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.ABSTRACT

The Dempster-Shafer theory of belief
functions shows promise as a means of incor-
porating incompleteness of evidence into
The key feature of the
Dempster-shafer theory is that precision in

simulation wmodels.

inputs is required only to a degree justified
The output belief
function contains an explicit measure of the

by available evidence.

firmness of output probabilities.
gives an overview of belief function theory,
presents the basic methodology for applica-
tion® to simulation,

This paper

and gives a simple ex-
ample of a simulation involving belief func-
tions.

1. INTRODUCTION

The recent explosion in the power and
availability of computers has created a con-
comitant explosion in the complexity of sys-
tems now amenable to analytical study. Com-
puters have surely increased the power of
"brute force" methods (solving bigger systems
of equations more accurately), but, more im-
portant, they have made possible a qualita-
tively new approach to the study of complex,
dynamic systens. This approach is simula-
tion. Instead of trying directly to under-
stand the laws governing the high-level be-
havior of a system, simulation models view
such behavior as an emergent property of the
interaction of many parts, each of which
obeys relatively simple and well-understood

laws.

A key feature of simulation is the incor-
poration of uncertainty. A component in a

simulated reactor fails; an individual or-

ities,

ganism in a simulated population mutates; an
enemy division in a war game moves to a new
and unexpected location. Commonly, simula-
tions incorporate the operation of some
chance mechanism:
depend on the values of random numbers gen—

erated according to a given probability dis-

components of the systen

tribution.

In many cases, designers of a simulation
are faced with the problem that the available
evidence does not justify unique assignments
of probabilities to all events that are part
of the simulation. For example, frequency
data may be available to indicate the prob-
ability that a certain component in a reactor
will fail.
been tested in the laboratory, and so the
probabilities may not be applicable to condi-
tions in the field. Moreover, failure of the

However, the component may have

given component is only one event in a chain
of events that could lead to a reactor acci-
dent (the event of interest). Even if the
component failure probability were known, the
propagation of that uncertainty through in-
termediate events and to reactor failure may
not be known.

Traditional methods for dealing with this
problem of incomplete evidence have ‘not
proven entirely satisfactory. Second-order
probabilities, or probabilities on probabil-
are cumbersome, computationally inef-
ficient,
pret. Sensitivity analyses have proven quite
vaiuable, but due to computational com-
plexity, usually deal with only one variable
at a time.

and difficult to assess and inter-

Recently, a new theory of reasoning under

uncertainty, the Dempster-sShafer theory of
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belief functions (Shafer, 1976), has been
receiving increasing attention in the fields
of expert systems and artificial intel-
ligence. This theory was formulated specifi-
cally to deal with the concept of incomplete-
ness of evidence, and as such shows promise
for countering some difficult problems in
simulation,

2. REPRESENTATION OF UNCERTAINTY

In the theory of belief functions, prob-
abilities are replaced by a concept of
evidential support. The contrast is between
the chance that a hypothesis is true, on the
one hand, and the chance that the evidence
means (or proves) that the hypothesis is
true, on the other (Shafer and Tversky,
1983). As a result, there is less need for a
degree of definiteness in assessments that
exceeds the knowledge actually available.

In Shafer's system, the support for an
event and for its complement need not sum to
unity. In the example of component failure
cited above, there is a certain chance that
the frequency data apply to conditions in the
field, and a certain chance that they do not,
hence, that the evidence is irrelevant. The
theory allows us to scale the frequency data
so that the relative support for failure and
non-failure remains the same, but their sum
is less than one. The amount by which the
sum falls short of unity represents the ex-
tent to which there is "uncommitted" support.
This uncommitted support represents the
chance that the frequency data are ir-
It is represented mathematically
as support allocated to the universal set, or

relevant.
the event "the reactor may or may not fail."

Evidential support for an event is a
lower bound on the probability of its being
true, since the event could be true even
though our evidence fails to demonstrate it.
The upper bound is given by supposing that
all evidence consistent with the truth of the
event were in fact to prove it. The interval
between lower and upper bounds, i.e., the
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range of permissible belief, thus reflects
the unreliability of current arguments, or
the degree of incompleteness in our current
evidence. Thus, the calculus of belief func-
tions provides an explicit measure of the
degree of completeness of evidence, a concept
not captured by probability theory.

In Shafer's calculus, support m(.) is al-
located not to events, but to sets of events.
Shafer allows us, therefore, to talk of the
support we can place in any subset of the set
of all possible events. In the above ex-
ample, let us suppose that the frequency data
have established a 2% chance that a certain
component would fail over a specified time
period. Suppose it is judged that these
frequency data have only a 95% chance of
being applicable to the field situation. We
would then assign support .95 x .02, or .019,
to component failure; .95 x .98, or .931 to
non-failure; and .05 to the universal set (or
uncommitted). As with probability, the total
support across all subsets will sum to 1, and
each support m(-) will be between 0 and 1.
It is natural, then, to say that m(.) is the
probability that the evidence means the truth
lies somewhere in the indicated subset (but
cannot be localized any further).

The belief function, Bel(A) is defined as
the total support for all subsets contained
in the set A; in other words, the probability
that the evidence implies that the truth lies
in A. In the above example, Bel(F) = .019;
Bel(F) = ,931; and Bel({F,F}) = 1.0 (where F
stands for failure and F for non-failure).
Thus, belief in the mutually exclusive events
F and F sums to only .95, while support for
their union is equal to 1.0. The
plausibility function is the sum of the sup-
port consistent with a given event, i.e. for
all subsets overlapping the event. Thus,
P1(A) equals 1~Bel(R) (the probability that
the evidence does not imply the truth to be
in not-A). 1In our example, PL(F) = .069, and
P1(F) = .981.
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3. COMBINATION AND PROPAGATION OF BELIEFS

Having described the representation of
degrees of belief, we now move to a discus-
sien of how to manipulate them. There are
two basic types of operations we would like
to be able to perform. The first is combin-
ing two or more belief functions over the
same space of events. In other words, given
two belief functions over the space {F,F},
how should they be combined into a single
belief function? The second operation is
propagating beliefs along a chain of events.
For example, a component failure might cause
a temperature sensor to malfunction, which
might trigger a light on an operator's con-
which, if inappropriate action were
could lead to
(Schematically, we represent such a chain of
events as F+S+I>0+A). We begin with a belief

function over the space {F,F}, and condi-

sole,

taken, an accident

tional belief functions expressing the
relationship between adjacent events in the
chain. (The conditional belief function over
{S,S) conditional on F, expresses our beliefs
about the implications of component failure
for whether the sensor will malfunction.)
The question, then,
beliefs along the chain to arrive at a belief

function over reactor failure.

is how to propagate

The principal computational tool for
manipulating belief functions is Dempster's
Rule. As stated, Dempster's Rule dpplies
only to the combination operation, but it can
also be applied to propagation (as we shall
see below). The essential intuition behind
Dempster's Rule is that the "meaning" of the
combination of two items of evidence is the
intersection, or common element, of the two
subsets constituting their separate meanings.
For example, if one item of evidence proves F
and another item proves (F,F} (i.e. is unable
to distinguish between F and its complement),
then the combination of the two items of
evidence proves F. If the two items of
evidence are assumed to be independent, the
probability of any given combination of mean-
ings is the product of their separate prob-~
abilities.
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An additional complication arises when
two items of evidence conflict to some degree
(i.e., support incompatible hypotheses). For
example, suppose there is a chance that one
item of evidence proves F and a chance that
another proves F. The intersection of these
two sets is empty. To ensure that support
for non-empty sets in the combined belief
function sums to unity, the final support al-
locations are divided by a normalizing fac-
tor. The total support assigned to the null
set before normalization prdvides a useful
measure of the degree of conflict in our

evidence.

To see how Dempster's Rule could apply to
propagation, let us suppose we have a belief
function over (F,F), and two conditional
belief functions over {S,S5)}, one conditional
on F and the other conditional on F. We are
interested in the implications of these
beliefs for sensor failure: what is the im-
plied unconditional belief function over
{s,5)? We begin by extending each of these
three belief functions to the space (F,F} x
{s,S}. These extended belief functions are
then combined by Dempster's Rule. Finally,
the combined belief function over the product
space gives rise to a marginal belief func-
tion over {S,5)}. Details on the application
of Dempster's Rule for combination and
propagation can be found in Cohen et al.

(1986) and Shafer (1982).

BELIEF FUNCTIONS IN SIMULATION:
EXAMPLE

4. AN

The foregoing discussion has provided
background on the representation and
manipulation of beliefs in the Dempster-
Shafer theory. We now return to the primary
concern of this paper--how might belief func-
tions be used in simulation, and what are the
advantages of doing so?

The mechanics of a simulation involving
belief. functions becomes quite simple if we
realize that a belief function is simply a
probability distribution, but over the power
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set of the event space. Thus, instead of

simulating events, we simulate sets of

events.

To fix ideas, let us consider the ex-
tremely simple fault tree of Figure 1 (this
tree is easily analyzed analytically; we use
it merely for illustration). We have three
system components, and the events of interest
are defined as: A = first component fails; B
= second component fails; C = third component
fails. Event C depends on events A and B.
Belief functions for events A and B, as well
as belief functions representing their
linkage to C, are shown in Figure 2. For ex-
ample, we see that failure of the first sys-
by itself, lead to
.7 in failure of the third system

tem (event A)
belief
(event C), belief 0 in non-failure, and un-
committed belief .3.

would,

A

Figure 1: A Simple Fault Tree

Bottom-Level Belief Functions

A .1 B .2
i .6 B .7
{a,a}) .3 {B,B} .1

Conditional Belief Functions

Conditioning Event

A A B B

c .7 0 .8 .1

T 0 .8 0 .8

{C,C} .3 .2 o2 .1
Figure 2: Belief Functions for Simple Fault

Tree

To simulate this tree, we first draw a
random number to simulate the first system,
choosing event A with probability .1, event a
with probability .6, and event {A,A} with
probability .3. We next sample the second
system in the same manner.
anple that the first sampling operation
yields A, and the second B. In the same man-

Suppose for ex-

ner, we now sample from the belief function
for the third event conditional on A, and
again from the belief function conditional on
B. Suppose these result in ¢ and {C,C},
respectively. The final outcome of this draw
of the simulation would be their intersec-
tion, or €. In summary, this draw of the
simulation produced the events A and B. The
event A "implied" C, the event B "implied"
{c,C}, so their conjunction "implied" the
event C.

Suppose, that simulation of the
first component again produces event A, but
the second produces {B,E). Now,
sample from both conditional belief functions
(conditional on B and conditional on B),
since both B and B are possible given the
The sample result is the
union of the two samples (if both samples
yield C, the sample result is C; otherwise,
it will be {C,C), since both producing € is
impossible).

now,

we nust

sample result.

This result is intersected with
the result of the draw on the belief function
conditional on the result of the first
sample, to produce the final result of the

draw.

Figure 3 displays the results of a 10-
trial simulation, with the computed final
belief function displayed as a benchmark for
comparison. There is a rough agreement with
predicted values, with the outcome C over-

represented (due to the small sample size).

# of Trials Yielding

0
o |o
:
Q
e

Subset 3 1 1
% of Non-Null Trials

Yielding Subset 33% 56% 11% -
Prediction (from Com-

bined Belief

Function) 16% 73% 11% -

Pigure 3: Results of Simulation (10 Trials)

A serious problem with the framework
described above is the issue of dependency.
We assumed in our example that events A and B
interacted independently to produce event C.
In reality, it is often the case that simul-
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taneous failure of the two components would
increase the probability of failure of the
third component more than predicted by a
model of independence. This is easily incor-
porated in the theory of belief functions by
simply changing the form of the conditional
belief functions. We could assess belief
functions conditional on each combination of
failure/non~-failure of the first two com-
ponents (i.e., on (A,B), on (A,B), on (A,B),
and on (A,B)). These could be combined in
the same way as before with the belief func-
tions on {A,A} and (B,B} to produce final
beliefs for C that take account of a depen-
dence between A and B. The réstriction for
application of Dempster's Rule is that each
of these belief functions be based on inde-
pendent evidence (the events themselves need
not be independent).

5. SUMMARY

In summary, the theory of belief func-
tions shows promise as a useful pool for the
designer of simulations. An important fea-
ture of the methodology is that the designer
of a simulation need not provide point prob-
abilities for all conditional events. The
resultant belief function provides useful in-
formation about how lack of firmness in the
inputs propagates to the result. The degree
of uncommitted support provides an explicit
measure of the lack of "firmness" in the out-
put probabilities.

Although we are not aware of any previous
attempts to apply belief function theory to
simulation problems, this paper has described
the basic tools necessary for doing so.
ther work is clearly indicated in refining
the methodology to the specific needs of the
simulation community.

Fur-

REFERENCES
Cohen, M.S., Laskey, X.B., and Ulvila, J.W.
(1986). Framework for Management of Un-

certainty in Intelligence Data Bases:

444

Self-Reconciling Evidential Reasoning,
Decision Science Consortium, Inc., Falls

Church, VA.

Shafer, G.
Evidence.
Princeton, NJ.

(1976). A Mathematical Theory of
Princeton University Press,

Shafer, G. (1982). Belief functions and
parametric models. Journal of the Royal
Statistical Society B, 44(3), 322-352,

Shafer, G. Weighing

Evidence:

Probability Thought Experiments.

ford University, Stanford, CA.

and Tversky, A. (1983).
The Design and Comparison of
Stan-

AUTHORS' BIOGRAPHIES

KATHRYN B. LASKEY received a BS degree in
Mathematics from the University of Pittsburgh
in 1976, an MS in Mathematics from the
University of Michigan in 1978, and a PhD
degree in Statistics and Public Affairs from
Carnegie-Mellon University in 1985, Since
that time, she has worked at Decision Science
Consortium, Inc. in PFalls Church, VA. Her
current research interests include alterna-
tive theories of inference, methods for in-
ference in expert systems, and development of
computerized decision support systems. Dr.
Laskey is a member of ASA, TIMS, and SIAM.

MARVIN S. COHEN is Vice President and
senior analyst at Decision Science Consor-
tium, *Inc. He received a BA in Philosophy
from Harvard University in 1968, a MA in
Philosophy from the University of Chicago in
1971, and a PhD in Experimental Psychology
from Harvard University in 1980. His re-
search has involved the design, development,
and testing of computer-based decision aids
and expert systems, and has focused in par-
ticular on mechanisms for reasoning with un-
certainty and on the design of decision aid
interfaces that are compatible with user-
preferred methods of reasoning. Current re-
search involves the investigation of alterna-
tive theories of uncertainty, and the
development of an expert system mechanism for
non-monotonic revision of beliefs which ap-
plies to Shaferian belief functions.



