Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

IMPLEMENTATIONS OF TIME (PANEL)

Chair:
Douglas W.

Jones

University of Iowa
Iowa City, Iowa

James O, Henriksen

C. Dennis
Robert G.
Robert M.
Brian W.
INTRODUCTION
In conventional discrete event simula-

tion systems, the flow of simulated time is
controlled by a data structure that is vari-
ously called the event set, the pending event
set, the future-event chain, or the
sequencing-set. At any instant, this struc-
ture contains records of those events,
processes or activities that are to be simu-
lated at some future time as a result of
events that have already been simulated.

There are two basic operations on the
event set: Scheduling an item at some future
time, and retrieving the next scheduled item,

There is 1little agreement between different
discrete event simulation languages about
what 1is scheduled and about what additional

operations should be provided. For example,
simula 67 schedules coroutine activations in
its sequencing-set, while GPSS schedules
event records in its future-event chain.
Operations such as finding the successors or
predecessors of items or deleting previously
scheduled items are sometimes required. Dis-
tributed simulation and mixed discrete and
continuous simulation pose new constraints.
For example, in distributed simulation, the
event set is frequently partitioned over a
number of machines, raising the problem of
keeping the event set processing on these
machines synchronized.

Event-Set Implementations. Kingston
(1984) proposed five criteria that should be
met by a successful event set implementation:
1. Efficiency - Operations should be fast
for a wide range of event set sizes, and
very fast for small event sets.

Robustness - The implementation should
be efficient for any scheduling distri-
bution.

Adaptiveness - The implementation should
be able to take special advantage of
simple scheduling distributions.

Generality -~ The implementation should
be stable and should efficiently support
a broad variety of of the less common
operations.

simplicity - The code for the implemen-
tation should be short and easily under-—
stood.

409

Pegden
Sargent
O'Keefe
Unger

In searching event set literature, one
can find claims that almost every event set
implementation other than the simple 1linear
list is optimal and should be used univer-
sally. In fact, many of the implementations
that have been proposed are optimal for some
combination of scheduling distribution,
machine, and event set size, but most fail to
live up to one or more of the above criteria.
A complete survey of event set implementa—
tions is not possible in this context; their
variety is comparable to that of searching or
sorting algorithms. Those interested are
referred to Jones (1986), Kingston (1984) and
McCormack and Sargent (1981) for summaries of
and references to a variety of implementa-
tions,

.

Among the better implementations that
were investigated 1in the above-cited refer-
ences were the indexed 1list implementation
developed by Henriksen and the splay tree

implementation developed by Sleator and Tar-

jan, Both of these 1live up to Kingston's
criteria reasonably well, although splay
trees have a better worst case but more com-
plex code than Henriksen's implementation.
If the scheduling distribution or the
expected size of the event set are known in
advance, a special implementation c¢an be

selected that is adapted to that combination;
thus, the general adaptiveness and robustness
criteria become less important.

The simple linear list, and some simple
variants of it are almost certainly the best
choice if it is known that the event set will
stay small, although these can be quite inef-
ficient for larger event sets. The median
pointer method of Davey and Vaucher (1980) is
one of the better choices for 1lists smaller
than about 200, If it is known in advance
that the scheduling distribution will be
relatively uniform, simple binary trees per-
form quite well, but techniques such as the
indexed list of Davey and Vaucher (1980) will
probably perform even better. Neither of
these is robust; both are as bad as a linear
list for some scheduling distributions.

of ity. A significant
number of studies of the event set have
avoided comparisons with implicit heaps and
other unstable implementations, nominally
because these are not sufficiently general,
Since it is natural to assume that stability
has a run-time cost, this 1leads to the

assumption that implicit heaps may be faster



D. W. Jones et al.

than general implementations of the event
set, In fact, this is not true! Both McCor~
mack and Sargent (198l) and Jones (1986) have
shown that Henriksen's implementation is fas-
ter than implicit heaps, and Jones (1986)
showed that splay trees can be even faster
than Henriksen's implementation.

Although stability may indeed have no
inherent cost, the ability to efficiently
delete arbitrary event notices may impose a
significant performance penalty. For the
splay tree implementation, the penalty was a

factor of about 1/3 according to Jones
(1986) . Thus, it is interesting to ask
whether the deletion of previously scheduled

event notices is really

simulation models that
always be transformed so
required.,

needed, or whether
require deletion can
that deletion is not

In addition to requiring that the event
set be stable, many discrete event simulation

languages impose other requirements on the
processing of simultaneous events., For exam-
ple, the three phase approach requires that

scheduled events at some time be simu-
lated before any conditional events they
might cause at the Same time. Thé reason
that this kind of logic appears to have been
introduced into simulation languages is that
it increases the repeatability of simulation
experiments and reduces their sensitivity to
small changes in the models being used.
Unfortunately, this can mask real instabili-~-
ties in the systems being modeled. Although
this may bhave helped sell early simulation
systems (Gordon 1978), and it certainly aids
debugging, this appears to be a dangerous
practice and is certainly not worth paying
any performance penalty.

all

The Prospects for .Improvement. Early
simulation systems frequently used simple
linear lists as an event set implementation;

as a result, changes in the event set imple-
mentation frequently led to performance
improvements of as much as a factor of 100 in
total simulation time for large models, This
experience has lead many to conclude that the
choice of an appropriate event set implemen-—
tation is crucial to the performance of simu-
lation systems, and thus, that considerable
effort should be devoted to developing good
implementations tailored to the specific
needs of each simulation problem.

In fact, although the penalty imposed by
a bad choice of event set is huge, the gain
to be made by selecting a particular, fine-
tuned implementation over, say, Henriksen's
implementation or splay trees is very small.
To understand why this is the case, it is
necessary to compare the costs of event set
operations with other computations that are
common in the context of simulation. Simple
experiments on the VAX 11/780, in the testing
environment described in Jones (1986), show
that performing a hold operation on a 10 item
event set costs about the same as 3 procedure
calls and returns or one call to a uniform
pseudo~-random number generator, while a hold
operation on a 1000 item event set costs less
than one call to a negative exponential

410

pseudo-random number generator. The differ-
ence between the times taken by the two ran-
dom number generators is due to a single call
to the natural log function.

Given the above information, it is clear
that the time taken for event set management
in many simulation models should be signifi-
cantly less than half the overall simulation
time! Thus, even if a new implementation
were found that required no time at all to
perform event set operations, a factor of two
speedup would be unlikely. It may well be
that finding faster ways to compute the
natural 1log function will lead to a greater
speedup in many simulation systems than any
likely improvement in the event set. This
leaves a serious question: Where should the
effort that is currently being devoted to

finding new implementations of the event set
be directed?
Aveoiding the event set. It is clear

that many simulation methodologies result in
over—-use of the event set. An unfortunate
number of simulation languages provide only
one tool for modularizing the code of a simu-
lation model, the event service routine.
Users of such languages are faced with the
choice of either replicating common code
sequences throughout their simulation pro-
grams or gathering those sequences into event
service routines that are used to simulate
procedures, When the latter is done, what
ought to be a procedure call is accomplished
by scheduling these new event service rou-
tines at the same simulated time as their
callers. Clearly this approach should be
avoided, since it enlarges the event set and
adds additional event scheduling trafficl

A more subtle way in which unneeded
event scheduling is commonly done involves
deterministic chains of events. If event A
schedules event B, and event B always

schedules event C, event B may frequently be
eliminated from the model! Consider, for
example, the simulation of a token~ring net-
work with a message in transit: It would be
possible, of course, to simulate the arrival
of this message at each network station it
passes on the way to its destination, but it
is usually possible to compute the aggregate
transmission delay to the destination and
thus avoid scheduling these intermediate
events.

Finally, even when events themselves
cannot be eliminated, a careful use of the
transitivity of the 'schedules!' relationship
between events can reduce the number of pend-
ing events. Consider the case where event A
schedules events B and C, If event B always
happens before event C, modifying the model
so that event B schedules event C will reduce
the size of the event set. Users of the
three phase approach to simulation have known
this for a long time; this is why &simple
minded event set implementations such as the
median pointer method have frequently proven
to be gquite adequate for supporting three-
phase models.



Implementations of Time (Panel)

Although the individual developers of
simulation models would be well advised to
pay attention to the above considerations, it
should be noted that re-working a simulation
model for efficient simulation can obscure
the model. Thus, as with programming
language optimization, it would be preferable
to move the responsibility for this from the
programmer to the language implementation.
Whenever possible, our simulation language
processors should reduce the expected event
set size and traffic by replacing event ser—
vice routines with simple procedures, elim-
inating unneeded events, and reorganizing
scheduling relationships. These kinds of
model transformations should be relatively
easy for high-level model specification
languages, but they may prove to be difficult
for models expressed in general purpose pro-
gramming languages such as Simula 67.

Exploiting Parallelism. There are at
least three different levels at which paral-
lelism can be exploited in discrete event
simulation. At the highest 1level, we can
look forward to new simulation languages that
are supported by parallel simulation algo-
rithms. This approach is already starting to
bear fruit in the area of distributed simula-
tion for queuing networks, but, as with any
new programming language, the advantages of a
new simulation language must be quite compel-
ling before it will attract much of a follow-
ing. At an intermediate level, we c¢an hope
for attempts to use these new parallel simu-
lation algorithms to support conventional
simulation languages. This will almost
surely be impossible for general-purpose
languages such as Simula 67, but it may well
be practical for high-level model specifica-
tion languages. ’

At the lowest level, parallelism can be
used in the implementation of the event set.
This should allow all of the computationally
intensive aspects of event set handling to be
performed on one or more sSupport processors
while the primary simulation processor uses
conventional simulation algorithms. From the
point of view of the primary simulation pro-
cessor, this would allow the time taken for
event set handling to be effectively ignored.
Skew heaps (Jones 1986) have been modified to
allow this approach to concurrency (assuming
a shared memory environment), but they are
not stable, and arbitrary deletion is not
supported. The development of a sufficiently
general parallel implementation of the event
set would allow parallelism to be easily
exploited in existing simulation languages,
although (as noted above) the expected
speedup from this approach is limited,

AUTHOR'S BIOGRAPHY

DOUGLAS W. JONES is an assistant professor in
the Department of Computer Science at the
University of Iowa. He received a B.S. in
physics from Carnegie-Mellon University in
1973, and M.S. and Ph.D. degrees in computer
science from the University of Illinois in
1976 and 1980 respectively. He has developed
a gate-level logic simulator that has been

411

used for teaching digital systems since 1983;
this lead to an investigation of event set
implementations and parallel simulation. His
other research interests include system pro-
gramming languages and computer architecture.
He is a member of ACM and AAAS.

Douglas W. Jones

Department of Computer Science
University of Iowa

Iowa City, IA 52242

(319) 353-7479

CSNET: jones€@cs.uiowa.edu

POSITION STATEMENT

James O. Henriksen
Wolverine Software Corporation
Annandale, Virginia

Historical Perspective. The flow of
articles, papers, and theses on the subject
of event list algorithms began, in earnest,
in 1977, and it continues, apparently una-
bated, in 1986. As one who has contributed
to this literature, I am both surprised and
delighted that the topic is still of
interest. The paragraphs that follow present
some personal observations on the subject.

New Algorithms - o I
am surprised that new algorithms continue to
be proposed. How can you beat an O(log n)
algorithm?

. Virtually every
paper, or thesis about event list
algorithms has included some analysis of
algorithm complexity. Such analyses have
ranged from informal observations gleaned
from empirical data to very formal, mathemat-
ical or statistical analyses. While formal
analyses of complexity are very interesting,
they provide an incomplete picture of algo-
rithm performance. For example, consider how
it can be possible for an O(/m) algorithm
such as Henriksen's to consistently outper-
form O(log n) algorithms, Clearly, there is
more to performance than is revealed through
complexity analysis,

article,

For Henriksen's algorithm, one can
fairly easily construct two extreme cases for
algorithm performance. If event times
increase monotonically, each insertion into
the event list can be made after exactly two
comparisons. On the other hand, a worst case
can be constructed for which O(n) comparisons
are required for an insertion. Knowing that
complexity can range from a constant number
of comparisons to O(n) comparisons is no use
whatsoever. What we need to know is the
relationship between event time distributions
and algorithm performance. Determining that
relationship analytically is an extremely
difficult problem, although some progress has
been made in this regard. In the absence of
analytical relationships, empirically derived
distributions of algorithm performance would
be useful. For example, the best-case per-
formance of Henriksen's algorithm is infre-
quently attained, but not beyond the realm of



D. W. Jones et al.

possibility in real-world simulations. How-
ever, the worst-case performance can be
obtained only through systematic exploitation
of the algorithm, and such exploitation isg
virtually impossible in a real-world model.

Applications of Event List Algo-
L . While management of simulated time
is the obvious purpose of event 1list algo-
rithms, such algorithms are applicable to a
wider class of problems. For example, con-

sider the problem of simulating the flow of
objects on a conveyor. Assume that we are
interested in the problem of placing objects

of random sizes onto the conveyor at randomly
chosen points. To insert an object at a
given point, we must determine when a suffi-
ciently large unoccupied portion of the con-
veyor will reach that point. Assume that we
have, at our disposal, data structures that,
for each object, depict the object's 1last
known position, the time at which the object
reached that position, and the object's velo-
city. The most straightforward approach to
modeling an insertion would be to determine
the current positions of all objects on the
conveyor. By simply searching the up-to-date
position data, one could easily determine the
location of the next sufficiently large free
space to pass by the insertion point. The
search could be integrated into the algorithm
for updating position data. If the
search/update were performed in downstream—
to~upstream order, the algorithm could ter-
minate when the first adequate free space was
found, saving the time that would be consumed
performing unnecessary position updates.

If the conveyor contains many objects,
the algorithm outlined above probably will
perform very poorly, because it performs a
linear search in the space domain. Improved
event list algorithms were first devised as
alternatives for 1linear search in the time
domain. An improved event 1list algorithm
could easily be adapted to operate in the
space domain. If this were done, the
search~update process would be reduced from
an 0(n) process to (almost) an O(log n) pro-
cess.,

fd Point Clocks
While great attention has been devoted
other areas in

to event 1list algorithms,
which fruitful research c¢ould be conducted
have been ignored. For example, I know of no
published studies on the ramifications of
using a floating point clock in a simulation
language. Some floating point hardware
rounds the results of floating point computa-
tions, while other hardware truncates
results. IBM (and IBM-compatible) mainframe
floating point hardware employs "guard digit"
arithmetic, a unique approach to floating
point computation. What is the impact of the
mode of computation on simulation?

In most floating point hardware, single
precision data contains roughly 24 bits of
precision. It is relatively easy to demon-
strate that many, if not most, simulation
applications that employ a f£floating point
clock require double precision.arithmetic.
For example, if the simulator clock is to

412

register time values in excess of 16,777,215,
24 bits of precision is inadequate; e.d.s
adding 1.0 to 16777216.0 will yield a result
of 16777216.0. For these reasons, a general
purpose simulation language that includes a
floating point clock must implement the clock
in double precision. Unfortunately, one does
not have to look far to find languages that
use single precision floating point clocks.

Many simulation models contain entities
that operate on a fixed cycle time, e.g.,
circular conveyor systems. When modeling
such systems, it is often necessary to view a
point in simulated time as the time displace-
ment into the current cycle for a given piece
of equipment. When a floating point clock is
used, floating point modulus division (FMOD
in Fortran) computations must be performed to
determine displacements. Unfortunately, FMOD
is notoriously computationally unstable.
What is the impact on simulations that
require the use of FMOD? This is an
interesting question.

AUTHOR'S BIOGRAPHY

JAMES O. HENRIKSEN is the president of
Wolverine Software Corporation, located in
Annandale, Virginia (a suburb of Washington,
D.C.) Wolverine Software was founded in 1976
to develop and market GPSS/H, a state-of-
the—-art version of the GPSS language. Since
its introduction in 1977, GPSS/H has gained
wide acceptance in both industry and
academia. Mr., Henriksen is an Adjunct Pro-
fessor in the Computer Science Department of
the Virginia Polytechnic Institute and State
University. He teaches courses in simulation
and compiler construction at the university's
Northern Virginia Graduate Center. Prior to
forming Wolverine Software, he worked for
‘CACI, Inc., where he served as project
manager for development of the Univac 1100
Series version of Simscript II.5. Mr. Hen-
riksen is a frequent contributor to the
literature on simulation. He has given
invited presentations at the Winter Simula-
tion Conference, and at the Annual Simulation
Symposium, Mr., Henriksen is a member of ACM,
SIGSIM, SCS, the IEEE Computer Society, ORSA,
and SME,

James O. Henriksen

Wolverine Software Corporation

7630 Little River Turnpike, Suite 208
Annandale, Virginia 22003-2653

(703) 750-3910

POSITION STATEMENT

C. Dennis Pegden
Systems Modeling Corporation
State College, Pennsylvania

An often overlooked design issue in
implementing the time advance mechanism in a

simulation language is the method used for
coordinating the interaction between
scheduled and unscheduled events. Scheduled

events are those that are scheduled to occur



Implementations of Time (Panel)

at a specific point in time in the future and
may therefore be maintained in a time-ordered
event list. Unscheduled events are those
which are defined based on the state of the
system and therefore cannot be placed in the
event-list. The mechanism which determines
the occurance of an unscheduled event is suf-

ficiently complex that the exact time at
which the event will occur cannot be
predicted, Examples include the movement of

parts along a conveyor which is stopping and
starting and the movement of an automatic
guided vehicle through a congested track net-
work, The method used for detecting and exe-
cuting the unscheduled events can in many
instances play a bigger role in determining
simulation execution time than the algorithm
used for maintaining a time ordered event
list.

C. Dennis Pegden

Systems Modeling Corporation
248 Calder Way

State College, PA 16801
(814) 238-5919

SOME REMARKS ON IMPLEMENTATION OF TIME

Robert G. Sargent
Syracuse University
Syracuse, New York

In order for a simulation model to run,
some mechanism must be used to move the model
through time. Today, in discrete event simu-
lation, this is normally accomplished by
using a time flow mechanism that contains a
future event set algorithm. However, with
the new developments occurring in computer
hardware and with the increasing demands
being made on simulation, there is need for
additional research into how to have a simu-
lation model move through time.

First, let us discuss future event set
(event 1list, event calendar, future-event
chain) algorithms. Since McCormack's disser-
tation research (McCormack 1979, 1981), how
event lists behave and how several event list
algorithms perform have been known, including
knowing some algorithms that have good per-
formance., Thus, from the practical point of
view, there is no need for further research
on event list algorithms. It is necessary to
use a good algorithm in order to have execu-
tion efficiency in a simulation model; in
particular, when a large number of events
occur on the event 1list (Henriksen 1983).
Unfortunately, there is considerable
misunderstanding about event list algorithms.
As stated by Henriksen (1983) "the variance
in quality of what has been written closely
parallels the variance in performance of the
algorithms themselves: everything from scho-
larly works to utter nonsense".

Second, let us discuss time flow mechan-
isms. Generally, two basic methods for
advancing time are considered: fixed step
(AT) and event-to-event. The event-to-event
method is usually used in discrete event
simulation, the AT method is used in con-

413

tinuous simulation, and combined simulation
commonly uses both methods. There is need
for research in time flow mechanisms. Nance
(1971) has shown that there is really a con-
tinuum between the two basic time flow
mechanisms for discrete event simulations.
Overstreet (1982) discusses the interaction
of world views with time flow mechanisms, and
Nance (198l) discusses the movement of a
simulation model from state-to-state, i.e., a
"state-sequenced simulation", and its rela-
tionship to the time flow mechanism.

Third, there is a need to determine how
to move a simulation model through time and
keep events synchronized when there 1is more
than one processor being used (distributed
synchronization) or when submodels or por-
tions of a simulation model have their own
event lists. With the numerous types of com-
puter architectures and computer memories
being developed today, that can cost signifi-
cantly less than a single large processor
computer, we need to determine how to perform
simulation on them. One of the open ques-
tions that needs research is how to handle
the event list (single or multiple) and keep
the events synchronized, Also, there is
increasing interest in joining existing simu-
lation models together; this requires a
method to move the models through time (Sar-
gent 1986).

there are other areas related to
mentation of time that need research. Some
of them are how to implement "hardware-in-
the-loop" and "man—-in-the-loop" in discrete
simulation, and how to have real time simula-
tions interact, and the relationship of mes-
sage driven simulation to discrete event
simulation, including how they may interact.

imple-

AUTHOR'S BIOGRAPHY

ROBERT G. SARGENT is a Professor of
Industrial Engineering and Operations
Research and a member of the Computer and
Information Science faculty at Syracuse
University. Dr. Sargent has served the

Winter Simulation Conference in several capa-
cities, including being a member of the Board
of Directorys for ten years, General Chairman
of the 1977 Conference, and Co-editor of the
Proceedings of the 1976 and 1977 Conferences.
For his service to the Winter Simulation
Conference, the Board of Directors presented
him with a plaque in 1984. Professor Sargent
was Department Editor of Simulation Modeling
and Statistical Computing for the Communica-
tions of +the ACM for five years, has served
as Chairman of the TIMS College on Simulation
and Gaming, and has received service awards
from ACM and IIE, He currently is an ACM
National Lecturer, a member of the Executive
Committee of the IEEE Computer Society Techn-
ical Committee on Simulation, and a
Director—-at-large of the Society for Computer
Simulation. Dr. Sargent received his educa-
tion at the University of Michigan., His
current research interests include model
validation, simulation methodology, simula-
tion application, performance evaluation, and
applied operations research. Professor Sar-



D. W. Jones et al. -

gent is a member of ATIM, New York Academy of
Sciences, Sigma Xi, ACM, IIE, ORSA, SCS, and
TIMS and is listed in Who's Who in America.

Robert G. Sargent

Industrial Engineering & Operations Research
Syracuse University

Syracuse, NY 13244-1240

(315) 423-4348

THE THREE-PHASE APPROACH

Robert M. O'Keefe
Virginia Polytechnic Institute
Blacksburg, Virginia

. The three-phase world
view involves the recognition of two distinct
types of event: Bound or events,
whose occurrence is predictable and can thus
be scheduled, and iti or gontingent
events, whose occurrence is dependent upon
certain conditions. Bound events represent
time dependent changes; conditional events
represent state dependent changes. Typi~
cally, conditional events schédule bound
events, For instance, the start of an
activity is a conditional event, and the end
is a bound event.

Within the time flow mechanism, a calen-
dar of bound events is maintained. The time
advance then involves the three phases:

Time - advance the clock to the time of

the next bound event.

B ~ execute all bound events events due
to occur at this time.

C - scan all the conditional events.,
These phases are cycled for the duration of
the simulation,

Event scheduling and activity scanning
can both be perceived as two-phase
approaches, subsets of the three—-phase
approach. Most models of reasonable complex-
ity include both time and state dependent
changes thus the three-phase approach is
inherently more powerful and applicable than
event scheduling or activity scanning.

. Activity scanning, of which
the three-phase approach is a descendant, was
neglected in the States due to the perceived
inefficiency of the scan of conditional
events. (Or more likely, due to the M"not
invented here" mentality.) As the number of
conditional events increases, the time to
scan them increases disproportionately. How~
ever, when the simulation is largely composed
of state dependent changes, the approach can
be far more efficient than event scheduling.

When modeling state dependent changes
using pure event scheduling, they must be
forced into the model as bound events, This:
is normally done by arranging for primary
events to schedule other events for execution,
at the present clock time, or by including!

414

code for conditional events within that for
bound events. The first method is ungainly
and can be highly inefficient, particularly
when scheduling an event incurs the overhead
of shuffling a heap or similar mechanism; the
second method is bad programming practice,
since it reduces the modularity of the simu~
lation program.

« When a simulation
includes many highly independent bound
events, the three-phase method can be very
inefficient. The execution of a bound event
that has no effect upon the conditional
events, such that none of the conditional
events can be successfully executed, results
in a wasted scan.

This inefficiency can be overcome by use
of cellular simulation (Spinélli de Carvalho
1976) . Here all conditional events are
closed (or opened) at each advance of the
clock, and must be explicitly opened (or
closed) within bound events, Only condi-
tional events that are open are scanned.
Thus, the programmer can considerably reduce
the size of the scan at each time beat by
identifying conditional events that are
dependent upon the occurrence of one or more
bound events. (In effect, this is similar to
the extension of event scheduling where
dependent and independent events are
separately identified.)

Often, cells of associated scheduled and
conditional events can be identified and
grouped together. This cellular approach to
simulation -can be used as a basis for decom~
position. With regards to distributed simu-
lation, each cell could be executed on a dif-
ferent processor.

Inference. The conditional events can
be scanned in any order, although a simple
top-down scan is normally used. Thus, the
textual order of the conditional events
determines a priority ordering. This can
sometimes be a highly efficient and simple
means of modeling priorities; in some cases,
it can be highly constraining. Evans (1984)
has suggested that inference mechanisms could
be used by the simulation executive so as to
facilitate efficient and/or appropriate ord-
ering of execution of the conditional events,

much as is done in AI with rule-based sys-
tems,

« In a paper elsewhere
in these proceedings (0O'Keefe and Davies

1986b), the author suggests that the three-
phase dpproach is useful for simulation with
visual displays (animation). This is because
many pictorial changes are state~based, for
example: "If the machine breaks down, change
its color to red."™ Often, it is useful to
introduce both bound and conditional events
into the program that are solely concerned
with updating the visual display and arrang-
ing for interaction with the user. fThus, the
need for efficient management of the event
set and conditional events can be more impor~
tant when using visual displays, due to the
increased number of events.



Implementations of Time (Panel)

Event set Mechanisms. Efficient mainte-
nance of the event set is important to the

three-phase approach. However, it is not as
crucial as in event scheduling (since there
will typically be less additions and dele-

tions to the event set), or as in some imple-
mentations of process description world views
(for instance, in GPSS the current event list
can become exceedingly large). The author
has found that the median pointer method pro-
posed by Davey and Vaucher (1980) can be
effectively implemented, and is as good as
any other method when the event set size does
not exceed about 200 entries (0O'Keefe 1985).

Obviously, the efficiency of the three-
phase approach is dependent upon the number
of conditional events, and the amount of
scanning that needs to be done. Use of cel-
lular simulation, combined with an effective
event set mechanism, can result in highly
efficient execution of medium sized mnodels
with approximately one hundred events (both
bound and conditional) and a £few hundred
active entities,

To some extent, any discussion concern-
ing world views and event set mechanisms is
speculative, since no formal comparisons have
been done comparing world views against event
set mechanisms. (Most research has compared
different mechanisms under the hold model.)
For instance, it is fairly cobvious that pro-
cess interaction as implemented in Simula 67
is considerably more efficient than process
description as implemented in GPSS, since
passive objects are re-activated directly
through a reference pointer maintained by the
programmer, whereas in GPSS, a similar effect
is achieved by the executive scanning the
current events list.

. No single event set mechan-

ism is suitable for all world views and all
applications., For a simulation that is
highly state dependent, the three~phase
approach implemented with a simple 1linear
linked 1list for the event set may be more
efficient than event scheduling or process
interaction with a heap mechanism. Those

requiring more information on the three-phase
approach should look at Crookes (1982),
O'Keefe and Davies (1986a) and Pidd (1985).

AUTHOR'S BIOGRAPHY
ROBERT M, O'KEEFE is a visiting assistant
professor in the Department of Computer Sci-
ence at Virginia Tech, on 1leave from the
Board of Studies in Management Science at the
University of Kent at Canterbury, England.
He received a B.Sc. in Computer Studies and
Operational Research from the University of
Lancaster in 1979, and a Ph.D. in Operational
Research from the University of Southampton
in 1984. Major research interests include
artificial intelligence and simulation,
visual interactive simulation, and the appli~
cation of expert systems. He is a member of
SCSs, TIMS, ORS, AAAI and BCS, and a director
of Decision Computing Limited.

415

Robert M. O'Keefe

Department of Computer Science
562 McBryde Hall

Virginia Polytechnic Institute
Blacksburg, VA 24061

(703) 961-6931

OPTIMISTIC SYNCHRONIZATION

Brian W. Unger
University of Calgary
Calgary, BAlberta

Optimistic synchronization algorithms
offer the potential of significant parallel-
ism in distributed simulation. Simulations
implemented as a set of communicating
processes on multiple processors without
shared memory require synchronizing process
execution so that events occur in the
appropriate temporal order. Optimistic algo-
rithms enable concurrent processes to compute
forward in time in a way that enables
recovery when unexpected events take place in
the past of a process. Recent work in this
area indicates that much greater parallelism
can be achieved than is possible with pes-
simistic algorithms, i.e. those that require
a process to wait until sufficient informa-
tion is available to advance simulation time
without risk of events occurring in the past
of a process.

Brian W. Unger

Computer Science Department
2500 University Drive, N.W.
University of Calgary
Calgary, Alberta T2N1LN4
(403) 220-6038

REFERENCES

Crookes, J. (1982). Simulation in 1981,
Eur. J. Op. Res. 9, 1-7.

Davey, D., and Vaucher, J.G. (1980). Self-

Optimizing Partitioned Sequencing Sets
for Discrete Event Simulation, INFOR
18, 41-61.

(1980) ., Simulation and intelli-
gence, Technical report TR-~-A5-84, Cen-
tre of Computer Studies and Applica-~
tions, University of Hong Kong.

Evans, J.B.

Gordon, G. (1978). The Development of the
General-Purpose Simulation System
(GPSS) . SIGPLAN Notices 13, 8 (August)
183-198. Sections 3.5 and 4.6.

Henriksen, J.0. (1983). Event List Mahage-
ment - A Tutorial. 1In: i of

the 1983 Winter Simulation
(S. Roberts, J. Banks, and B. Schmeiser,
eds.). Arlington, VA, 543-551.

Jones, D.W., (1986). An Empirical Comparison
of Priority-Queue and Event-Set Imple-
mentations. Communications of the ACM
29, 300-311.



D. W. Jones et al.

Kingston, J. H. (1984). Analysis of Algo-
rithms for the Simulation Event List.
Ph.D. thesis, Basser Dept. of Computer
Science, Univ., of ‘Sydney, Australia.

McCormack, W.M. (1979). Analysis of Future
Event Set Algorithms for Discrete Event
Simulation, Ph.D. thesis, Syracuse
University, Syracuse, NY 13244,

McCormack, W.M., and Sargent, R.G. (1981).
Analysis of Future Event Set Algorithms
for Discrete Event Simulation. Communi-
cations of the ACM 24, 801-812.

Nance, R.E. (1971). On Time Flow Mechanisms
for Discrete Systems Simulations.

Management Science 18, 59-73.

Nance, R.E. (1981). The Time and State Rela~
tions in Simulation Modeling, Communi-
cations of the ACM 24, 173-179.

O'Keefe, R.M. (1985)., Comment on Complexity
Analyses of Event Set Algorithms. Com-—
puter Journal 28, 496-497.

O'Keefe, R.M, and Davies, R.M. (1986a). A
Microcomputer System for Simulation
Modelling. Eur. J. Op. Res. 24, 23-29.

O'Keefe, R.M. and Davies, R.M. (1986b) .
Discrete Visual Simulation with
Pascal SIM. In: Proceedings of the 1986
Winter Simulation Conference.

Overstreet, C.M. (1982). Model Specification
and Analysis for Discrete Event Simula-
tion. Ph.D. thesis, Virginia Tech,
Blacksburg, Va 24061.

ridd, M. (1985). Computer Simulation in
Science. John Wiley, New
York.

Sargent, R.G. (1986). Joining Existing Simu-
lation Programs Together. In: Proceed-
Conference.

Spinelli de Carvalbo, R (1976). Cellular
Simulation. Ph.D. thesis, University of
Lancaster, England.

416



