are
labeled as machine A, machine B, conveyor
cells and holding area cells. Note that in
class Simulation, the defineArrivalSchedule
and defineResources messages have no default
methods. The subclasses are expected to
define these methods. The scheduling
category defines two messages using the
selectors exit: and printStatisticsOn:. The
exit: selector overrides the exit: message in
class Simulation. It first calls the exit:
message in Simulation and then it stores
residence time of simulation object Widget
into the histogram, statistics. The message
printStatisticsOn: aStream is used to print
the histogram into a file.

In the widget problem there is only one
class of temporary entity objects in the
system: the widgets. This is because the
static nature of resources (machine A,
machine B, conveyor and in-process storage)
do not warrant the use of coordinated

Table 5: Implementation Description of
WidgetProblem class

class name WidgetProblem

superclass Simulation
instence variable names statistics
instance methods
initalization

imitialixe

super initialize.
statistics <~- Mistogram from: 0.05 to: 0.21 by: 0.01

defineArrivalSchedule

self scheduleArrivalOf: Widget
accoxdingTo: (Expomential meam: 1/17)

defineXesoxrces
self prodmce: 1 of: “machine A°.
self produce: 1 of: “mackine B°.
self produce: 50 of: “comveyor cells”’.
self prodmce: 40 of: “holdinmg area cells”
scheduling
exit: aSimmlationObject

super exit: aSimulatiomObjeét.
statistics store: curremtTime - aSimulationObject entryTime

printStatisticsOn: aStream

statistics printStatisticsOm: aStream

480

resources in the model. The implementation
description of widget class was already given
in Table 2. In Table 2, we have defined
class Widget as a subclass of EventMomitor
because we wanted to obtain a trace of the
progress of Widgets in the model for model
verification purposes. The initialize
message of Widget assigns to variable
entxyTime the arrival time of the widget to
the model. The accessing message category
also has a message entryTime which basically
‘returns the value of the variable entryTime
to the receiver (Note that entryTime message
was invoked in the method of the exit:
aSimulationObject message in Table 5 to find
the residence time of each Widget object.)
The setLabel message is invoked in class
EventMonitor to label each Widget with a
sequence number for easy tracing of the
individual Widgets in the system. The
simulation control message category of Widget
class contains the tasks message which
describes the sequence of tasks that a Widget
object has to perform from its entrance into
the system to its exit., The method first
defines four temporary variables enclosed
within vertical bars. The temporary variable
conveyorCell defines a space on the cénveyor
static resource labeled conveyor cells. If a
Widget object is successful in acquiring a
conveyorCell, it tries to acquire machineA.
If successful, releases the conveyorCell and
holds machineA for 0.04 time units. Finally,
the Widget object releases machineB and
leaves the system.

The development of the Smalltalk-80
simulation model for the widget problem
required the inclusion of two additiomal
classes to the simulation control framework
class hierarchy discussed previously. Figure
4 shows the updated simulation class
hierarchy for the widget problem. The
circled classes in the tree diagram are the
new additions to the simulation class
-hierarchy.

The simulation can now be invoked by
creating an instance of WidgetProblem and
sending the startBp message to it. One can
then send the proceed message to the
simulation to move the simulation from one
event time to another. The messages below
will run the simulation for 120 time units
and store the trace and histogram outputs
into two different files;

Widget file: (Disk file:
“WidgetProblem.trace”).
aSimulation <-- WidgetProblem new
startUp.
[aSimulation time < 120] whileTrue:
[aSimulation proceed].
aSimulation printStatisticsOn:
(Diskfile: widget.report”) .

Simulation Modeling in Smalltalk-80

SimulationObject

N

Event¥omitor StaticResource

Simulation

WidgetProbles,

Object

DelayedEvant Resource Histogramw

N

ResourceProvider ResourceCoordinator

() Tree diagram of class hievarchy

[object

SimulationObject Simulation Resource Ristogram
XventMonitor Widget Problem ResounrceProvider

Widget o

o ©° o °
]
StaticResource ResourceCoordinator
o o

(b) Nested box representation of class hierarchy

Figure 4:

The Class Hierarchy for the

Widget Problem

A portion of the output produced by the
widget problem is given below.

Table 6: Simulation Output of Widget

Problem

00 Widget | enters
0.0 Widget 1 requests 1 of conveyor cells
0.0 Widget 1 obtained 1 of conveyor cells
00 Widget 1 requests 1 of mechine A
0.0 Widget 1 obtained 1 of mechine A
0.0 Widget 1 releases 1 of conveyor cells
0.0 Widget 1 holds for 0.04
0.04 Whdget 1 requests 1 of holding erea cells
0.04 Whdget t obtained 1 of holding eree cells
0.04 W1dget 1 relesses 1 of machine A
0.04 whdget | requests 1 of machine B
0.04 Widget 1 obtoined 1 of mechine B
0.04 Widget | releases 1 of holding ares cells
0,04 ¥hdget 1 holds for (1/28)
00757143 Widgel 1 relesses 1 of mechine B
00757143 Widget 1 exits
0.115232 Widget 2 enters
0.115232 Widget 2 requests 1 of conveyor cells
0.115232 Widget 2 obteined 1 of conveyor ceils
0.115232 whdget 2 requesis 1 of machine A
0.115232 Widget 2 obtained 1 of machine A
0.115232 Widget 2 releases 1 of conveyor cells
0.115232 Widget 2 holds for 0.04
01209 Widget 3 enters
0.1209 Widget 3 requests 1 of conveyor cells
0.1209 wWidget 3 obtoined of conveyor cells
0.1209 Widget 3 requests 1 of machine A
0.155232 Widget 2 requests 1 of holding area cells
0.155232 Widget 2 obtained 1 of holding area cells
0155232 Widget 2 releases 1 of mochine A
0.155232 Widget 2 requests 1 of machine B

481

5. GRAPHICS AND Smalltalk-80

The principal facility in Smalltalk-80
for doing animation of discrete event
simulations is the class Form. A Form is a
rectangular array of pixels represented
internally as a bitmap. A Form has a width
and height, measured in pixels. The width
and height also define the sizes of the two
dimensions of the array of bits which
constitutes the Form”s bitmap. A Form can be
created, edited, translated, scaled,
displayed, animated, and writtem to a disk
file by means of messages that are built into
the Smalltalk-80 system. Figure 5 depicts a
Form.

S = R = W W= W PN
[O AP — (e
= VN Y= TP
Ot s 4 . O DOOO 00O
Ottt stk e OO B OO
[Y SOV IINT SNy Y
000000000 —ww00OO
0000000000000 00

array of pixels

bitmap

Figure 5: A Form of Width 8 and Height 16.

0. M. Ulgen and T. Thomasma

A new Form can be drawn interactively.
The procedure is to first send the message
newForm to class FormEditor. This opens the
FormEditor with a blank drawing area to work
in. Drawing in FormEditor is very similar to
using drawing programs like MacWrite for
personal computers (Lu 1984), although Form-—
Editor doesn’t have as many features. It is
described fully in Goldberg (1984). Once the
drawing is complete, the message that is
actually used to create a new instance of
class Form is fromUser. This message allows
the user to select a rectangle of the screen
whose pattern of black and white pixels will
define the new Form. The message fromUser is
one of several messages for creating new
Forms. Others read the bitmap from a disk
file to create a new Form, create new blank
Forms, or create dots of varying radii.

A Form can be edited at any time by
giving the messages edit, for editing using
FormEditor, or bitEdit, for editing using
BitEditor. BitERditor is similar to the
FatBits option in MacPaint (Lu 1984); it
allows a Form to be edited one pixel at a
time for detail work. A Form”s bitmap can be
saved by means of the message writeOn: in a
file that can be read by the instance

creation message readFrom:. In this way a
library of icons can be created.

The fundamentsl message for displaying
Forms is displayOn:at:clippingBox:rule:mask.
The usual argument for the DisplayOm: keyword
is Display. The other keywords provide for
control of the location (in screen
coordinates) at which the Form will be
displayed, the portion of the screen against
which it should be clipped, whether it should
be drawn over or under, erase, or combine in
some other fashion with what is already on
Display, and what color should be used.
Smalltalk-80 supports only monochrome
graphics, but it does provide patterns of
black and white pixels that simulate four
shades of gray for filling in areas. The
message

displayOn: Display
at: 100€100
clippingBox: Display boundingBox
rule: Form under
magsk: Form lightGray

displays a Form on the screen at pixel
location (100,100) in light gray according to
the rule that only black pixels are allowed
to affect whatever is presently displayed on
the screen. Shorter forms of the
displayOn:... message are also provided which
supply defaults for some of the keywords.
Thesé messages, together with magnifyBy: and
shrinkBy: provide the resources necessary to
implement displaying, zooming and panning.

It is easy to place several Forms into
an array as one of a SimulationObject’s
instance variables, corresponding to the
states it can be in. For example, a
SimulationObject representing a machine can
have a Form for each of the four states busy,

482

idle, starved, and undergoing repair. When a
job is started, changing the object”s state
from idle to busy, the Form for busy is
displayed over the Form for idle. Continuous
-motion can also be done for one Form at a
time by using the message follow:while:.

6. TRADITIONAL SIMULATION SOFIWARE AND
Smalltalk-80

Many features have been cited in the
literature as being desirable in selecting a
simulation package (Haider and Banks 1986,
Grant and Weiner 1986). In this section, we
will compare the Smalltalk-80 environment to
the traditional simulation software
environments in terms of the features deemed
desirable for simulation model building and
data analysis. The traditional simulation
softwate to be considered are GPSS/H,
SIMSCRIPT II.5, SLAM II/TESS, SIMAN/CINEMA,
SEE-WHY/WITNESS, and AutoMod/AutoGram. The
features to be discussed include modeling
orientation, imput flexibility, structural
modularity, modeling conciseness, macro
capability and hierarchical modeling,
standard statistics generation and data
analysis, animation, and interactive model
debugging. (See Haider and Banks 1986 for a
detailed description of these features.)

6.1 Modeling Orientation

In traditional simulation languages
(SLs) the modeler is forced to map the
simulation problem domain into the SL
modeling orientation domain. The modeler has
to decide whether a process interaction,
event scheduling, or activity scanning
approach is suitable for the problem.
(Multiple modeling orientations are also
possible for SIMSCRIPT II.5, SLAM II, and
SIMAN.) Smalltalk-80 simulation enviromment
supports an "object" process interaction
approach where for each object a set of tasks
are defined. Objects perform their tasks
independently unless they need to be
coordinated. They pass messages to each
other to coordinate their work. This fits
naturally to most of the discrete-event
systems where there is an inherent message-—
passing orientation (e.g., manufacturing
systems) .

Special purpose simulation languages
(SLs with preprocessors for specific problem
domains) such as WITNESS and AutoMod/AutoGram
remove the burden of model orientation
selection as well as programming from the
user. The disadvantage of such special
purpose simulation languages is that they
have limited application domains (Ulgen
1983).

6.2 Input Flexibility

Pre-formatted screens for model input
are desirable features for programming
efficiency. All SLs except GPSS/H and
SIMSCRIPT I1.5 appear to have this feature to
some extent. Smalltalk—-80 special purpose

Simulation Modeling in Smalltalk-80

windows and pop-up menus create an excellent
environment for development of flexible
inputs to simulation models. CINEMA also has
special-purpose windows and pop-up menus for
animation layout design comparable to
Smalltalk-80. For network models, SLAM II/
TESS provides graphical model descriptions.
SIMAN blocks can also be built interactively.
WITNESS has a menu~-driven input for model and
display generations. Display generations are
also interactive in AutoGram.

6.3 Structural Modularity

Structural modularity refers to the
modular organization of the simulation
software. Typical modules of a simulation
software may inlude model processor,
experiment processor, animatiom processor,
run processor, and output processor. The
advantage of structural modularity is that
alterations can be done on one module without
affecting others. It also reduces computer
memory requirements, since one module
executes at a time. The Smalltalk-80
environment gives to the modeler the
capability to modularize the simulation
environment to the above modules. The widget
problem discussed in the paper had only three
of the above modules, namely; model, experi-
ment, and run processors. SIMAN software
contains all the five modules given above.
8Ls with postprocessor animation (TESS and
AutoGram) have their animation processors.
All the SLs can be easily designed to have
independent output processors.

6.4 Modeling Conciseness

Concise models are easier to build and
verify. Process interaction modeling
orientation with block, node, or user-written
process routines enable development of
concise models. The Smalltalk~80 model
described in this paper uses process routines
defined by the user. SIMSCRIPT II1.5 also has
the same feature. GPSS/H and SIMAN use
block orientations while SLAM II uses node
orientation. The event scheduling approaches
seldom result in concise models when compared
to process interactiom models. The event
scheduling approach is available in SEE-WHY,
SIMSCRIPT II.5, SLAM II, and SIMAN.

6.5 Macro Capability and Hierarchical
Modeling

Modular and hierarchical modeling based
on system-theoretic concepts has been
advocated by a number of researchers (Ziegler
1984, Oren 1984, Oren and Aytac 1985, Burns
and Ulgen 1978). The Smalltalk-80
environment with its subclassing form of
inheritance and object/message orientation
supports a hierarchical model building
approach. Macros of system components can
easily be created and stored as objects and
can be later modified with minimum effect on
other model components. Traditiomal
simulation software generally does not

support hierarchical model building. Macros
are available in all special purpose
simulation languages (i.e., AutoMod). SIMAN

483

and SLAM II are SLs that include macros for
material handling components.

6.6 Standard Statistics Generation and Data
Analysis

Traditional SLs provide comprehensive
statistics on standard measures (e.g.,
resource utilizations, throughputs, wait
times). They represent these statistics in
terms of plots, histograms, etc. A
Smalltalk~80 environment cam be built to
generate these statistics in many forms.
Analysis of input and output data is possible
with SLAM II/TESS. SIMAN includes an output
processor for applying state-of-the-art
statistical techniques to simulation output.
Graphical output delineation is generally
available with all animation software
packages.

6.7 Animation

Grant and Weiner (1986) compare the
animation features of a2 number of simulation
software. Some of the simulation software
for animation have specific problem domains
while some are general purpose packages.
AutoGram and WITNESS are limited to
manufacturing and material handling systems.
On the other hand, CINEMA, SEE-WHY, and TESS
are general purpose animation packages.
Smalltalk-80 has the capabilities for general
purpose animation. Animation graphics can be
concurrent (CINEMA, SEE~WHY/WITNESS,
Smalltalk-80, TESS) or post-processed
(AutoGram, TESS). Graphic displays of
animation can be bit-mapped (Smalltalk-80,
AutoGram, CINEMA, TESS) or character (SEE—
WHY/WITNESS, TESS) graphics. Animatiom is an
excellent communication and debugging tool.
Zooming, panning, and having multiple
displays increase the information to be
obtained from animation. Zooming and panning
capabilities exist in AutoGram, TESS,
Smalltalk-80, and CINEMA. Multiple displays
are available in CINEMA, SEE-WHY and TESS.

6.8 Interactive Model Debugging

Interactive model debugging and tracing
are the tools for simulation model
verification. Interactive debugging
increases the efficiency of programmer.
Smalltalk-80, GPSS/H, SIMSCRIPT IT.5, SEE-~
WHY, SIMAN, and SLAM II all have interactive
debugging features.

7. CONCLUSION

Smalltalk-80 environment has unique
characteristics when compared to traditional
simulation software. Its object/message
paradigm and hierarchical class structure
facilitates the modular and hierarchical
model development. The description of
temporary and permanent entities as objects,
each with a set of tasks, creates a new type
of process interaction modeling orientation
(which we called "object™ process
interaction). The object process interaction

O. M. Ulgen and T. Thomasma

appears to be a natural modeling orientation
since one can identify a simulation object
for each real system object.

REFERERCES

Banks, J. and Carson LI, J. S. (1985).
Process-interaction simulation languages,
Simulation, 44:5, 225-235,

Birtwistle, G. M. (1979). A System for
Discrete Event Modeling on Simula,
MacMillan.

Burns, J. R. and Ulgen, 0. M. (1978).
sector approach to the formulation of
systems dynamic models, International
Journal of Systems Science, 4:6, 649,680.

A

Cox, B. J. (1983). The message/object
programming model, IEEE Proceedings of
Softfair, 51~60.

Finzer, W. and Gould, L. (1984). Programming
by rehersal, Byte, June, 187-210.

Foley, J. D. and McMath, C. F. (1986).
Dynamic Process visuvalization, IEEE CGE&A,
March, 16-25.

Glinert, E. P. and Tanimoto, S. L. (1984%).,
An interactive graphical programming
environment, IEREE Computer, Nov., 7-25.

Goldberg, A. (1984). Smalltalk-80: The
Interactive Programming Environment,
Addison-Wesley.

Goldberg, A. and Robson, D. (1983).
Smalltalk-80: The Language and its
Implementation, Addison-Wesley.

Grant, J. W. and Weiner, S. A. (1986).
Factors to consider in choosing a
graphically animated simulation system,
Industrial Engineering, 18:8, 36-68.

Haider, S. W. and Banks, J. (1986).
Simulation software products for analyzing
manufacturing systems, Industrial
Engineering, 18:7, 98-103.

Krasner, G. (1983). Smalltalk-80: Bits of
History, Words of Advice, Addison-Wesley.

Love, T. (1983).
80 for application development,
Proceedings of Softfair, 61-65.

Experiences with Smalltalk-
IEEE

Lu, C. (1984).
Microsoft Press,

The Apple Macintosh Book,
49-60.

Oren, T. I. (1984). GEST - A modeling and
simulation language based on system
theoretic concepts, in Oren, T.I. et al.
(eds.), Simulation and Model-Based
Methodologies: An Integrative View,
Springer-Verlag, 281-335.

184

Oren, T. I. and Aytac, K. Z. (1985).
Architecture of MAGEST: A knowledge~based
modeling and simulation system, in Javor,
A. (ed.), Simulation in Research and
g;vfégp-ent, Elsevier Science Publishers,

Pascoe, G. A, (1986). Elements of object-
oriented programming, Byte, 11:8, 139-144,

Ruiz-Miller, S., Talavage, J. and Ben-Arieh,
D. (1985). Towards a knowledge-based
network simulation environment,?roceedings
of the 1985 Winter Simulation Conference,
232-236.

Ulgen, 0. M, (1983). GENTLE: A generalized
transfer line emulation, Proceedings of $CS
Conference on Simuylation in Inventory and
Production Control, 25-30.

Ulgen, O. M. and Thomasma, T. (1985).
Automatic generation of simulation models
of manufacturing systems. Phase I:
Prototype development, Unpublished Research
Proposal to REEDF, State of Michigan.

Ziegler, B. P. (1984). Multifacetted
Modelling and DPiscrete Event Simulation,
Academic Press.

