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ABSTRACT

This paper discusses the basic concepts
of using.a spectrally based approach to
identify a polynomial response surface
model. We show that this approach is closely
related to classical experimental design
methods. We concentrate on the use of Walsh
spectra, and show that an experiment which is
constiructed in this fashion corresponds to a
2k

traditional factorial design.

1. BACKGROUND

Spectral analysis has its roots in
Fourier analysis. It is essentially a method
for examining periodicities in a set of
data.

Consider a deterministic process y(t).
Regardless of whether y(t) is a deterministic
or a random process, the fundamental theorems
of Fourier analysis state that as long as
y{t) satisfies a set of requirements known as
the Dirichlet conditions, it can be
approximated arbitrarily closely on a finite
interval by a linear combination of sine and

cosine terms in the following fashion:

y{t) = +

3

B

fir18

[A, .sintw. t)
1 1,3 3

+ A, .cosde t)].
K]

2,3

This representation is called the Fourier
and the A’s on the right

hand side are called Fourier coefficients.

transform of y(t),

Suppose we take a finite sample of N
observations of y(t) at evenly spaced
discrete points which we will designate

t =1, 2,...4, N. We denote this discrete
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sample as the set of observations
{yl,yz,...,yN}. Such a sample can be

modelled exactly as

) N/2
Yy =1 +J§1 [A1,j51n(”jt) {2)

+ Az’jcos(ujt)].

where ”j = 2Zrj/N for j = 1,...,N/2. Equation
(2) is the finite Fourier transform
representation of {yt}. The process of
estimating the coefficients for equation (2)
is called Fourier analysis.

Walsh functions are a set of discrete-
valued functions which assume only the values
{~1,+1%.

having both even and odd symmetry.

They are orthogonal and complete,
Each
function is defined by convention on a fixed
interval [0,T]1, and is written WAL(n,t) with
t € [0,Tl. T is usually assumed to be 1, but
can be any value if the function is scaled
appropriately. The value n is an index which
corresponds to the number of zero crossings
[0, T1,

on the interwval which is called the

sequency of the Walsh function in an analogy
to frequency in trigonometric functions.
Walsh functions are paired by even and odd

symmetry and referred to as CAL and SAL

functions, respectively. These are defined
as:
CAL(k,t) = WAL (2k,t)
k= 1,0 (3
SAL (k,t) = WAL (2k-1,%)

where k is’the sequency.

The Walsh representation for a process
{y(t)} looks much the same as the Fouwrier
transform presented in equation (1). It is

given by:
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€0
vty = n + Z [B, _sAL(n,t) 4)
i.n
n=1
+ Bz,nCAL(n,t)]
where B , and B are the Walsh
i,n 2,n

coefficients for the odd and even functions,
respectively.

Our main interest is to study discretely
sampled data, so at this point we must make
the transition from continuous Walsh
functions into the discrete time domain.
This is done by scaling the time axis
relative to the highest order Walsh function
of interest, and sampling the value of the
continuous function over unit intervals. The
result is a vector of N numbers which
correspond to sampling WAL (k,t) at N equal
T/N. We will
WAL (k,i),
where i is the integer portion of C[(Nt/T)+11,
and define the value to be WAL(k,i) = WAL (k,t)
WALk, ) will be used to
indicate the vector consisting of WAL (k,i)
= 1,...4N.

The value of N should be chosen so that

intervals, i.e., at spacings of

specify the discrete version as

for i = 1,...,N.
for i

each Walsh function has a unique vector

If k¥ is the largest
sequence number we wish to observe then we
Nog Kl ,

associated with it.

set N =2 where the log is base 2 and
%] is the smallest integer greater than x.

As an example, if we were interested in Walsh
functions up to order 5, we could represent
them as vectors of length 8 whose elements
assumed the values t1. Two examples would be
WAL (0, )

WAL (5, -)

(1, 1, 1,
{ 1,-1,-1,

1, 1,
1,-1,

1,
1,

1, 13,
1,-1).

Ralsh functions are extremely easy to
generate. The reader who wishes to see
details of their construction is referred to
Baauchamp (1975).

Arithmetic operations on Walsh functions
make extensive use of the dyadic sum
opetrataor, which we will represent by "~".
The dyadic sum is a bitwise XOR operation,
where (p XOR q) is defined by the following

table.

307

o 1
q 3]
Lo} o 1
1 Q

Examples of the "~" ogperator are

7 111 4 1001
~ 8 L=> " 101 and ~ I <L=> ~ 00ii.
2 010 10 1010

The "~" operator is used to define the Walsh

multiplication property:

WAL (L, LIWAL(j,t) = WAL(i~j,t). {3)

Using the notation that N is the number

is the jth

of obeervations, yj term in the

output time series, and YP is the kth term in
the transform series, the Walsh
transformation is defined to be:
1 N—-1
Y = & igoinAL(k,1). &)

In defining the Walsh transformation we
are using the notation vy b Y to emphasize
that the original observations and the
estimated coefficients are a transform pair,
either of which could be used to fully
reconstruct the other. This notation is more
and Bz,j’ the Walsh
coefficients which were defined in equation
4).

concise than using B, .
1,35

We can change from one notation to the

Bok

other using the relationships Y2k

Yezky-1 = Bik

The Walsh spectrum can be defined

for k = 0,...,0.
analogously to the Fourier spectrum. We will
call the resulting estimator a Walsh
periodogram, and denote it as P(s) where s is
the sequency. FP(s) can be estimated, in a
manner analogous to the Fourier periodogram
I(uw}, by pairing the Walsh coefficients from
equation (4) by sequency, and finding the sum

of squares of each pair. This yields

-
P(Q) = 82,0
_ 2 2
P(k) = Bl,k + B2,k
-
P(N/2) = BI,N/2

for k = 1,2,..., (N/2)-1.
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2. SPECTRAL EXPERIMENTAL DESIGMN

We assume that the reader has some
familiarity with the geometric viewpoint used
by Scheffe (1959) to determine least squares
The least

squares estimators are found by orthogonal

estimators of linear models.

projection of the observation vector of
"dependent” variables onto a sub—space
defined by vectors of abservations of
"independent” variables. The independent
variables are considered as potential
explanatory or causal factors for the
dependent variable. Using this viewpoint
gives us a convenient perspective for
discussing spectral estimators.

If we view the vector of dependent
variables in a statistical linear model as a
time series (in the sense that it is an
indexed set), then the traditional Fourier
spectrum represents the vector as a set of
cyclic components which vary accearding to the
time index. We know from the theory of
Fourier analysis that any finite set of
finite observations can be uniquely expressed
as a set of Fourier coefficients, and the
original observations can be reconstructed
from those coefficients. The magnitude of
the coefficient indicates the relative
importance of a particular term in
determining the outcome. In tclassical
spectral analysis, terms with the same
frequency are grouped together to give an
The
periodogram is a plot of the resulting
It has the

interpretation that a large value at a given

estimator which is phase invariant.
estimator versus frequency.

frequency, often referred to as a "spike" in
the spectrum, indicates that the factor which
was varied at that frequency is an important
componént in the observed series.

Stated simply, we are finding a set of
orthogonal functions, sines and cosines with
"We then

use it as a basis upon which we project the

integer multiples of frequencies.
observed data, just as Scheffe does with
linear models. This classical form of

Fourier analysis is well understood, and is
in common use by physical scientists because

of the relatively intuitive interpretation of
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frequency when studying vibrations of matter,
light,

However,

cycles in biological data, etc.

sines and cosines are not the only
function set which could be used as a basis.
The procedure described above actually only
used the completeness and orthogonality
Recall

that completeness means that there is no

properties of sine/cosine functions.

subspace which is orthogonal to the space
spanned by our basis. The property of
orthogonality gives us independence of the
estimators and simplifies calculations. Any
set of functions with these properties can he
The last fifty

years has produced a large body of literature

used to obtain a spectrum.
on alternate bases. There has been an
upsurge of interest within the last twenty

years in discrete function sets, such as Walsh

and Haar functions, because of their )
applicability to digital signal processing.

Orthogonal decomposition has some nice
properties for statistical analysis. Let us
consider the form the analysis takes when
Walsh functions are chosen. We assign a
different Walsh function teo each factor which
The Walsh

functions must be assigned sc that if

is potentially in ow model.

interactions exist, we have a uniguely
identifiable Walsh function which corresponds
to the interaction. This can be done (with
some work) using the multiplication rule
presented in the synopsis of Walsh
properties. (An example is given later in
the paper.) We then run our experiment by
changing factor levels at time t according to
the value of the assigned Walsh function at

a Walsh function is

time t. The outcome of

either a +1 or a -1, so we should select an

appropriate mapping for

studied.

the factor being
For instance, if we are working with
a continuous variable, we may choose to use
the lowest factor setting of interest

and the

Alternatively,

whenever the Walsh function is -1,
highest value otherwise. we
could do just the opposite. It is unimportant
which mapping we choose as long as we are
consistent.

We represent the observation series as a
vector Y, and represent the basis set as a

matrix W whose columns are Walsh functions.
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Our goal is to find the vector of
coefficients B such that Y Wh. IFf W is not

a square matrix of full rank there is not a

unique solution, but one solution is to use
the least squares estimator for #, which is
calculated using the formula (NtW)_ith_

With an orthogonal basis the computations are
Since the

greatly simplified. columns of W

are orthogonal the wtw term is a scalar times
its inverse.
that if W is

an NxM matrix of Walsh functions the

the identity matrix, and so is

In fact, it is easily verified
resulting least squares estimator for B is

found by

Notice that this is the matrix form of the
Walsh tranformation presented in equation
(6). This means that the Walsh tranformation
results in the least squares estimator for
B

are willing to make the classical

the vector

If we
statistical assumption that, the observations
are independent normal random variables with
common variance 02, i.e., the variance-
I’

of B is calculated as

< . - 2 :
covariance matrix is ¢ then the variance-—
covariance matrix

follows.

Cov{B)

CDV[ % WtY ]

wicov (V) w

- [
=

w2 ru

IqN =
3]

[

r4

I.

2|
]

It follows immediately from the normality
assumption that the estimators are
independent.

Under the classical assumptions it can
also be seen that the estimator consists of
linear combinations of the observations and
hence is itself normally distributed. Recall
that our model is ¥ = WB. If we wish to test

whether a given factor has a significant
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effect, we are testing whether the associated
with Walsh

vectors as a basis this is the same as

B is non-zero. For example,

stating a null hypothesis H., that there is no

significant variation at seguency s if the
corresponding BS = 0. AsAshown by
Sanchez (1983), squaring Bs and scaling by
the variance yields a central xz variable
under the null hypothesis. If we wish to
compare two different values, we can take the
ratios of the squares of the B8°s. We saw
above that the coefficients are independent,
so the resulting xz random variables will
also be independent. Since the estimators
all have a common variance the unknown
variance terms cancel out when we take the
ratio, and we obtain a valid F statistic.
Recall that the Walsh spectrum is
estimated by summing the squares of pairs of
Walsh coefficients. It follows immediately
that this spectrum estimator consists of
independent xz random variables under the
null hypothesis that there is no effect at a
given sequency. This result can be used to
do analysis of variance (ANDVA). IFf we could
determine a priori that a particular sequency
offers no contribution to the outcome, then
the coefficient associated with that sequency
could be attributed soclely to the variance of
the process. That coefficient could then be
used as the denominator for ouw F tests in an
ANOVA. Our problem is that we have an over—

specified model. In Walsh analysis, as in

Fourier analysis, all of the data points are
fit exactly. There are no degrees of freedom
left for estimating variance.

There is a solution to this problem. We
can do as practitioners of ANOVA do, and
assume based on prior knowledge or reasonable
supposition that some of the terms do not
actually belong in the model, and hence have
zero coefficients. Using the reasoning given
above, all such terms would constitute

independent xz variables, and because of
their independence could be summed to
increase the degrees of freedom for the
denominator of the F test. Since we have
chosen our function set for completeness,
between them all of the estimated terms will

account for all of the variability abserved.
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We partition the space into sub—spaces which
we view as a factor space and an error
space. In fa&t, this partitioning is a well
known and important relationship called
Parseval’s theorem, and holds for Walsh
analysis as well as Fourier analysis.

A second solution was proposed by
Cogliano (1981).  His recommendation was to
make a "noise" run in which the factors are
all held at nominal values, so that any
variation observed in the output is
attributable solely to the variance of the
process being studied. Then make a second
run in which factors are varied in a
controlled fashion, and calculate the spectra
for the two runs. Any large difference in
the observed heights of spikes in the two
spectra at the same sequency is due to factor

effects.

3. EXAMPLE

We will use a Zk factorial experiment as
an illustration. In order to keep the

example manageable, we will use k=3. Since
we are only considering two factor levels for
each of the 3 factors, Walsh functions are a
natural choice. If we wish to have a full
+tactorial design, we must choose the Walsh
functions so that each factor and all possible
interactions are identifiable. We will use
the notation WAL(i,-) to denote a Walsh
vector of appropriate length having sequence
number i.
factor X1

for an X1X2

The product of two Walsh functions is another

Then if we assign WAL(i,-) to
and WAL (j, ) to X2,
interaction at WAL (i, -)WAL(3,-).

we would look

Walsh function, which ran be identified using
relationship (5).

The problem of selecting sequencies such
that there will be no overlap of the
identifying terms for interactions is
(1985) .

example, we would not in general wish to

discussed in detail in Sanchez For

assign Walsh functions 1, 2, and 3 to factors
1, 2 and 3, respectively. If we did so, we
would be unable to state whether a spike at
WAL (3, -) was due to factor 3 or to an

interaction between factors 1 and 2. However,
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for a full factorial design, one simple
splution is to reserve one bit location for
each of the main effect factors, i.e., each
factor is assigned a Walsh function which is
a power of 2. When there are no bit
locations shared by the two numbers, a dyadic
Thus, if
we have k factors we will use Walsh functions
2o thr-ough 2k_1.
factor 1 is assigned WAL(1,-.),

sum is the same as normal addition.

For our example this means
factor 2 is
assigned WAL(2,-), and factor 3 is assigned
WAL(4,-). We get the following table for
observing factars and effects.

Model Term Observed At

X1 WAL (1, -)
Xz WAL (2, -)
X3 WAL (4, -}
X1x2 WAL (3, -)
X1X3 WAL (S, -)
X2X3 WAL (&, +)
WAL (7, )

X1X2X3

This corresponds to the design matrix given
in Table 1. The estimators would be obtained
by taking the vector product of each column
with the vector of observations, Y.
Actually, it is both equivalent and
computationally easier to do a Fast Walsh
Transform (FWT) to obtain these values. The
statistical analysis would then consist of
designating one or more of the terms as our
error space and constructing F ratios. We
would most likely use the three way
interaction term, which would correspond to
WAL (7,-) in this design tableau.

construct the sample F ratios by squaring all

We would

of our Walsh estimators and taking the ratio
af each one to the squared estimator for

WAL (7,-). These ratios would be compared to
the value of an F1,1 with appropriate p-value
in a table to see if we should accept or
reject the hypothesis of no factor effect.

If more than one term were designated as
belonging in the error space, the denominator
for ouwr F statistic would be found by summing
the squared terms, scaling by the number of
terms being included, and adjusting the
degrees of freedom appropriately in the F

test. Overall degrees of freedom can be
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Table 1: Design Matrix for a 23 Factorial Experiment

mean X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3
WAL (0, ) WAL (1,2 WAL(2,:) WAL(4,:) WAL(3Z,-) WAL(S,:) WAL (&, ) WAL (7, -)

1 1 1 1 1 1 1 1

1 1 1 -1 1 -1 -1 -1

1 1 ~1 -1 -1 -1 1 1

1 1 -1 1 -1 1 -1 -1

1 -1 -1 1 1 -1 -1 1

1 -1 -1 -1 1 1 1 -1

1 -1 1 -1 -1 1 -1 1

1 -1 1 1 -1 ~1 1 -1

increased by replicating the sxperiment,
i.e., making a longer experimental run so
that each Walsh functien is repeated several

times.

4. CONCLUSIONS
1
The evaluation which results from using
Walsh analysis is identical to a classical
We

obtain the same design matrix which could be

ANOVA ‘2k factorial experimental design.

found in any classical textbook on
experimental design, and end by constructing
exactly the same F test. There are several
reasons why this should interest us. First,
it provides a new perspective on an old
field, experimental design. I personally
find it easier to design a 2k factorial
experiment from a sequency perspective than
to resort to look-up tables for the design.
(Walsh functions are extremely easy to
generate, so a small pragram replaces a
this

perspective may lead to more insight in

statistics text.) In addition,
the
the

area of experimental design. Secondly,

FWT provides a very efficient mechanism for
doing the ANOVA calculations. It takes
O(N lngzN) additions or subtractions to
{Davies (1956)

implicitly uses the FWT when describing

only
do a
FWT on N observations.
how
to evaluate a 2k factorial experimental

design by hand.) Finally, we can perhaps

begin to see why the spectral approach to
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significant parameter identification used by

Schruben, Cogliano, and Sanchez has succeeded
empirically in producing results which are so

consistent with run—oriented experiments.
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