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ABSTRACT

The behavior of sample means, which
needs to be understood by all applied
statisticians and users of simulation
methods,
basic guestion of both classical and modern

can be considered to be the most
probability and statistics. This theory, and
its implications for practice, will be
surveyed (in the methodology session on Time
Series Analysis of Sample Means) by three
statisticians who are experts on time series
analysis.

This paper consists of five sections
discussing: notation; spectral density
classification of memory type of a time
series; equivalent degrees of freedom of
asymptotic confidence intervals for the mean;
sample Fourier transforms and sample spectral
density; sample Brownian Bridge functionals
and standardized time series.

1. NOTATION AND INTRODUCTION

The reader of these papers on time
series analysis should be warned that time
series analysts are far from agreeing on a
standard notation to use for the basic
concepts of the field. My notation is
chosen not to be different but because it
seems optimal according to my philosophy of
notation.

Y(1),...,¥(T): a sample of size T,
congidered to be observations of a random
T
distribution

variable Y, indexed by t=1,2,...
F(y)=Prob{<y],
function of Y.

—ee{y Koo

Q(u), 0fLu<1: quantile function of Y,
also denoted Q(u;Y), defined by

o) = lu) =

F™(y):

inf (y: F(y)2u}, Ogu<1t,

sample distribution function of
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Y, defined by F~(y)=fraction of sample <y.
Q" (u)=F~~1(u): sample quantile
function of Y.

MY, mean of ¥: usually denoted E[Y]
My=["_ v aF(y) = J} Q(u) au

2(t)=¥Y(t)-MY: fluctuation series used to
represent Y(t) as a sum Y(t)=MY+Z(t) of an
unknown mean value MY to be estimated and a
zero mean series Z(t) called the error
series,

MY™,
set of conditions (which we do not state in

sample mean of Y: under a general

detail) an asymptotically efficient estimator
of MY is the sample mean, denoted MY~ or Y,

defined by
My™= §7_y aF"(y) = [} Q" (w) du
T
= (1/T) L Y(v)
£=1

Using the Central Limit Theorem, one
can derive the asymptotic distribution of
MY~
distribution of MY™ to be used to form

In developing expressions for the

confidence intervals for MY one could use the
sample variance VAR™[Y] and sample standard
deviation DS~[Y] defined by

T

E
£=1

VAR“[Y] = (1/T) (Y(e)-mMy~}2

DS"[Y1={var~[¥])}°5

We assume that Y(1),...,¥Y(T) are
identically distributed as Y but may not be
independent. However they are a sample from
a time series which is covariance stationary
in the sense that there is a function R(v),
v=0,+1,+2,..., such that




E. Parzen

coviyY(s), Y(t)] = R{t-8)

In the study of time series, the effect
of the marginal distribution of Y(t) can be
separated from the bivariate dependence of
Y(t) and Y(t+v) by defining the correlation
function

rho(v) = R(Vv)/R(0) = CORR[Y(t), Y(t+v)].

The Fourier transforms of R(v) and
rho(v) are denoted S(w), O<w1, and f(w),
0<w<1 and are called the power spectrum and
spectral density of the time series. Two
basic definitions are

f(w) = L exp(2rivw) rho(v), OLwlt ,

v=—ve
S(w) = R(O)f(w)

We interpret w as representing frequency
and its reciprocal 1/w represents period;
thus a peak (local maximum) in the spectral
density at frequency w = 1/12 represents the
presence in the time series of a sinusoidal
component or disturbed periodicity of period
12. Note that a time series Y(t) has period
P if Y(t+P) = ¥Y(t) for all t.

An AR(1) time series Z(T) - oZ2(t-1) =
e(t) where e(t) are independent N(O,c2) and
le]<1 has VAR[Y] = o2(1-02), rho(v) = olV],

£(0) = (1+@)/(1~e),
f(w) = (1-02)/(1+p2 - 20 cos 2wuw).
When Y(1),...,Y(T) are a sample from a

stationary time series, the sample mean
(under suitable conditions called "mixing")
is asymptotically normal. To find suitable
formulas for its asymptotic variance we write

T
VAR[MY"] = (1/T2) L COVLY(s), ¥Y(t)]
s, t=1
T VAR[MY~] = VAR[Y] L[ (1-[v/T|) rho(v)
jvi<T
As T-e, assuming L |rho(v)|(m,

T VAR[MY~] -+ VAR[Y] £(0)

ST (MY-MY™} /7 (VAR[Y1£(0)19°5 + N(O, 1)

The time series analyst is interested in
estimating the spectral density function to

help identify models for the time series. In
various applications, one only seeks to
estimate the value of the spectral density at
zexro frquency because its value is required
in other formulas. The infinite sum

£(0) = L rho(v)
V=—e

cannot be estimated by merely replacing each
rho(v) by an estimator. I would like to
emphasize that the observation that this
infinite sum is the value at zero frequericy
of the spectral density function is very
important and useful because it provides a
variety of methods for estimating £(0).

Correlations are estimated by sample
correlations defined by

-rho™(v) = R™(v)/R~(0),

in terms of the sample covariance function
(defined for v=0,1,...,T-1)
T-v
R(v) = (1/T) L {Y(t)-MY"}{Y(t+Vv)-MY"},
t=1
The variances of rho™(v) decrease to zero, as
T#w», as 1/T; the sum of M values of rho™(v)
converge to zero as M/T and does not converge
to zexro when the limit of M/T is positive.
The theoretical problem of spectral
estimation can be regarded as how to choose M
as a function of T so that M/T tends to O
while M tends to .

2. SPECTRAL DENSITY CLASSIFICATION OF MEMORY
TYPE OF A TIME SERIES

To estimate the spectral density one
must identify the memory type of the time
series in the spectral density domain. We
define a time series to be:

1. No memory if f(w) = 1 for all w;

2. Short memory if there exist positive
finite constants c and C such that

0<cKEf(w)<C<» for all w;
3. Long memory if it has a zero or an
infinity.
At a frequency wy at which £(-) is zero
or infinite we seek to modél the rate of
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approach to 0 or « by representing f(w) for w
near wg by

£(w) = (w-wgy) °L(w)

where L(w) is slowly-varying or log-like
function, and & is called the index of
regular variation at wqp.

A diagnostic statistic for memory is the
spectral dynamic range (SDR) and its
logarithm to base e (LSDR):

SDR = max f(w)
0<£w<1

- min £(w), LSDR

0<Lwg1

log SDR

The goal of the concept of memory is
best illustrated by considering an AR(1) time
series Y(t) - ¢ Y(t-1)
independent normal(0,o02) series.

e(t) where e(-) is

For an AR(1), SDR (1+]e]t/{t-|e|}.
table of LSDR corresponding to different

A

values of ¢ gives us a guide to how to assign
memory types:

[*] |.05|.15!.25|.35|.45‘.55'.65‘.75‘.85|.95

Lsor|.2 |.6 [1. [1.5]1.5{1.9|2.5]3.1{3.9]7.3

Based on this table and empirical experience
we might regard LDSR<1 as very short memory
and LSDLR>7 as very long memory.

When one simulates time series in order
to study the behavior of sample means,
insight into the numbers obtained is provided
by understanding: (1) the distribution of Y,
especially the type of its departure from
normality, and (2) the correlation structure
of the time series Y(t), especially the type
of its departure form independence (no
memory) as measured by £(0), the value at
zero frequency of the spectral density
function. An initial way to empirically
study the role of these effects on the
. behavior of the sample mean is by simulating
an AR(1) process whose marginal distributions
are exponential (a technical report by Will

Alexander is in preparaton).

Let us examine from the point of view of
time series memory type the time series model
considered by Titus (1985):

Y(t) MY + Z(t), MY = 10, e(t)= a(t) - 1
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where a(t) are independent exponential with

mean 1, Z(t) obeys the model

Z(t)~.5 2(t-1)-.3 2(t-2)-.2 Z(t-3)=e(¥),

initial values Z2(1)=2(2)=Z(3)=-3. The

memory type of the observed time series Y(t)
22.8 and its log
Results of
simulations of this time series model should

is long memory since £(0)
spectral dynamic range equals 6.

be interpreted as conclusions about the
behavior of the sample mean when computed
from long memory time series.

3. EQUIVALENT DEGREES OF FREEDOM OF

ASYMPTOTIC CONFIDENCE INTERVALS FOR THE
MEAN
One of the great contributions of

statistical theory in the first half of the
20th century was the development of small
sample statistical methods based on t
distributions, chi-squared distributions, and
F distributions. For a no-memory time series
exact (rather than asymptotic) confidence
intervals for MY are obtained by using the
fact:

ST (MY~-MY}/{c vAR~[Y110"3= ¢

T-1

where ty denotes Student's t distribution
T/(T-1).

with k degrees of freedom, and ¢

We can attain an approximate exactness
by using an approximation to ty (see Gaver
and Kafadar (1984));
approximation (see Parzen (1985)) is an

an example of an

asymptotic formula with correction factor h:

hk log (1 + (1/k)t2} » 22

where 22 obeys chi-squared distribution with

1 degree freedom, and we define

h=h(k) = (k-1)2/k(k-1.5).

We write symbolically

2 = (exp(2%/h()K) -1}k

This is a relation between distributions
of random variables which is stated more
precisely in terms of quantile functions; let
Q(u;X) denote the quantile function of a
random variable X. We argue that

approximately
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Q(1—(u/2);tk)=[{exp{Q(1~u;z2)/h(k)k}—1}k]°'5.

For u = 0.05, 0(.95;%22) = 3.84146. The
approximate and exact values of Q(.975; ty)

are given in Table I for k6.

Spectral density estimators £°(0) can be
used to form confidence intervals for the
mean, to take account of the (possibly
severe) effects of dependence, by using an

approximate distribution:

JT (MY~ - MY}/{VAR“[Y] £7(0)}0-5 =
t, = [lexp(z%/n()x)-11k10-5

One calls k the
equivalent degrees of freedom.

for a suitable value of k.
Research
continues on suitable formulas for, and
interpretation of, k. The next section
suggests a formula for £°(0) which
illustrates this approach to describing the
behavior of sample means in a manner suitable

for forming confidence intervals for MY.
TABLE I

Values of Q(0.975;ty)

k Exact Approximate
6 2.447 2.445
7 2.365 2.365
8 2.306 2.306
9 2.262 2.262

10 2.228 2.228

11 2.201 2.201

12 2.179 2.179

13 2.160 2.160

14 2.145 2.145

15 2,131 2.132

16 2.120 2.120

17 2.110 2.110

18 2.101 2.101

19 2.093 2.093

20 2.086 2.086

21 2.080 2.080

22 2.074 2.074

23 2.069 2.069

24 2.064 2.064

25 2.060 2.060

26 2.056 2.056

27 2,052 2.052

28 2.048 2.048

29 2.045 2.045

30 2.042 2.042

40 2.021 2.021

120 1.980 1.980

4. SAMPLE FOURIER TRANSFORMS AND SAMPLE

SPECTRAL DENSITY

To a time series sample Y(t), t=1,...,T,

one can compute (by the Fast Fourier

Transform) for k=0,1,...,T-1

T

L Y(t) exp(2nikt/T)
t=1

YFOUR (k) (1/7)

The sample mean and variance can be expressed

MY~ YFOUR(O)

T-1 2
VAR"[Y] = L |YFOUR(k)|
k=1
Note that YFOUR(k) are complex valued,
obeying YFOUR(T-k)=YFOUR* (k) where YFOUR* (k)
denotes the complex conjugate of YFOUR(k).

The random variables YFOUR(k),
k=0,1,...,[T/2] are asymptotically
uncorrelated for a stationary time series.
The sample spectrum S~ (w) and sample spectral

‘density £~ (w) are defined at w=k/T,
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k=0,1,...,T-1, by
5"(k/n) = TlYFOUR(k)lz
£°(k/T) = S~(k/T)/VAR™[Y] .
One can show that
T-1
VAR"[Y] = (1/T) E S"(k/T)
k=1
T-1
1 = (1/T) L £7(k/T)
k=1

Sample spectral densities are very wiggly and
For white noise (random
(k/n) are

need to be smoothed.
sample) the random variables f~
asymptotically independent exponentially
distributed with mean 1, and their optimal
smoothing yields an estimated spectral

1.
series one forms estimators £"(w) by suitable
averages of £ (k/T) for k/T in suitable

density £ (w) For short memory time

neighborhoods of w.

Thus it is natural to estimate S(0) by
$*(0) of the form (first suggested by Albert
Einstein in 1914 in a paper only recently

discovered)
]
§°(0) = (1/m) L s (k/T)
Asymptotically

2m S°(0)/S(0) +» chi-squared
distribution, 2m degrees freedonm
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JT (MY~-MY}/{S"(0)}0-5 + t distribution,
2m degrees freedom
One can form a confidence interval for MY
from the foregoing statistic, which can be
written in terms of estimators of the
spectral density (rather than the spectrum)
by

JT (MY~-MY}/{VAR"[Y] £°(0)1C-% o o

One can regard this statistic as being of
standardized time series type (discussed in
the next section) and also as standardization
by an estimator of the spectrum at zero
frequency if one lets m tend to « as T tends
to

One approach to choosing m in practice
is to choose it to be as large as is
compatible with the hypothesis that
£/, ..
distributed (using a test such as Bartlett's

£ (m/T) are identically
test for equality of variances). One expects
m to be small when time series memory is
long.

5. SAMPLE BROWNIAN BRIDGE FUNCTIONALS AND
STANDARDIZED TIME SERIES
When the sample mean MY™ of a stationary
time series is asymptotically normally
distributed,
can be described by writing

ST {MY™ - MY} - /5(0) wW(1)

its asymptotic distribution

We
use the notation W(1) to introduce the role
0<u<1, and the
Brownian Bridge process B(u), O<ugi1.

where W(1) is a N(0,1) random variable.

of the Weiner process W(u),

We define W(u) to be a zero mean
Gaussian process with covariance kernel
E[W(s)W(t)] We define B(u) to be
a zero mean Gaussian process with covariance

min(s,t).

kernel

E[B(s)B(t)] min(s,t) st.

W(u)

Equivalently one can represent B(u)
uw(1).

An important role in the empirical
analysis of time series (and in understanding
the theory of standardized time series
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introduced into simulation studies by
Schruben (1983)) is played by the sample
Brownian Bridge of a time series:

L
t<{Tu]

B~ (u) {Y(t)-MY™}//T , O<ul1
Under suitable mixing conditions one can show

weak convergence of the stochastic processes

{B"(u), Oguglt} =+ {(/S(0) B(u), O<ugi}

An important graphical tool for analyzing a
An
important feature of the plot is its range

time series is a plot of B*(u), O<u<1.

R"= - min B~ (u)

0<u<t

max B~ (u)
0<u<1

Let (S”)2 = VAR"[Y] = R™(0) denote the

sample variance. The sample R/S statistic is
the ratio RY/S™; Mandelbrot (1973) emphasizes
plots of log R™~ log S~ versus log T as a
diagnostic tool for measuring the Hurst
exponent of the time series which is a
measure of its "long memory" nature [see

Parzen (1986)].

R™is an example of a functional of the

sample Brownian Bridge B~ (-); its asymptotic

distribution obeys R~ - /5(0) R, defining

R - min B(u)

0O<ug1

max B(u)
O<ug1

To form a confidence interval for the
population mean MY from the sample mean MY~,
without estimating S(0), the approach of the
method of standardized time series is to form
a random variable whose asymptotic
distribution does not depend on S(0); an

example of such a random variable is
JT- {MY~™ - MY}/R™ -» W(1)/R

One can find an explicit formula for the
random variable on the right hand side which
can be related to the theory of the Kuiper
statistic in the theory of nonparametric
inference:

2 [ (8x%x%-1)exp(-2k%x?),
k=1

Prob[R>x]

Prob[R>1.75] = .05, Prob[R>2.0) .01.

Glynn and Iglehart (1985) have shown
that alternatively one can form standardized
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time series type statistics such that the
limit random variable has a distribution
which is Student's distribution with k
degrees of freedom for a suitable value of k.
They show that standardized time series
methods of forming confidence intervals for
MY are asymptotically larger than intervals
obtained by a method which consistently
estimates the asymptotic variance by
estimating S(0), the spectrum at zero
frequency. The connections between spectral
density estimation, construction of
confidence intervals for the mean MY, and
standardized time series can perhaps be
clarified by studying statistics which are
simultaneously a standardized time series
method and an estimated spectral density
standardization. We believe that an example
of such a statistic was introduced in the

preceding section, namely

2 m
T{MY~-MY}“/(1/m) L S"(k/T)

k=1

where one chooses m as a function of T so
that m » « and m/T+0 as t-e.
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