Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

SIMULATION WITH RULES AND OBJECTS

Michael E. McFall and Philip Klahr
Inference Corporation
5300 W. Century Blvd.
Los Angeles, Ca. 90045

ABSTRACT

We will describe a transformation of an object-oriented
knowledge-based simulation language implemented with
procedural behaviors: Rand Corporation’s ROSS
language, into ART-ROSS, an integrated rule and object
based implementation and extension of the ROSS
language. The implemention of ART-ROSS in a
state-of-the-art integrated language (Inference
Corporation's ART™) provides benefits of increased
flexibility, simplified architecture, full explanation
capability, and access to the vectorized message passing
capability known as multi-methods.

1. ROSS into ART-ROSS

Rand Corporation's ROSS language [McArthur, 1986] is
an object-oriented simulation language used primarily in
the area of military war-game simulation. This language
was one of the first to provide inheritance from multiple
classes of objects. This feature of multiple inheritancs has
been well proven in other areas of knowledge based
programming. ROSS also allows arbitrarily complex
English expressions to exist as messages and incorporates
a sophisticated pattern matcher to trigger behaviors when
these messages are sent.

Within the ROSS language there exist several types of
objects, including the clock, generic class objects, and
individual objects representing instances of the generic
objects. The clock has three attributes associated with it:
the current simulation time, the size of the simulation time
step or tick-size, a list of the current objects running and
the time corresponding to the next action for each object.
The individual objects have one default attribute, a list of
things to do, each of which contains the time at which an
action is to take place in the simulation and a pattern
describing what the action is.

470

In ROSS-based simulations, such as SWIRL,
[Klahr,1982] and TWIRL [Klahr,1986], specialized
objects, the Physicist, the Mathemetician, and the
Scheduler, have been added. These objects answer
questions such as 'Will I collide with another object?' and
‘How far am I from object 123b?". These objects are
artifacts of the procedural nature of the ROSS language.
Some object somewhere must have the knowledge on
how to query the state of the entire simulation. Any pure
object-oriented simulation must make the choice between
having some procedural arbiter having knowled ge of how
to calculate relationships and query the appropriate
individual objects of the simulation, or have each object in
the simulation have the capability of querying every other
object in the system.

Moving from ROSS into ART is a simple process. The
multiple-class inheritance feature of ROSS is also a
feature of ART's schema langnage. ART's inheritance
mechanism is even more general, allowing the user to
define custom inheritance relationships. These two
features allow the knowledge base semantics to reflect as
closely as possible the actual real-world relationships and
classifications of the simulation objects. For example all
radar sites have a special relationship called SUPERIOR,
whose inverse is SUBORDINATE. In our example

[Fig. 1] there are two types of radars, surface installations
and AWACS, with AWACS also inheriting the attributes
of airborne-objects. With the flexible semantics of
user-defined relationships, by identifying
surface-installations as having a SUPERIOR of a
particular instance-of filter-center, the filter-center
automatically has the surface-installation instance listed as
a SUBORDINATE.

Since message passing is triggered by pattern matching in
ROSS, ART's powerful pattern matching and rule
language provide a natural mechanism for implementing
ROSS message passing. An initial simplified prototype
of SWIRL, a military air battle simulation originally

Simulation with Rules and Objects

implemented in ROSS at Rand [Klahr,1986], was
implemented in ART in less than two days. ART also
allows the retention of ROSS's ability to have arbitrarily
complex English expression of behaviors.

The conversion from the essentially procedural
implementaion of ROSS to the rule-based implementation
in ART has a number of obvious benefits. The first are
modularity and ease of expression. Rules are a very
natural way to express the behavior of objects,
particularly in relation to, and in combination with, other
objects. A complex series of queries in the form of
messages between objects can be easily modeled by a
series of patterns matching against attributes of any
number of objects on the left hand side of a simple IF..
THEN rule. Rule based programming also provides

benefits of easier knowledge acquisition, explanation of
actions and ease of development are other benefits.

A major benefit of rule-based simulation is in the
simplification of the overall architecture. ROSS required a
class of objects which knew of, and could query, other
objects in the data base for finding the overall state of the
simulation, or for establishing relationships between
objects in the data base. These objects were triggered by
requests from other objects in the simulation. In the ART
implementation this state information is stored at all times
in the pattern and join network, with the behavior rules
having immediate access to the necessary information.
The following is a rule that will change the heading of any
airborne object at the appropriate time without requiring
an intermediate Scheduler object. Variables are identified
in ART by a preceding '?" and constraints on variables are
preceded by '$:' which is read "and such that...". This
tule uses ART's default natural language syntax for each

I COMMAND CENTER

| FILTER CENTER

| RADAR SITE

!LAIRBORNE OBJECT |

| SURFACE | AWACS

Figurel: Inheritance and Relational Network

471

slot or attribute. This syntax can be further customized by
the user.

(Defrule Change-Heading

“for any airborne object, penetrator, fighter or awacs"
IF

(The sim-time of the-clock is Tcurrent-t) AND
(The tick-size of the-clock is ?delta-t) AND
(The instance-of of 7object is airborne-object) AND
n <- (The next-action of ?object is
(?time$:(<= ?time (?current-t + 7delta-t))
CHANGE HEADING %direction DEGREES))

;; the next action pattern includes a test and a binding for
;» later retraction on the right hand side of the rule.
(The position of ?object is (7x ?y Told-time)) AND
(The velocity of ?object is (?vx Tvy))

THEN
(BIND (new-x Mnew-y Mnew-vx Tnew-vy)
(revector 7x 7y 2vx vy i a LISP function
(- 2current-t ?old-time) ?direction))
(retract 7n) ;; retract the value of the next-action slot
(MODIFY
(The position of ?object is
("new-x Tnew-y ?current-t))
(The velocity of ?object is (new-vx Tnew-vy))))

ART is a data-driven language: when the conditions of a
rule are matched, the rule is immediately activated for
firing. In the previous rule, the time for the next
scheduled action is tested against the current time plus the
simulation time step size. This is accomplished by a very
efficient implementation of the Rete algorithm
[Forgy,1982]. Only those rules which can use a pattern of
a particular type are notified of the pattern's existence in
the data-base. As these patterns are asserted into the
data-base, the system compares these patterns based on
the restrictions and constraints of the rules of the system.
Partial matches of rules are maintained in the join
memory. These join memories maintain the current state
of all partially and fully matched rules. When an object in
the data base changes state, the appropriate patterns and
joins are notified and any fully matched rules are activated
for firing.

2. Performance

While this method of data-driven programming is the
most efficient way to implement a rule language, there are
potential performance penalties. Each individual join
memory is the cross product of all combinations of
patterns that enter into the join. If a particular join has
1000 partial matches, 1000 comparisons occur at that join
for each new fact that affects that join. When this single
fact affects more than one join (which can and does occur
if the rules are not written appropriately), peformance
degradations do occur.

M. E. McFall and P. Klahr

The obvious solution is to try to minimize the size of the
join memories. In ART 2.0 this was done by careful
analysis of the left-hand side of the rules and the order of
the patterns in the individual rules. With ART 3.0 the user
now has explicit access to the join topology. One can now
isolate particularly active join memories and optimize them
independently of the remaining pattern and join network.
This is particularly easy to do in the area of simulation. In
the case of our implémentation of SWIRL, a large class of
rules was concerned with the spatial locations of all
objects in the database. By identifying these patterns as
being common among many rules and explicitly isolating
these patterns in their own join memory, the effect of a
single object's change in location and the affect on system
performance is minimized.

Section 2 discusses the benefits of having a single rule
being able to query the attributes of multiple objects,
without having to send multiple messages to each object.
This benefit is extended to the right-hand or action
component of rules in ART 3.0 with multi-methods.
Multi-methods provide the capability of associating a
procedure with a typed vector of objects. In the context
of SWIRL, different classes of missiles may behave
differently when sent against different targets due to
varying types of electronic counter measures. A single
procedure defining the appropriate behavior can be written
for each combination of missile and target. When a
missile is sent against a target, the appropriate procedure
is called based on the missile and target classes. The
benefits are further modularization of the procedural code,
and a simpler message-sending syntax that does not
require complex case statements. Procedural code not
relevant to the problem at hand is further simplified.

ART 3.0 integrates procedural attachments for active
values, methods and multi-methods into its rule and object
knowledge-base, which allow the user to avoid the
chauvinism often associated with a strictly rule-based
programming approach. This flexibility enables the
programmer to select the most appropriate form of
knowledge representation for a given situation.

A major difference between ROSS and other simulation
languages is the distribution of the tasks'at hand. Each
object in ROSS has its own list of tasks and the associated
execution times. This feature is also easily implemented in
ART. Other simulation systems have quene objects and
associated dequeneing functions based on various
distribution schemes. Multi-methods can be used to great
advantage in these situations also. Queueing and

dequeueing functions can be associated with the
appropriate objects with multi-method typed vectors.

3. ART SWIRL

As has been shown, the ART implementation of SWIRL
uses objects and pattern matching much as the original
ROSS implementation. Two major differences simplify
the ART implementation. The ROSS implementation of
the clock included a list of the next actions for each active
object in the simulation. The clock would send messages
to the successive objects telling them when to act. The
ART implementation stores these lists of actions only in
the objects themselves. ART's data-driven architecture
allows the rules to recognize automatically when the next
action for a given object takes place since all rules match
against the simulation time.

ROSS also has the global objects used for calculating
various multi-object states and relationships. Since the

entire state of the simulation is maintained in the
pattern-join net, the rules defining behaviors determine
when, for example, a given aircraft is within the air-space
of another object. No intermediate object is required. The
ART implementation enables the appropriate behavior to
be defined at the most natural location in the code, in this
case the rule defining the desired behavior.

4, Future Work

Inference Corporation has been involved with the
development of several simulation systems including an
emulator for custom digital hardware microcode
development, We are currently developing and exploring
extensive applications using integrated rule-method
architectures. We anticipate developing principles of
appropriate knowledge representation schemes for general
simulation systems, and to weigh the benefits of
rule-object-multi-method approaches to simulation.

REFERENCES

Forgy, C.L. "Rete: A fast Algorithm for the Many
Pattern / Many Object Pattern Match Problem.” Artificial
Intelligence, 14, 1982, 17-37.

Klahr, P. et al. "SWIRL: An Object-Oriented Air Battle
Simulator." Proceedings of the Second National
Conference on Artificial Intelligence, Pittsburgh, 1982.

Simulation with Rules and Objects

Klahr, P. et al. "TWIRL: Tactical Warfare in the ROSS
Language." In Expert Systems (P. Klahr and D.
Waterman, Eds.), Addison-Wesley, 1986

McArthur, D.J., Klahr P., and Narain, S. "ROSS: An
Object-Oriented Language for Constructing Simulations."
In Expert Systerns (P. Klahr and D. Waterman, Eds.),
Addison-Wesley, 1986.

ART is a trademark of Inference Corporation
AUTHORS' BIOGRAPHIES

MICHAEL E. MCFALL is a Knowledge Engineer in
Inference Corporations Los Angeles office. He received
his B.S. in Mathematics at the University of Washington
in 1985 and developed several frame-based expert
systems while at Boeing Aerospace Corporation in
Seattle, Washington. His current research interests
include knowledge based simulation architectures and
knowledge based human interface design.

Michael E. McFall
Inference Corporation
5300 West Century Blvd.
Los Angeles, Ca. 90045
(213) 417-7997

473

PHILIP XLAHR has been involved in artificial
intelligence research and applications for over fifteen
years. He has a B.S. in Mathematics from the University
of Michigan and an M.S. and Ph. D. in Computer
Sciences from the University of Wisconsin. He is
currently Director of Applications at Inference
Corporation where he is responsible for managing the
design and development of expert systems for
government and industry. Prior to joining Inference, Dr.
Klahr directed The Rand Corporation's research program

in artificial intelligence and advanced computer science. At
Rand, he pioneered the application of artificial intelligence

technology to military simulation. He is best known for
his development of the ROSS object-oriented simulation
language and two combat simulations written in ROSS,
called SWIRL and TWIRL. He also supervised the
development of the ROSIE expert system language and
the Time-Warp mechanism for distributed simulation
using paralle] processing. Dr. Klahr has published over
twenty-five articles in artificial intelligence and is
co-author of Expert Systems: Techniques, Tools and
Applications, to be published by Addison-Wesley.

Philip Klahr

Inference Corporation
5300 West Century Blvd.
Los Angeles, Ca. 90045
(213) 417-7997

