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ABSTRACT

the most commonly used
When
independent, behavior of sample means is governed by the

Sample means are perhaps

statistics in data analysis. the data points are
Law of Large Numbers. When the data are serial correlated,
theoretical results of stationary stochastic processes are
often used to describe the behavior of sample means. How
do the sample mean behave when data are nonstationary
{or nearly so) is yet to be discussed. In this paper, | give
the the

processes are either nonstationary or nearly nonstationary.

limiting distribution of sample means when

| also discuss why the conventional formula fails to
provide adequate inference for sample means when the

processes are nearly nonstationary.

1. INTRODUCTION

For a given set of data {X1 D, SRR Xn}, the sample

2

mean 7(n = n"Z:‘:1 X‘ is perhaps the most commonly used

statistic in inference making. It is routinely reported in
the summary table of any data analysis in every statistical
package. It is also a well-studied statistic in the literature.
For example, from the Law of Large Numbers we have the
following results.

Case_1: Independent and ldentically Distributed. Let )(i be a

(11D}

sequence of independent and identically distributed

random variables.
® Khinchine's WLLN:

E(xi)=u<oo an—)pv-

® Kolmogorov’s SLLN:

7(n 2,. ? IFF EIX) exists and is equal
p e

to

Case 2: Independent but Not ldenticaily Distributed. Let xl

be a sequence of independent variables such that E(Xi) =0

=iyn
n Zi=1 v,

and Var(Xi) = alz. Define ?n = |

® Chebyshev's WLLN:

lim

i)
n" <X
n - 0o =

351

® Kolmogorov's SLLN:

by 2 2 b,
= zrl/l <°o:)Xn-v

i=1

n as. 0.

In the above, 5 denotes convergence in probability, >,
with 1,
convergence, WLLN and SLLN denote weak and strong laws

LS.

convergence probability i.e., almost sure

of large numbers, respact vely.

When the independence condition i1s replaced by weak
stationarity, thatr ‘¢ ¥ - ow, VarlX) = Ui, and Cov(xi
Xi+k) =Rl | k | - wnich.does not depend on the time i.

Let p k} = RIKNRIO} be the autocorrelation of X, at lag k.
Then, it is easily seen that, (Priestley, 1980},

E(7<n) =

— n-1
var(X ) = n"'¢2 X
n X

(1 - k] Inlp_ k).
k=={n—1)

(1

Thus, ')_(n
if the right hand side of (1} converges. In particular, if Xi

is an unbiased estimator of » and it is consistent

has a purely continuous spectrum with (hormalized) spectral
density function

o0
flw) = (27)"1 X P WKlexpl-ivk) for -m < w < 7,
-0

then we have

n—1
lim_ z (0 - [klimp k)
00
=X £lk) = 27 o). (2)
k==p0

Therefore, for large n
Var(?(n) ~ n_12nf(0)a§. (3)

To illustrate the use of {(3), suppose that X. follows a

stationary autoregressive process of order 1, i.e., AR(1)
model
X, = ®X ‘i’lg)l(ll

where € is a sequence of |ID Gaussian noises with mean

zero and variance ¢¢ Then, (3) reduces to
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Var(X ) ~ 1 e P)(1-3) ], (4)
Compared with the 1D case in which Var(7(n) = n"di, it is
clear that the effect of serial correlation is {(1+®){1-$). For
this reason. n{1-®)/(1+®) is often regarded as the equivalent

degree of freedom of an AR{1) process.

In theory (3) applies to all stationary processes with

purely continuous spectrum. However, the approximation
could be very poor for the finite sample case when Xi is
nearly nonstationary. This can easily be seen from the

result of the next section.

2. NONSTATIONARY PROCESSES
For better understanding of the nonstationary case, |
consider the simple random walk model in this section. X'

follows a random walk model! if it satisfies
(5}

where € is defined as before in Section 1. | shall assume
that the starting value Xo is zero. This assumption has no
effect in the limiting behavior of Xn, see Tiao and Tsay
{19886). the might be
negligible. However, the assumption can always be met in

For finite sample, effect not
practice by treating X1 as a fixed number and subjecting it

from all the observations.

Since Xi is nonstationary, the asymptotic property of 3—(n

is non-standard in the sense that it is different from those
The
result involves stochastic integrals of Brownian motions,
and | use the following notations: {a) D[0,1] is the space
of functions gt} on the unit interval [0,11 which are right
continuous and have left-hand limits, see Billingsley (1968);
(b) D[0,1} is equipped with the Skorohod topology: {c) Yi
9, Y denotes that the {YI)
distribution to an element Y mn D[0,1]; {(d) For 0 < s < 1,
[ns] denotes the largest integer less than or equal to ns.

obtained by the central limit or ergodic theorem.

sequence converges in

From (5) and under the assumption of zero starting value,

we have
X =3 «. 6)
| 1=1 t
Let
i
P =X ¢

1 1

t=1

be- the i-th partial sum of { e 0 <t < oo } and define

t
the function Zn(s) on [0,1] as

Z(s)=(n”20'5 )'1P[ ] for0<s < 1 (7)
n ns

where zn(o) = 0. Then, by Donsker's Theorem (Billingsley,
1968, pp. 137),

Zn(S) -4 Wis) (8}

where W(s) is a standard Brownian motion.
THEOREM 1. Suppose that X, follows the model (5) with Xo
= 0. Then,

n
n32 % X
=1 d

From (6}

]
7, S Wi(s)ds.
0

PROOE:

n
n-3/2 b Xi
i=1

=n¥2F (P 4

i=1 i-1 i

n n
= n"‘de b (n”zarc)"Pi_1 +n VY pmt = €)
Y=t y i=1

=0, 2 "2 P Lil - {i-0im] + o (1)
=1 i=1 P

i/n

>
Ué

172 y=1
> n o) P[nsl ds + op(1)

(= 1)/n

]
7, S Z {s}dds + o (1)
o " P

In the above, | have used the WLLN so that n"Ze'
converges to zero in probability. The theorem then follows
1968,
QED.

from the continuous mapping theorem (Billingsiey,
Theorem 5.2) and (8).

By Theorem 1, the "appropriate” normalization factor of

the sum of observations is n%2 when XI follows the

random walk model. Therefore, Rn goes to infinity as the

the
nonstationary case the sample mean F(n does not have a

sample size n increases. In other words, in

well-defined limit.

Since the stationary AR({1) process can be regarded as the
transition status between independence and the random
walk model, one would expect the sample mean of a

stationary AR(1) to play a transition role between the

limits of the two extremes, independence and high
correlation. {Note that the random walk case can be
interpreted as highly correlated situation because the

sample autocorrelations ali approach unity, see Tiao and
Tsay, 1983, Corollary 2.6.) However, the results of Section
1 and Theorem is not the
This
in providing aedquate

1 clearly point out that this
case. The normalization factor must be modified.
explains the failure of formula (4)

inferences on the sample mean when Xi is nearly

nonstationary.

3. NEARLY NONSTATIONARY PROCESSES
To derive a unified limiting distribution for sample means
or their variants, |

parameterize the AR(1) model in a

triangular array setting. Consider
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X =8 X + € (9)

n,1 n n1—1 i

with /in =1 -y

By (9), Xml reduces to the random walk model (6) if y = 0,
and it approaches a stationary case when y/n goes to a
fixed limit between 0 and 1 Again, for simplicity | assume
Xn.0 = 0. From {9),

1

X =% fe (10
Moot=0
Let
- 1/2 -1 pgn -
Zn" =n'%e )70 B e
[ns)
Z(s) = Z for0D<gsc< 1.
n ni

0

f

Lemma 1. Let B)’(t) = exp{-2y)[exp{2yt) - 1]/27. Then,

Zn(s) >4 w( By(s) ) as n 3 oo
where W(s) is a standard Brownian motion.
PROOF: See Lemma 2.1 of Chan and Wei {1986). QED.
THEOREM 2: Suppose that X follows the model (9) and

ano = 0. Then,

2% x >, 0 5‘1exp[-y(s-1)] WI(B _(shds.
ni ~“d € 0 Y

i=1

PROOF: From {10},

n
Q
T e
=Y
37
E]
N
:—\
El
S
1

o 3 Az i) 07

=0 z 4 i) n
1

-7, 5‘ expl-y(s-1)]2Z (s)ds
0 n

1
*t o, S exp[-y(s-1}1 Zn(s)ds
o

1t

1
o, So expl-y(s-1)} Zn(s)ds + ”an‘ (11)
Next, | show that I H, I = op(1). First, claim that
Tn = supy, <1<l SLJp{(l--‘l)/n < s £ /n}

| A" - expl-y(s-11 | = ofn). (12)

1f {12) holds, then
[H]=]2 A z@mn - s expl-y(s-111Z (s)ds |
n =70 n o pL-y n
= I g A7 Z liln™! + Z (1)
=1 " n n

n-1 0+ 1n
-2 S exp{-y{s-1}1Z (i/n}ds I
1=0 Yim "

n=1 *4+1)n L
T | M -
I D> s‘ [ﬂ'y” - e 7"l Z i} ds + Z {1n ! I

i=1 Yi/n

< ¥ T S('H)/" 2 fimias | + 07" | z,(n |

=1 ifn
1 -
=7 | S”n z(shs |+ n7t | z (0|
= o (1)
P

The theorem then follows from (11), Lemma 1, and the

continuous mapping theorem. In the above, | have used

Z {0) = 0. To show (12), let d = - ny~Mogl1 - yin). Then,
dn > 1 as n 5 oo for fixed y. Moreover, we may rewrite
,E'n_“ as

-n . -
/9" = exp[y{1 - ifnid .
Therefore, we have
1=n _ ~=Y(s-1)
| a7 - e |

= o7 = | oxpyin - inid_ = 1] - expLylim - s)] |

expl]y|) { , explid - Ny{1 - in)] -1 I

A

+ I 1 - explvun - s)) l 3.
Now,

Y R K R LR 8 PY R Y
as N 5 co,

suP((i—ﬂIn < s < i/n) | T - explyliln - s)] I

< max{ 1 - expl-{ylin), expl{y|m} -1} 5 0

a n < po-
Therefore, (12) holds and the proof of the theorem is
complete. QED.

Note that the above distribution can be evaluated by
using a result of Kac (1980),

0
Wis) = X

[Q2i+1)717 1232 ging(i + 0.5)7s1Y,
i=0
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where Yi are |ID standard Gaussian variables. Furthermore,
the value of y may be estimated by 1 - 3 with ;9 being
the usual AR(1)

the least squares estimate of £ in

regression,

~

The inference of the sample mean of XI can then be made
by using the result of Theorem 2.

4. GENERAL MODELS WITH A SINGLE NEARLY
NONSTATIONARY ROOT

The results of the preceeding two sections are relatively

fimited. For they only deals with AR{1) type of models. In

practice, a stochastic process may not well follow such

to consider the general

models and it is necessary

situation. In this section, we consider the model

$BN1 - B BIX = 8B)e (13)

where ﬂn and €, are defined as those of Section 3, B is
the backshift operator such that BX. = X,_,, and $B) = 1 -
$.B - - ¢po and (B} = 1 - 018 ERE 9qu are two
polynomials in B of degrees p and g, respectively. For
model (13}, | assume that ¢(B) and 6(B) have no common
factors and that all of the zeros of $(B) are greater than
unity in modulus. Moreover, all of the zeros of ¢(B) should

be far away from the unit circle as compared with ﬂ;1.
The latter condition implies that (1 - ,BnB) is the dominating
factor of the autoregressive part of Xi. This condition is
neef:l_ed because the asymptotic behavior of. XI-, hence that
of Xn, is determined by zeros of the autoregressive part
which are on or ciose to the unit circle, see Tiao and Tsay
{1983).

THEOREM 3: Suppose that X, follows the model (13} and X,
=0 for i < 0. Then,

n
n—3/2 > X >
1 04

1
Alg , 8) o, S expl-yls-1)] W(By(s))ds"
0
where y, By(s). and W(s) are defined in Theorem 2, and Alg
L0y =101 - 01 - - 0q)/(1 o D ¢p).
PROQF: This
depending on the values of p and q. The first case is p =

theorem can be proved in three steps
0, the second g = 0, and the third p # 0 and g % 0. The
details are along the same line as those of Theorems 1 -

3 of Tsay (1986) and are omitted. QED.

Note that {13) can be rewritten as

Xi=,8X_ + V.

n i-1 i

where VI = [,tS(B)]"'H(B)el is a stationary autoregressive

moving average model, i.e., ARMA(p,q) model, see Box and

Jenkins (1976). Thus Theorem 3 can be regarded as an
extension of Theorem 2 by allowing for serial correlations

in the disturbance term Vi"

In practice, the order {p, q) and the parameters $, and Hi
are unknown. They must be estimated from the data. The

following procedure is suggested.

e |dentify an overall ARMA model for Xi by using
the Extended Sampie Autocorrelation Functions
(ESACF) of Tsay and Tiao (1984) or the Smallest
Canonical {SCAN) Correlation approach of Tsay

and Tiao (1985). The overall order of X, of (13)

is (p*+1, 9.

* Estimate the parameters ¢, ,Bn, 6’i, and o,
simultaneously by maximum likelihood method.

The Kalman filter recursion may be used here.

e Factor the fitted AR polynomial to locate the

zeros. The one which is closest to the unit

circle is treated as an estimate ﬂn and the rests

are used to estimate the ¢i’s.

e Make inferences conerning Rn by using Theorem

3.

This procedure is based on several considerations: First, 1
suggest the use of either ESACF or SCAN because both
methods can handle nonstationary and stationary processes
They do not require any differencing
Secondly, if desired, one

in the same manner.
in handling nonstationary series.
may replace the maximum likelihood estimation by least
squares method via the use of iterated autoregressions of
Tsay and Tiao (1984). The iterated autoregressions produce
consistent least squares estimates of ARMA parameters
which may not be efficient, compared with MLE, but are
much easier computationally. Thirdly, Theorem 3 still holds
when ¢i, ﬂi, and o are replaced by consistent estimates
because convergence in probability implies convergence in

distribution.
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