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ABSTRACT

The standard error of the sample mean
for autocorrelated data is directly
proportional to the value of the spectral
density evaluated at zero frequency of the
process being sampled. Thus confidence
intervals for the true mean using traditional

formulas can be greatly in error.

This paper describes both parametric and
nonparametric methods of spectral density
estimation and illustrates numerically the
basic results using a personal computer
program called TIMESLAB which acts as a
laboratory for studying such problems.

The results of the paper indicate that
in many situations, adjusting for auto-
correlation is easily performed.

1. INTRODUCTION AND BASIC THEORETICAL

FRAMEWORK

Let Z be the set of integers and let X
denote a discrete-time, continuous-space time
series {X(t), teZ}, i.e. at each integer time
point t, the random variable X(t) is
considered to be absolutely continuous.

We say that X is covariance stationary
if the mean of X(t) is a constant p
independent of t and the covariance of any
two X's separated by an integer time lag v

is also independent of time. Thus

E(X(t)) = u,

Cov(X(t),X(t+v)) R(v),

for-t, veZ,

where E and Cov denote the expectation and
covariance operator.

In order to obtain useful results about
¥ we need to assume that the autocovariance
function R(v) decays to zero at a reasonable
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if X's fifty time
units apart are correlated and we only have a

rate as v+e~. For example,

sample of length thirty, then there is
important information that cannot be
obtained from the data without some
assumption about the decay of R(v).

If all joint distributions of a
covariance stationary time series are
multivariate normal, then knowledge of y and
R completely characterize the probabilistic
behavior of X. Further, many of the basic
results of time series analysis are valid as
the sample length goes to infinity even if X

is not a normal time series.

If R(v) tends to zero as v tends to
infinity quickly enough that

L

V= =00

’

JR{V) | <o

then we can define the Fouriexr Transform of R

©0

L

v==00

-2wive
1

£(w) R(v)e wel[0,1] (1)
and can invert the Fourier transform to
obtain

1 R
R(V) = [ £(w)e2™ Wy | vez
(o]

(2)
The function £ is called the spectral density
function of X and is mathematically
equivalent to R as £ and R are Fourier pairs
as defined by (1) and (2).

"If we normalize R(v) by the variance
R(0) of X,
function e(v),

we obtain the autocorrelation
defined by

e(v) Corr(X(t),X(t+v)

Thus we can write
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£(0) L

v=—o

R(Vv)

L

V=00

R(O) e(v)

The basic statistical properties for X
are given in the following Theorem, details
of which can be found in standard Time Series
Analysis texts (see Priestley (1981), section

5.2 for example).
Theorem 1.1

Let X be a covariance stationary time
series having autocovariance function R,
autocorrelation function p and spectral
Let X(1),...,X(n) be a
1

n
a L X(t). Then
t=1

density function f.

sample from X and let X

a) E(X) = u

n-1

L
v=-(n-1)

b) n var(X) (1-hrv)

-+ f£(0) as n » e

Thus X is unbiased and consistent and is
also called ergodic since the time average X
for one possible sample converges in

probability to the ensemble average p
E(X(t)).

we also have that X is asymptotically normal,
£(0)
—E_—)'

Under certain general assumptions

and thus we will write X . N(p,

Recall that the usual random sampling

o2

where 02 is the

n X
variance of the population being sampled.

result is that X . N(p,

£(0)
A simple example of

Thus in the presence of autocorrelation,
2
%"
v, -

[ ;, 1.e. the auto

plays the role of o

this is when g(Vv)
correlation between X(t) and X(t+v) decays
exponentially. This autocorrelation function
arises from an autoregressive process of

i. when

order one, e.

X(t) eX(t-1) + e(t)

where € is a white noise serxies of zero mean
uncorrelated random variables having constant

variance oi. For this model we have
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ci |v
R(v) = 5 @ | ' (3)
1-¢
and thus p(v) = plv', and some algebra gives
2
%
Elw) = |1_ge2vivw'2 (4)
. R 2 _ 2
which, since g, = (1-0°) R(0O) by (3), means
2
° R(0) (1-¢2) _ R(O) (1+g)
£(0) = S— = 58> = e
(1-9) (1-@) 1-e

To finish the example, consider two models
for data X(1),...,X(n);

from a poulation having variance ci, and 2)

1) a random sample

an autoregressive process of order one also
i. Then the ratio of the
variance of X under model one to that under

having variance o

model two is

ai/n
e =
n

1-0
—_ — (5)
+
o2(1+e)/m(1-g) 7O
which can range anywhere from zero to
infinity. Thus autocorrelation must be
considered very carefully when estimating u.

2. NONPARAMETRIC AND PARAMETRIC SPECTRAL
DENSITY ESTIMATION
From Theorem 1.1 we see that the problen
of finding the properties of i is actually a
problem of estimating £(0).

The parametric approach to estimating £
consists of two steps: 1) find a model for
the time series X that only has a small
numbexr of parameters and seems to match the
2) Estimate

the parameters of this model and substitute

properties of the observed data.

the estimates into the formula for the
Thus in the
if the autoregressive

spectral density of the model.
example of section 1,
suitable,

model were determined we need only

estimate cz and ¢ and substitute these

estimates into (4) to get an estimate of £f.

2.1 The Nonparametric Approach

The nonparametric method ignores the
possibility of a parametric model and
operates directly on the general formula for
£
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L

V=-oc0

-2wive

f(w) = R(v)e (6)

In this approach, if we have data
X(1),..
correlations between X's at most n-1 lags
apart.

.+ X(n) we have only information about.

The basic approach is to estimate the
true autocovariances R(0),...,R{n-1) by the
sample autocovariances
n-v _ -

L (X(t)-X) (X (t+v)-X)

t=1

Bl

R(v)

ﬁ(—v),[v](n

and then truncate the series (6) somehow and
Note that in the
parametric approach an assumption is made
about the form of R(v),
example,

use R instead of R,

see equation (3) for
and thus in this sense we have
information about R(v) for all lags v.

We note again that the formula (6) is
merely a Fourier series. There is a vast
literature on speeding up convergence of
Fourier series by using weighting functions
(see Brillinger (1975), section 3.3 for
example). Thus the most widely used
nonparametric estimates of f are weighted
truncated Fourier series of the form
M
L

v=-M

Flw) = k(DR (v)e 2TiVe

for some lag window k which is chosen to be
symmetric about v=0. The most popular

windows are the Parzen window kp and Tukey

window kg given by
1 - 6u® + 6u’ , ogu<s
kp(u) =
2(1-w)3 r3<uct
k., (u) = ) (1 + Cos 2wu) 04y, 1
T 2 ' =2

See Priestley (1981), section 6.2 for a

detailed discussion of windows.

The difficult part of nonparametric
spectral density estimation is choosing the
truncation point M. Typically one is advised
to txy various values and any features in f
that are common to all values are considered
real, while features that are not common to

all require further investigation.
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2.2 The Parametric Approach

The most popular class of parametric
time series models is the ARMA class, i.e.
the autoregressive-moving average process of
order (p,q) which models X at time t as a
linear combination of values of X at the
previous p values of t plus a linear
that occur at
previous g times:

combination of random "shocks"

time t and the

X(t) + u1X(t—1)+...+upX(t—p)

e(t) + B1e(t-1)+...+qu(t—q)

In oxrder for -this model to make sense for all
integers t, the complex valued polynomial

P N
1+ I a.z?

j=1 7
greater than one in modulus.

g(z) must have all of its zeros

The series of
random shocks & is taken to be white noise
with variance 02 The example in section 1

is just the case where p=1 and g=0.

The ARMA(p,q) model was perhaps
popularized most by Box and Jenkins (1970)
who use it for prediction purposes rather
than spectral estimation. The model also has
been widely used for spectral estimation
particularly due to the work of Akaike (1969)
and Parzen (1977).

model are p, q, Sqro.

The parameters of the

p' Bo]l"'ﬂq
as made clear by the formula for the spectral

e and o2

density (which is just the ratio of two
finite degree trigonometric polynomials)

2nikw, 2

2vijwl2

L
1+ B, €
2 Tk

= g

f(w)

| g
1+ a.e
j=1

This model also says that g(v) satisfies

a pth degree difference equation (with

coefficients «o ,up) as soon as v is

qreee

greater than q. Since the zeros of g are

greater than one in modulus this dictates an
exponential rate of decay of po.

Thexre are two major problems in

parametric estimation of f: 1) Estimating

Orders, and 2) estimating the a's, B8's, and
02. If we assume that the e series is

normally distributedzand we let &j,1""' 3,3
Bk,1"“'8k,k' and °j,k be the maximum
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likelihood estimators of the parameters for
order (j,k), then the most widely used method
foxr estimating the order of the ARMA process
is to choose (p,q) to be the values of (3j,k)
minimizing the AIC criterion

2

) - j+k
AIC(j, k) = log &5 2(3+k)

+
n

The calculation of the a's and B's is a very
difficult computational problem. Melard
(1984) discusses an algorithm for doing the
maximization problem that appears

satisfactory even on personal computers.

Much of the emphasis in the parametric
estimating of a spectral density has been on
the special case of an ARMA(p,0Q) model, i.e.
the autoregressive process of order p,
denoted AR(p):

X(t) + u1X(t—1)+...+upX(t—p) e(t) ,

tez

N
This model has several useful features,
including 1) almost any covariance stationary
time series can be adaquately modeled as an
AR(p) for some (possibly laxge) order p, 2)
the autoregressive spectral estimator can be
interpreted as a maximum entropy spectral
estimator (see Ulyrich and Bishop (1975), 3)
the calculations involved in the estimation
process are much simpler than those in the
general ARMA case, and 4) there are several
theoretical results available for the AR case
that are not available for the ARMA case.

1983) discuss
the determination of simultaneous confidence

Newton and Pagano (1984,

bands for an AR spectral density and a
confidence interval for the value w where
f(w) is a relative maximum.

3. THE TIMESLAB TIME SERIES ANALYSIS

LABORATORY

For several years we have been writing
time series analysis software (see Newton
(1983a,b), The result of this
effort is a command-driven,interactive-

for example).

graphics program for IBM type personal
computers called TIMESLAB which is to be
published by Wadsworth and Brooks/Cole in
early 1987. TIMESLAB is too extensive to
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describe in detail here. 1In this section we

give a brief description.

TIMESLAB consists of approximately 150
commands. The user can either issue these
commands one at a time or else create a file
containing several commands and then issue a
command to successively issue each of the
commands in the file. Such a file is called
a MACRO file and the command used to invoke

the MACRO is called MACRO.

One important TIMESLAB command is called
DOS, which when invoked puts the user into
what we call the "DOS mode",
that the user could issue from the DOS prompt

i.e. any command
can be issued at this point while still in
TIMESLAB.
utility that they want while still inside of
TIMESLAB.

This allows users to use any

To illustrate what commands look like
consider the following commands that could be
invoked as a MACRO if they were first entered
into a file (either by using the TIMESLAB
built-in full screen editor or by using some
external editor from the DOS mode). Note
that the ? is the TIMESLAB “prompt" and is
not typed by the user and that we have
inserted line numbers for reference:

?N=10

?SEED=12345.

?¥X=WN(SEED,N)

?FNAME='WN1.SCN'
?SAVESC(FNAME)
?HIST(X,N,10,-4,4,.5)
?RHO=CORR(X,N, 36,256, 1,R0O,PER)
?SAVESC(WN2.SCN)

1
2
3
4
5.
6
7
8.
9. ?PLOT(RHO,36,-1,1)

10. ?7SAVESC(WN3.SCN)
11. ?PLOTSP(PER,256,R0)
12. ?RESCREEN(WN1.SCN,WN2.SCN,WN3.SCN, 1) .

Line 3 generates a Gaussian white noise
series (henceforth referred to as X) of
length 100 points,
resolution (640x200 pixels) version of the
X using 10 intervals so that the

line 6 generates a high

histogram of
horizontal axis is -4 to 4 and
.5.
sample variance RO of X as well

scale on the

the vertical axis is 0 to Line 7 says to

calcuate the

as its first 36 autocorrelations (called RHO)
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and its periodogram (PER) evaluated at the
256 equally spaced frequencies between O and
1. Then line 9 says to plot RHO(i) vs i for
i=0,...,36 on a scale of -1 to 1, while line
11 says to produce a plot of the log PER/RO)
vs frequencies for the frequencies between
0. and .5 (there are actually 127 such
fregencies but to decrease confusion almost
all frequency specifications refer to the
number between O and 1).

Lines 5,8, and 10 tell TIMESLAB to save
compressed images of the histogram,
correlogram, and periodogram onto files
called WN1.SCN, WN2.SCN, and WN3.SCN
respectively, while line 12 says to redisplay
these images one after another and to erase
each one before doing the next. Using this
feature essentially allows the user to
produce a set of "slides" of an analysis for
later display. Each such file requires
between 3000 and 6000 bytes depending upon

how dense the image is.

All of the plots that TIMESLAB produces
on the screen are high resolution pixel
graphs. Whenever one is produced, TIMESLAB
pauses and gives the user the opportunity to
either print the screen using a specially
designed "screen dump", to save the screen
onto a file for later display, to use an
interactive locator/labeling utility called
FIND, or to return to the TIMESLAB prompt for
the next command. This pause can also be
overridden by the BATCHON command which can

be used for "production running" of MACROs.

To illustrate how TIMESLAB can be used
for studying the sampling properties of the
sample mean, consider the following MACRO
which illustrates the AR(1) example in
section 1 of this paper. The lines starting
with a semicolon are comments and document

what the MACRO does.

MACRO to generate 100 AR(1) samples

of length 100 and calculate confidence
intervals with and without allowance
for autocorrelation.

Initialize:

e ma %0 % we we e

ALPHA=<-,75>
LL1=LINE(100,0,0)
UL1=LINE(100,0,0)}

LL2=LINE(100,0,0)
UL2=LINE(100,0,0)
X=WN(SEED, 10)
CNT=1

;START

X=ARDT (ALPHA,1,1,0,100,IER,RO)
X=SUBMNS (X, 100, 1,XBAR)
RHO=CORR(X,100,1,0,1,PER,RO)
RHO1=EXTRACT(RHO,1,1)

’

H Ignore Autocorrelation:

SE1=R0/100.
SE1=SE1°.5
SE1=2.*SEl
LL1{CNT]=XBAR-SE1
UL1[CNT]=XBAR+SE1l

Use Autocorrelation:

TR TERY

R1=1.+RHO1
R2=1.-RHO1
SE2=R0/100.
SE2=SE2*R1
SE2=SE2/R2
SE2=SE2".5
SE2=2.%*SE2
LL2[CNT]=XBAR-SE2
UL2[CNT]=XBAR+SE2

r

IF(CNT.EQ.100,END)
CNT=CNT+1
GOTO(START)

’

;END

The MACRO simulates 100 series of length 100
from a normal AR(1) process with oy =-.75
and true mean O. This corresponds to g(1) =
.75. For each sample, a 95% confidence
interval based on X is calculated in two
ways; the first using the traditional
standard error formula, while the second uses
the formula in section 12 which incorporates
information provided by £(0). Figures 1 and
2 contain plots generated by TIMESLAB of the
resulting sets of 100 confidence intervals
and illustrate how incorrect the traditiomal
confidence intervals can be if auto-
correlation is ignored. 1In figure one, 93 of
the confidence intervals contain the true
value of y while in figure two, only 50 of
the intervals contain u.
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Fig 1. Confidence Interwals For p=0 Using Autocorrelation

2,08
1.68
1.2e

.88
]

.80 - »

-.40
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~1.69

] 18 28 38 4 S8 6@ 7% sh 9% 108
Sample Mumber

Fig 2. Confidence Intervals Fop P=0 Ignoring Autocorrelation

10 20 30 W 50 60 70 e 5
Sample Number 100

4. Numerical Examples

We used TIMESLAB to perform an experi-
ment on the use of £(0) in finding 95%
confidence intervals'of u for several
different models and sample sizes. For each
model/sample size combination we generated
100 realizations and kept track of the number
of times the calculated confidence intexrval
included py. In each case the true mean was
u=0 and the data generated was normally

distributed.

The simulated data come from four AR
models:
Model I: AR(1)

X(£)+aqX(t-1) = e(t)
for ag = -.9, -.8,...,.8,.9.
Model II: AR(2)

X(t)-.4X(t-1)-.45X(t-1) = e(t)
Model III: AR(5)

X(£) + 1.7X(t-1) + 2.4X(t-2)

+ 1.634X(t-3) + .872X(t-4)
+ .168X(t-5) = e(t)

Model IV: AR(4)

X(t) - 2.7607X(t-4) + 3.8106X(t-2)

~2.6535X(t-3) + .9238X(t-4) = e(t)
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Model I was chosen because AR(1)
autocorrelation seems to exist in many real
applications while Models II, III, and IV
provide examples of models that can be
classified as easy, moderately difficult, and
extremely difficult to estimate as reported
in Newton and Pagano (1984). The true values
of £(0) for Models II, III, and IV are 44.44,
.016547, 9.753431.

The Burg algorithm (Ulrych and Bishop
(1975)) was used to estimate the parameters
of the process. The experiment was performed
both using the true order and an order
estimated by the AIC criterion. Since the
results were practically identical under both
conditions, we only report the known order

results.

Samples of sizes n=50, 100, 200, and 400
were used.

Table 1 presents the results for the
AR(1) case as a function of o = ~aq and n
while Table 2 shows the results for Models
II, III, and IV.
observed coverages are certainly consistent

Note that in general the

with the nominal confidence level.

Exceptions are Table 1 for ¢=.8 and .9 for
n=50 and n=100 and Table 2 for Model II and
n=50, 100.
equation (5) which shows thét the "egquivalent

This is not surprising in view of

random sample sizes" are actually much
smaller. For example, if ¢=.9 and n=50, then
the equivalent sample size is n(1-p)/(1+p0)

= 2.5,

TABLE 1. Confidence Interval Coverage for

an AR(1) for Various n and ¢

n

50 100 200 400
~.9 94. 94. 96. 94.
-.8 93. 94, 96. 96.
-.7 92. 98. 96. 92.
~-.6 97. 97. 95. 96.
~-.5 98. 98. 96. 99.
-.4 93. 96. 94. 90.
-.3 98. 96. 98. 95.
-.2 95. 93. 94, 93.
-.1 94. 93. 96. 95.
<] 0 90. 97. 91. 94.
.1 95. 98. 98. 97.
.2 91, 91. 94, 97.
.3 90. 95. 91. 94,
.4 94. 95. 97. 99.
.5 92, 93. 95, 96.
.6 89. 93. 96 . 93.
.7 91. 90. 95. 93.
.8 79. 91. 95, 95.
.9 76. 82. 90, 91.
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TABLE 2. Confidence Interval Coverages for
Models II, III, IV
n
50 100 200 400
II 74 83 . 92 97
Model III 99 96 99 99
v 100 100 99 100

To get an idea of the sampling
properties of f(O), we give in Figures 3 and
4 histograms of £(0) for Model II for n=100
and n=400. As expected, the variability for
n=400 is less than that for n=100, and there
is less skew as well. It would appear that
the distribution of £(0) is chi-square that
could be converging to normal as n-e.

It should be pointed out that while the
behavior of f(O) is interesting (and
insightful results remain to be found), it is
the studentized variable /n E/!ETBT that is
really of interest and the results of this
section show that it performs well.

Fig 3. Histogram of T(@ for Nedel 11, n=i@g
(Vertical axis is proportion/2@). True £(@)=44.44)

19b 1ab 144

28 48 60 6@ Tea 188 288
Value
Fig 4. Histogram of T(@ for Model 11, n=408
{Uertical axis is prupottxonlzﬁ). True £¢8)=44.44
Ja15}
88 108 128 148 168 188 208

Value

5. SUMMARY

In this paper we have shown how the
estimation &f the spectral density of a time
series plays an important role in determining
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thé sampling properties of X and that the
whole range of modern time series analysis
techniques can be brought to bear on the
problem via a program such as TIMESLAB.
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