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ABSTRACT

A new modeling idea for comparing infinite-
source, ample-server models («/«) and finite-
source, finite-server models (£/f) is consid-
ered. This comparison provides an estimate of
the error when approximating an f£/f system
with an =/= system, and allows analytical so-
lutions of the =/« model to be used as control
variates. This approach is applied to esti-
mate the difference in performance between an
¥/G/~ gueueing system (/) and the classical
machine repair problem (£/f) and the differ-
ence in performance between infinite-source,
ample~server multiechelon repairable item in-
ventory systems and finite-source, finite-
server multiechelon systems. Using an «/® mod-
el as a control variate is shown to be an ef-
fective variance reduction technique for esti-

mating the performance of many f£/f systems.

1. INTRODUCTION

There is considerable interest in design
and performance of repairable item systems. A
simple case of a repairable item system is the
The
situation modeled has a population consisting

machine repair model shown in Figure 1.

of M items which we desire to be operational
at all times and Y spares that support the sys-
tem. There are C parallel repair channels.
If moxre than C items require repair, a queue
forms at the repair facility. Operating times
until failure are exponentially distributed
random variables with the mean time to failure
of any item denoted by 1/A. Repair is gener-
ally distributed with mean time to repair de-
noted by l/u (Cooper 1981, Gross and Harris
1985, Kleinrock 1975).

system is a multi-echelon repairable-item sys-

A more complicated
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Figure 1: Schematic of a Machine Repair Model
tem as shown in Figure 2. Three bases and a
depot are pictured. Items fail (independently
of each other) after operating for an exponen-
tially distributed length of time.

repair shops at each base and the depot.

There are
De-
pending on the type of repair needed, some

failed units must be sent to the depot to be
repaired. Each repair shop has a certain num-
ber of repair channels. Repair times have a

general distribution. Each base, as well as
the depot, stocks spare units which, if avail-
able, are dispatched to the location from which
the failed unit is received. 1If spares are
not available, requests are backordered. Per-
formance measures that we want to estimate in-
clude average numbers in or awaiting repair
and availability of operational machines. Ve
are interested in both transient and steady-

state behavior of these systems.

These systems all have finite repair capac-
ity and finite source (calling population).
No analytical solution exists, except for some
special cases with exponential operating times
and exponential service times (Gross and Miller
1984; Gross, Miller, and Soland 1983, 1985).

There are models for the above types of
repairable item inventory systems which make

simplifying assumptions. In particular, it is
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Figure 2: Three-base, One-depot Multiechelon
Repairable Item System

assumed that the systems have ample repair fa-
cilities, i.e., no queue, and infinite source
(calling population). Furthermore, these mod-
els do not address different backorder filling
strategies. Models with simplifying assump-
tions for the machine repair system in Figure
1 could be an M/G/c gqueue (infinite source
with failure rate MA, finite repair capacity),
or an M/G/«* queue {(infinite source, ample ser-
ver). Similar infinite-source, infinite-server
models for the multiechelon repairable item
system in Figure 2 are METRIC (Sherbrooke 1968)
for steady-state analysis and Dyna-METRIC
(Hillestad 1981) for transient analysis; both
these models assume a Poisson calling popula-
tion. These models are attractive because they
can be solved efficiently with numerical algo-

rithms.

Infinite-~source, ample-server multiechelon
models such as METRIC and Dyna-METRIC are much
rmore tractable than finite-source, finite-
repair-capacity models. However, they are only
approximations for most multiechelon systems
and hence they should only be used when they
are "good" approximations, in which case they
are clearly the model of choice. This leads
us to the problem of computing or estimating
the difference in performance between infinite-
source, ample-server models (=/«) and finite-
There are
it
will be a useful tool for determining whether

source, finite-server models (£/f).

two main reasons for doing this: First,

the =/« model is an acceptable approximation;

second, if it is not an acceptable approxima-
tion and we have an efficient estimation pro-
cedure for the difference, then the estimate
can be used to correct the =/ solution. This
second point amounts to using the «/» model as
We

show that for many £/f systems it is computa-

a "control variate" for the £/f model.

tionally more efficient to compute the =/» so-
lution using Dyna-METRIC, estimate the differ-
ence between f£/f and «/«, and add the two re-
sults rather than to estimate the behavior of
£/f directly.
useful role as a control variate for more

Thus Dyna~-METRIC can play a
exact models. We believe similar results hold
in steady state estimation using METRIC.

The purpose of this paper is to present a
method for efficiently simulating the differ-
ence between the behavior of £/f and »/« models.
The idea is to simulate a composite model that
incorporates the behavior of both f£f/f and «/«
models. We present this concept in Section 2
and illustrate it using the machine repair sys-
tem of Figure 1. In Section 3 we show that
this is an efficient way to estimate perfor-
mance parameters of machine repair systems.
In Section 4 we present a composite model for
f/f and =/ models of the multiechelon system
of Figure 2; and in Section 5 estimate the ef-
ficiency gained for some multiechelon test sys-
tems. Section 6 contains some concluding re-

marks.

2. A NEVW MODELING IDEA: THE COMPOSITE MODEL

We introduce a composite model as a general
idea to compare infinite-source, infinite-
server models and finite-source, finite-server
models. As an example, we present a special
case comparing an M/G/* gueuing system (w/«)
with the classical machine repair problem (f/f)
which has exponential up-times and general
service times. The difference between these
two processes is estimated by simulating a
more complicated open queuing network which is
shown in Figure 3 and Table 1. This network
includes both systems.. A Poisson arrival pro-
cess has rate MA; this corresponds to arrivals

to the =/ system and to the £/f system if all
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Figure 3: Network Whose Behavior Encompasses M/G/« Queue with Arrival Rate M\ and Classical
Machine Repair Problem with M Machines, ¥ Spares, C Repair Channels, Exponential (X)
Up-times, and General Repair Times.

M machines are operating. If fewer than M ma-
chines are operating there is an arrival rate
lower than MA to the £/f system which is equiv-
alent to a random thinning of the Poisson pro-
cess. This thinning is state-dependent: It
depends on the number of machines operating in
the £/f system. In Figure 3, branch "a" cor-
responds to arrivals which exist for both sys-
tems (»/« and £/£f), and branch "b" corresponds
to customers for the =/« system but not the £/f
one; for example, if the number of operating
‘machines equals M then customers take branch
"a" with probability 1. The customer who took
branch "a" also continues along path "e¢"; if
such a customer does not wait in the buffer,

he represents customers of both the «/« and the
f/f systems and his service corresponds to
service in the infinite-server repair shop and
also service in the finite-~server repair shop.
However, if he has to wait in the buffer, then
he represents only an arrival to the finite-
server repair shop, and it is necessary to
create a clone which receives immediate ser-
vice by going along path "&" (infinite-server
repair shop). Of the customers who went along
path "c", we distinguish between those who were
and those who were not cloned by labeling them

"WAITED" and "IMMED", respectively. The state
of this network is then given in terms of five
variables: the number of each of four differ-
ent customer types receiving service, and the
number waiting in the buffer. From these five
variables the number of customers in the f£/f

system and the number of customers in the o/«

system are calculated. See Table 1.

The composite model simulates the common
behavior of the two systems once and the spe-
cial behavior for each system once. Figure 4
shows the overlap idea of the composite model
as one of its advantages. In this model, if
most of the machine-repair customers can enter
repair without waiting in the buffer, i.e., if
the system has something approaching ample ser-
vice, then we get a significant overlap in Fig-
ure 4. This can be exploited to get variance
reduction in estimation of the difference in
verformance between the f£f/f and «/« models.

3. COMPUTATIONAL EXPERIENCE VITH
MACHINE REPAIR SYSTEM

Ve are interested-in four different per-
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Table 1: State Variables for Composite

Hachine Repair Model

W.EXTRA = No. customers in system who took
path b

. CLONE = No. customers in system who took
path 4 .

N.WAITED = No. customers in repair who
waited in buffer

H.INMED = No. customers in repair who
started service immediately
without waiting in buffer

H.BUFFER = No. customers in buffer

N.F.REP = No. customers in repair or await-

ing repair for machine repair
system
= N.BUFFER + N.WAITED + N.IMMED
N.OPERATING = Ho. of operating machines in the
machine repair system

= Min(M, M + ¥ - N.F.REP)

N.I.REP = No. customers in lM/G/~ system
‘ = N.EXTRA + N.CLONE + H.IMMED
W.DELTA = Difference between the machine
repair system and M/G/«
= N.F.REP - N.I.REP
= N.BUFFER + N.WAITED - N.EXTRA
- N.CLOMNE

£/f System /o System

©/o Syste

Common Behavior
(f/f customers who do
not wait in queues)

Composite Model Two Separate Models

Figure 4: The Overlap Idea of the Composite
Model

formance measures of the machine repair system.

They are:

ny = Average no. items in or awaiting repair
n, = Average no. of busy repair channels

ny = Average no. of operating machines

Ny = Probability that M machines are operating.

We estimate these performance measures for a
30.
The first approach is to simply

transient system at time t = We use two

approaches.

simulate an f£/f model of the system. The sec-
ond approach is to analytically compute the
behavior of an «/« model of the system, simu-
late the difference in behavior of the £/f and

o/ system, and add the estimates.

The efficiency measure of a procedure is
the product of the variance of the estimator
and the CPU time required to execute the pro-
cedure:

Efficiency = Variance * CPU time.

We estimate the efficiency by observing the
CPU time for each execution and estimating the
variance of the estimators of the performance
measures of interest (Gross, Miller, and Plas~
tiras 1984).
we need to investigate the variance of the f/f

Thus for the above two approaches

model and the variance of the difference of
the £/f model and the «/» model.

We wrote a SIMSCRIPT II.5 program to simu-
The
classical event-scheduling method is used.

late the composite model of Figure 3.

The waiting customers are modeled as temporary
entities. There are five types of-events:

arrival, immediate repair completion, waited
repair completion, clones repair completionm,
and extra repair completion. We observed dif-
ference of behavior between £/f and =/« using

this program.

We also wrote a SIMSCRIPT II.5 program to
simulate the £/f model of the machine repair
system. The system was modelled as an open
network similar to Figure 3, with a Poisson
source which was thinned. There are two types
of events: arrival and repair completion.

We used various cases as tests for compar-
ing the different simulation approaches. Some

of the cases considered are shown in Table 2.

" The repair times are Gamma with mean 1/1 and

shape parameter 2. These systems are initially
in perfect condition with no failed machines.
(One characterization of these systems is traf-
fic intensity; in Table 2 this is given for

the equivalent M/G/c'system.) Each case was

simulated for 1000 replicates. From our simu-

319



M. A. Ahmed and D. R. Miller

lator of the composite model we estimated the
difference between the f£/f model and the «/«
model for each of the performance measures
LY i=1,2,3,4; we also estimated the vari-
ances of these estimators. From our simulator
of the £/f model we estimated the four perfor-
mance neasures for the f£/f model as well as
the variances of the estimators. We also ob-
served the CPU times required to execute the
The results for the test cases
{(Note that

in Table 3 entries less than unity reflect

simulations.
of Table 2 are given in Table 3.

superiority of the composite approach.) Ve
see that the composite approach always re-
quires more CPU time but that it always gives
a variance reduction except in the case of

n, for high traffic intensity. (This anom-
aly reflects the fact that the «/«» model pro-
vides a horrible approximation for the distri-
bution of busy channels for a system with high
traffic intensity.) Overall the efficiency of
the composite approach is superior to the
straightforward approach of simulating the £/f

system.

Table 2: Some Machine Repair Test Cases

Case # M Y ¢ Igigig%gy A u
1 24 6 4 .48 0.1 1.25
2 24 3 4 .48 0.1 1.25
3 24 0 4 .48 0.1 1.25
4 24 6 3 .64 0.1 1.25
5 24 3 3 .64 0.1 1.25
6 24 0 3 .64 0.1 1.25
7 24 6 2 .96 0.1 1.25
8 24 3 2 .96 0.1 1.25
9 26 0 2 .96 0.1 1.25

In order to estimate the performance of
the £/f system using the composite simulator
we must compute the behavior of the «/w system
analytically. This can be done using basic
properties of the transient M/G/~ queue; see

Gross and Harris 1985. Table 4 also gives 95%

confidence intervals for the difference (DIF)
in behavior estimated from the composite simu-
lator, 95% confidence intervals for the £/f
behavior obtained@ by adding ‘the confidence in-
terval for the difference to the analytic so-
Jution of the «/« model, and finally 95% con-
fidence intervals for the £/f model obtained

directly from the f£f/f simulator.

Comparing the composite approach and the
straightforward simulation of the f£/f model,
we see that the composite approach produces a
significant decrease in the variance of most
of the estimators; but it also increases the
CPU time.
sity, the composite model is much more effi-

For light and medium traffic inten-

cient than direct simulation of the f/f meodel.
why is heavy traffic worse? This is because
the difference between the f/f and »/« models
is greater, which means they overlap less,
and therefore «/» becomes a bad approximation
of £/f. (See Figure 4.)

The composite model of Figure 3 is similar
to the usual method of paired-comparison anal-
ysis: 1in effect, we are putting the same cus-—
tomer stream through two different systems
(Law and Kelton 1982). What is different is
that the composite model just performs calcu-
lations which are common to both systems once
instead of twice. Thus we would expect only
slight differences in the variances of the two
approaches but significantly longer execution
times for the traditional paired-comparison
approach. We performed some calculations and
found this to be true: the composite approach
was between 25 and 50 percent more efficient
than the paired-comparison approach for the

nine test cases of Table 2.

4. A COMPOSITE MODEL FOR A
MULTIECHELON SYSTE!

The multiechelon system in Figure 2 can
also be analyzed using a composite model which
Table 5

lists the system parameters and state vari-

encompasses both £/f and «/~ models.

ables for such a composite model. We model
the depot and each of the three bases as open
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Table 3: Comparisons of Composite Model and Finite/Finite Model of Machine Repair Systems
Ratios for Estimator of Performance
Cife Variance Average Efficiency
CPU
Ny n2 n3 Ny Time Ny N2 N3 Ng
1 .058 .133 .500 .462 1.038 .060 .138 .519 .480
2 .055 .128 .156 .098 1.053 .058 .135 .164 .103
3 <107 .191 .107 .149 1.062 .114 .203 .114 .158
4 .327 .668 .853 .800 1.107 .362 .739 .944 .886
5 .279 .629 .496 .404 1.107 .309 .696 .549 .477
6 . 237 .552 .237 .273 1.108 .263 .612 .263 .302
7 .873 8.408 .993 .991 1.186 1.035 9.972 1.178 1.175
8 .812 6.047 .895 .988 1.186 .963 7.172 1.061 1.172
9 .728 3.808 .728 .850 1.153 .839 4,390 .839 .980
Note: Entries correspond to Var(Composite)/Var(finite/finite), CPU(Composite) f
CPU{finite/finite), and Efficiency(Composite)/Efficiency(finite/finite).
Table 4: Confidence Intervals for Performance Measures of Machine Repair Systems
Case # ® foo DIF F/F (»/o + DIF) F/F (Simulated)
n; = Average Number of Items in Repair or Awaiting Repair
1 1.916 071 < .094 < ,117 1.987 < 2.010 < 2.033 1.938 < 2,034 < 2,130
2 1.916 .029 < .051 < .073 1.945 < 1.967 < 1.989 1.899 < 1.991 < 2.083
3 1.916 -.141 < ~-,114 < -,087 1.775 < 1.802 < 1.829 1.742 < 1.826 < 1.910
4 1.916 .376 < .441 < .506 2.292 < 2,357 < 2.422 2.267 < 2.381 < 2.495
5 1.916 .289 < ,345 < .401 2.205 < 2,261 < 2.317 2.179 < 2,285 < 2.391
6 1.916 .028 < .074 < .120 1.944 < 1.990 < 2.036 1.219 < 2.014 < 2,109
7 1.916 3.260 < 3.456 < 3.652 5.176 < 5.372 < 5.568 5.186 < 5.396 < 5.606
8 1.916 2.226 < 2.382 < 2.538 4.142 < 4,298 < 4.452 4.149 < 4.322 < 4.495
9 1.916 1.196 < 1.316 < 1.436 3.112 < 3,232 < 3.352 3.116 < 3.256 < 3.396
N, = Average Number of Busy Repair Channels
1 1.916 -.057 < -.028 < .001 1.859 < 1.888 < 1.917 1.834 < 1.912 < 1.990
2 1l.916 -.078 < ~-.050 < -.022 1.838 < 1.866 < 1.894 1.812 < 1.890 < 1.968
3 1.916 -.203 < -,170 < -.137 1.713 < 1.746 < 1.779 1.695 < 1.770 < 1.845
4 1.916 -.089 < ~,036 < .0l17 1.827 < 1.880 < 1.933 1.839 < 1.904 < 1.969
5 1.916 -.112 < -,061 < -.010 1.804 < 1.855 < 1.906 1.814 < 1.879 < 1.944
6 1.916 -.237 < =-,189 < -,141 1.679 < 1.727 < 1.775 1.686 < 1.751 < 1.816
7 1.916 -.181 < -,098 < -.015 1.735 < 1.818 < 1.901 1.814 < 1.842 < 1.870
8 1.916 -.232 < -.152 < -.072 1.684 < 1.764 < 1.844 1.755 < 1.788 < 1.821
9 1.916 -.341 < -.265 < -,189 1.575 < 1.651 < 1.727 1.636 < 1.675 < 1.714
Ny = Average Number of Operating Machines
1 23.986 -.021 < -,012 < -.003 23.965<23.974< 23,983 23.968<23,.980< 23,992
2 23.798 -.044 < -,027 < -.010 23.754 <23.771<23.788 23.714<23.757< 23.800
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F/F (Simulated)

Case # /e DIF ¥/F (/o + DIF)
3 22.081 .087<  .1l4<  ,141 22.168< 22,195 < 22.222 22.090< 22,174 < 22.258
4 '23.986 -.074< -.053< -.032 23.912< 23,933 <23.954 23.917<23.939<23.961
5 23.798 -.232< -.190< =~-.148 23.566 < 23.608< 23.650 23.534< 23.594 < 23.654
6 22.081 -.120< =-.074< =-.028 21.961< 22.007< 22,053 21.891<21.986< 22.081
7 23.986 -1.235<-1.113< =-,991 22.751<22.873<22.9%5 22.757<22.879<23.001
8 23.798 ~1.742 < -1.609 < -1.476 22.056 < 22.189 < 22,322 22.034<22.175< 21.316
9 22.081 ~1.436 <-1.316 <~1.196 20.645<20.765< 20.885 20.604 < 20.744 <20.884
ny = Probability M Machines Operating
1 .996 -.011 < -.006 < ~.001 .985 < .990 < .995 .980 < .987 < ,994
2 .871 -.009 < -,002 < .005 .862 < .869 < .876 .836 < .858 < .880
3 .147 .007 < .016 < .025 .154 < .163 < .172 .136 < .159 < .182
4 .996 -.039 < -,029 < -,019 .957 < .967 < .977 .952 < .964 < .976
5 .871 -.086 < -.070 < ~.054 .785 < .801 < .817 .765 < .790 < .815
6 .147 -.014 < ~.003 < .008 .133 < .144 < ,155 .118 < .140 < .162
7 .996 -.369 < -.340 < -.311 .627 < .656 < .685 .623 < .653 < .683
8 .871 -.451 < ~.420 < -.389 .420 < .451 < .482 .409 < ,440 < .471
9 .147 -.071 < ~.055 < -,039 .076 < .092 < .108 .070 < .088 < ,106

networks. The composite models of the bases
are the same as in Figure 3 except the Poisson
arrival process to Base i has rate MiAiai in~
stead of MA, i = 1,2,3. The open network mod-
el of the depot is similar to that of the base
except it has three Poisson arrival streams
with rates Miki(1~ai), i=1,2,3, and it must
also manage backorders and depot spares. The
composite depot model is shown in Figure 5.
When an item arrives at the depot, its repair
time is generated and it is determined whether
it is an arrival to the f£/f system or only to
the =/« system. Then it is necessary to-either
send a depot spare to the originating base or
The rest of the model

is the same as Figure 3 except for the dispo-

to create a backorder.
sition of a repaired item: as an item leaves
the network it, in -effect, increments the depot
spares pool or fills a backorder according to
some backorder £filling. strategy.

5. COMPUTATIONAL EXPERIENCE WITH
MULTIECHELON MODEL

We are interested in five different per-
formance measures of the multiechelon repair-~

able item system. They are:

vy = Average no. items in or awaiting repair
at base

v, = Average no. items in or awaiting repair

at depot
vy = Average no. of operating machines at base
Vg = Probability that the desired machines are
operating at a given base.
Vg = Probability that the desired machines are

operating for the whole system.

To investigate the efficiency of the com-~
posite approach compared to straightforward
simulation of the f/f model we proceed as we
did for the machine repair system in Section 3.
e consider nine test cases as described in
Table 6.
shape parameter 2.

The repair times are Gamma with

We simulated 500 replicates
of each case for 0 < t < 30; we then estimated
the five performance measures and the variance
of the estimatoxs. The comparison of these
variances for the composite approach and the
straichtforward f£/f approach are given in
Table 7. The ratios of CPU times and effi-
ciencies are also given. We see as before
that the composite model leads to smaller var-
iances but longer execution times. Over this
class of models and performance parameters

there is a considerable improvement in effi-
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Figure 5: Open Network Whose Behavior Encompasses the Behavior of Depots
of Two Three~base Multiechelon Systems: One Which is
Infinite-source, Ample-server and the Other Which is

Finite-source, Finite-server

ciency over the straightforward simulation of
the £/f model.

6. CONCLUSIONS

This preliminary study shows that the com-
posite model is an efficient way to estimate
the difference in behavior between finite-
source, finite-server models and infinite-
source, ample~server models. We plan to use
this method to study the behavior of multi-

echelon repairable item inventory systems.

There are important questions concerning the
accuracy of METRIC and Dyna-METRIC, the effect
of different backorder filling strategies, and
optimal placement of spares and repair chan-
nels. It is important to smulate as effi-
clently as is reasonably possible in such a
study.
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Table 5: System Parameters and -State Variables for Multiechelon Composite Model

A(i) = Failure rate, Base i items

u(i) = Repair rate, Base 1 items

M(1) = Désired number of working machines at Base i

BC (1) = Number of repair channels in repair shop at Base i

BS (1) = Number of spares assigned to Base i

o{i) = Probability that machine failing at Base i is base repairable
DC = Number of depot repair channels

Ds = Number of depot spares

Hpy = Depot repair rate

N.EXTRA (i) = Number of customers in Base i who took path b

N.CLONE (i) = Number of customers in Base i who took path 4

N.WAITED (i) = Number of customers in repair at Base i who waited in buffer
N.IMMED (i) = Number of customers in repair at Base i who started service immediately

without waiting in buffer
‘N.B.BUFFER(i) = Number of customers in buffer at Base i
N.F.BACKORDER(i) = Number of finite backorders required at Base i
N.I.BACKORDER(i) = Number of infinite backorders required at Base i
N.OPERATING (i) = Number of operating machines at Base i
= MinCM(i), M(i) + BS(i) - (N.B.BUFFER(i) + N.WAITED(i) + N.IMMED(i) +
+ N.F.BACKORDER(i)))

D.S.FINITE = Number of finite depot spares available

D.S.INPINITE = Number of infinite depot spares available

N.D.EXTRA = Number of customers in depot who took path b

N.D.CLONE = Number of customers in depot who took path &

N.D.WAITED = Number of customers in repair who waited in depot buffer

N.D.IMMED = Number of customers in depot who started service immediately without waiting

in depot buffer
N.D.BUFFER = Number of customers in depot buffer

Table 6: Some Multiechelon Test Cases

Cage M BS BCi DS bC Xi oy Hy Hp
i=1,2,3 i=1,2,3 i=1,2,3 i=1,2,3 i=1,2,3 i=1,2,3

1 24 6 4 6 4 .1 .7 1.125 1.125
2 24 3 4 3 4 .1 .7 1.125 1.125
3 24 0 4 4] 4 .1 .7 1.125 1.125
4 24 6 3 6 3 .1 .7 1.125 1.125
5 24 3 3 3 3 .1 .7 1.125 1.125
6 24 0 3 0 3 .1 .7 1.125 1.125
7 24 6 2 6 2 .1 .7 1.125 1.125
8 24 3 2 3 2 .1 .7 1.125 1.125
9 24 0 2 0 2

.1 .7 1.125 1.125
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Table 7: Comparisons of Composite Models and f/f Models of Multiechelon System
Ratios for Estimator of Performance
Case Variance Average Efficiency
# CPU
vy vy Vq Vy Vg Time vy vy, V3 Vg Vs
1 .017 .040 * * * 1.095 .019 .044 1.095 1.095 1.095
2 .012 .039 .041 .000 .093 1.094 .013 .043 .045 .000 .102
3 .125 .089 .125 .000 .000 1.129 L141 .100 .141 .000 .000
4 .183 .348 1.000 * 1.000 1.119 .205 .389 1.119 1.119 1.11¢9
5 .249 .326 .407 .272 .415 1.121 .279 .365 .456 .305 .465
6 .166 .241 .166 .069 .000 1.150 .191 277 .191 .079 .000
7 .780 .878 1.000 1.000 1.000 1.164 .908 1.022 1l.164 1.164 1.164
8 .770 .848 .871 .787 .971 1.166 .898 .989 1.016 .918 1.132
9 .609 . 766 .609 .581 .500 1.197 .729 .917 .729 .695 .599
Note: * correspond to zero variance for both composite and f£/f models.
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