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ABSTRACT

This paper addresses statistical issues that arise when. discrete
event simulations are run on parallel processing computers.
First, the statistical properties of estimates obtained by parallel

distributed simulation and parallel independent replications are-

compared. This comparison shows that, when estimating
steady state quantities, the run length, the strength of the initial
transient and the asymptotic variance must be taken into ac-
count in addition to the parallel processing speed-up and the
number of processors in order to determine which method is
statistically more efficient. Second, the statistical properties
of estimators of transient quantities obtained by the method
of parallel independent replications are considered. The anal-
ysis shows that strongly consistent estimatées are not obtained
in finite expected time as the number of processors increases
unless the computational time to complete a single replication
is bounded. |

1. INTRODUCTION

Parallel processing is now an active area of research as inter-
connected arrays of microprocessors are becoming available
both commercially and in research laboratories. Because dis-
crete event simulations often require large amounts of com-
puting resources, they represent an important potential
application for parallel processing. Chandy and Misra (1981),
Jefferson and Sowizral (1985), Comfort (1983) and (1984)
and Wyatt, Sheppard and Young (1983) have described dif-
ferent approaches to distributing a discrete event simulation
onto multiple procéssors. A key issue for such parallel dis-
tributed simulations is to determine the amount of parallelism
that can be effectively exploited.

The usual measures of a parallel computation’s effectiveness
are the speed-up and the efficiency. If a given job executes in
timef; ona single processor and in time 7, on p processors, then
the speed-up is defined by a, = 1,/1, and the efficiency is
e, = a,/p. Because of the overheads involved in such parallel
computations, typically ¢, < 1 or, equivalently, o, < p. Thus ¢,

can be thought of as the effective utilization of a processor, i.e.,
it is the fraction of time a processor spends doing useful work.

In paralle] simulations, the efficiency is determined by many
factors including:

1. The control algorithm used to ensure that events ap-
pear to processed in the correct sequence.

The amount of overhead required for interprocessor
and interprocess communications.

3. The computer hardware and software architecture.

4. The characteristics of the system being simulated.

Idealized simulations of the Chandy and Misra null message
algorithm showed near perfect efficiency for tandem queueing
systems, efficiencies ranging from 0.36 to 0.62 for feed-
forward queueing systems, but efficiencies ranging from 0.3 to
as low as 0.01 for queueing systems with feedback (Lakshmi
(1979)). Similar idealized simulations of Jefferson’s Time
Warp algorithm yielded efficiencies ranging from 0.15 to 0.36
(Berry and Jefferson (1985)). By functionally partitioning the
simulation onto four processors, Comfort (1983) reported ef-
ficiencies of about 0.45. Studies in Comfort (1984) indicate
that a speed-up of between 1.2 to 1.3 can be attained by using
3 processors in parallel to manage the future event list.

Suppose a multiprocessor with P processors is available for
running simulations. An alternative approach to having the P
processors cooperate on a single realization of the simulation
is to run, in parallel, one independent replication of the model
on each processor thereby obtaining P iid (independent and
identically distributed) estimates that can be averaged to-
gether. Assuming that the processors do not interfere with

- each other (e.g., assuming each processor has sufficient mem-

ory to run the model), the only synchronization overhead is in
loading the model and simulator into each processor at the be-
ginning of the runs and averaging the results together at the
end of the runs. This overhead should be negligible, resuiting
in near perfect efficiency.

Which of these two approaches is better? In this paper, a
simple model will be formulated that provides insight into this
question. While not answering the question for any particular

. system to be simulated, control algorithm, or hardware and
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software architecture, the model shows what the trade-offs are
and identifies the key parameters that determine which ap-
proach is statistically more efficient in the sense of producing
estimates with a smaller mean squared error for a given amount
of computing resources. The model shows that a new set of
factors must be considered in addition to the usual speed-up
or efficiency measures. These factors include the extent of the
initial transient and the inherent variability of the system being
simulated, the amount of computing time available and the
number of processors.

In Section 2, the model will be formulated and the trade-offs
between the two approaches will be illustrated. In Section 3,
the model will be extended to permit an optimization of a
combination of independent replications and distributed simu-
lation. These models show that it is often advantageous to run
independent replications and in Section 4 some surprising re-
sults are presented concerning the statistical properties of par-
allel independent replications. Finally, Section 5 summarizes
the results.

2. TRADE-OFFS IN DISTRIBUTED SIMULATION

In this section a model is formulated that forms the basis for
comparing parallel independent replications with a parallel
distributed simulation. The model compares the mean squared
errors of estimates produced by the two methods after a fixed
amount of computing time.

Some notation is required. Assume that the process being
simulated is X = {X,, s > 0} and that this process converges to
a steady state random variable X, ie.,
lsig_} P{X, < x} = P{X < x}. The goal of the simulation is to es-
timate a steady state parameter g = E[f(X)]. Let ¢ denote real
time and let T(¢) denote simulated time at real time . We as-
sume that simulated time grows linearly with real time, i.e.,
there exists a constant A such that 7T() = Ar. Let
5 = A/TO)S :(')f(Xs)ds be the estimate of y after a simu-
lation of (real time) length ¢ and let p() = E[n(9)] and
o%(f) = Var[n(9)]. The bias of j(z) is b(f) = p() —  and the
mean squared error of ﬁ(t) is mse[ﬁ(t)] = b(t) + o*(¢).

Suppose that independent replications of X are run for ¢ units
of time on each of P processors producing iid estimates
;’Zl(t), e ﬁp(t) and an aggregate estimate §,(¥) = pé".lﬁ,,(t)/}’.
The mean squared of @)
mse[z, (1)1 = b*(2) + o*(2)/P.

Now assume that the P processors work together for ¢ units of
time on single realization of X. Let T.(¢) be the length, in
simulated time, of this distributed simulation. We assume that
there exists a constant « such that T.(f) = «PT(f) where
T(#) = At is the simulated time achieved by a single processor

error is

in a run of real time length ¢#. Thus the speed-up of the parallel
simulation is aP and its efficiency is a. The distributed simu-
lation estimate for p is ,(f) = (1/Tx() ff(')f(X,)ds and, since
Tt) = aPT(¥) = aPAt, its squared
mse[g, ()] = b2(aPt) + o*(aPt).

mean error is

In order to compare these two methods specific assumptions
need to be made concerning the bias b(f) and the variance
o%(f). We assume that the bias is given by b(¢) = b/t for some
constant b. This assumption can be shown to be true (to first
order terms in 1/¢) for finite state space Markov chains (see
chapter V of Doob (1953) for convergence rates to steady
state), regenerative pi'ocesses (Meketon and Heidelberger
(1982)) or for processes for which there exists a time z, such
that E[X]] = p for s > f,. We shall assume that ¢2(¢) = 62/t
which is true under very general conditions (Theorem 20.1 of
Billingsley (1968) or Crane and Iglehart (1975)). Substituting
b(¥) = b/t and o2(¢) = %/t into the expressions for mse[f, (]
and mse[f,(#)] yields the mean squared error ratio

1/(aP) + v*/(*P%1)
1/P + %/t

mse[f, ()]

2 — —
(P, y/0 = mse[f; ()]

-

where y = b/o. Thus the relative statistical efficiency is deter-
mined by three factors:

1. The number of processors P.

2. The speed-up factor a.

3. A term y*/t = b?/(0?) that takes into account the sim-
ulation run length, the strength of the initial transient
and the variability of the process.

If b=0, no bias, then
r(P,a,0) = 1/a > 1 which means that replications is statis-
tically more efficient. In this case there is no penalty in per-
forming replications and the method has 100% efficiency.
Similarly, replications is statistically more efficient for very
long run lengths since l,i_E} P, a,v*/) =1/a 2 1. On the
other hand, if 5 3 O then Pﬂ r(P, a, v2/D = 0, i.e., distributed
simulation is statistically more efficient for a large number of
processors provided that the efficiency « remains constant, or
equivalently, the speed-up grows linearly with the number of
processors. If the speed-up is given by an arbitrary function
ap such that 1}1{1° ap = o, then Eﬂ r(2, ap, Y2/t) = 0 which
means that distributed simulation is asymptotically superior to
In this
case, the replications estimate converges with probability one
to p + b/t which is the wrong answer.

in which case there is

replications as the number of processors increases.

Plots of the mean squared error ratio r(P, a, y2/¢) are given in
Figure 1 as a function of & for P = 10, P = 20 and several
values of y2/r. Figure 1 shows that, for a given number of
processors P and efficiency factor «, replications becomes sta-
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tistically more efficient as y2/¢ decreases. 'The factor
¥2/t = b2/ (o) is small either because the run length} is large
or because the bias term b is small relative to the variance term
o2, Figure 1 also shows that, for a given efficiency a and v2/%,
distributed simulation becomes more efficient as the number
of processors P increases.

Although the M/M/1 queue is not particularly well suited for
distributed simulation, it is interesting to compute its y? since
it could be indicative of the y? of an open network of queues
with corresponding traffic intensities. Blomgqvist (1967) shows
that o2 = 4p/(1 — p)* — p(2 — p)/(1 — p)*> for the mean
waiting time in an M/M/1 queue with service rate g = 1 and
traffic intensity p. For p = 0.9, ¢ = 35,901 and a regression
analysis of the M/M/1 sirmulation results presented in Table I
of Meketon and Heidelberger (1982) yields the estimate b = ~
1,269.6 when the queue is started in the empty and idle state.
Thus y?~44.9. Note that these are the appropriate terms when
t denotes the number of customers served. Table I of
Heidelberger (1980) shows that approximately 120,000 cus-~
tomers must be simulated in order to achieve +10% accuracy
for the mean waiting time. Thus for a reasonably long simu-
12,000
custoiers/replication, y2/¢~:0.0037 which means that repli-

lation consisting of 10 processors and
cations would provide a more accurate estimate unless the ef-

ficiency « is extremely close to one.

Now consider the effect of a simulation strategy that truncates
the beginning portion of each replication in order to reduce the
effects of the initial transient. Suppose there exists a £, such
that E[X] = p for s > T(#,)-and that the portion between 0 and
T(t,) is discarded. Since both estimates are now unbiased, the
mean squared errors of the replications and distributed simu-
lation estimates are o2/(P(¢ — %)) and o2/(aPt — 1), respec-
tively. Thus distributed simulation is statistically more efficient
if and only if @ > [(t — ,)/A(P — 1)/P. For large values of P
this condition is approximately « > (# — #,)/¢ which means that
distributed simulation is statistically more efficient than repli-
cations only when the efficiency « is greater than the fraction
of the run that is in steady state. For example, if 10% trun-
cation is required to eliminate the transient, the efficiency must
be at least 0.90 for distributed simulation to produce more ac-
curate estimates than replications.

3. COMBINING REPLICATIONS AND DISTRIBUTED
SIMULATION

An alternative to using either replications or distributed simu-
lation is to use a combination of the two methods. Suppose P
processors are available and let R be the number of independ-
ent replications where each replication consists of a distributed

w
[N

simulation using M processors (P = RM). What is the optimal
choice for R and M?" The trade-off is between using distrib-
uted simulation to reduce the bias and using replications to in-
crease the efficiency.

The mean squared error of the resulting estimate is
b (apt) + 0*(ap?)/R. We will assume that the speed-up is
given by a,, = MP where 0 < B8 < 1. The speed-up is thus as-
sumed to be an increasing concave function of the number of

Processors.

Figure 2 plots the mean squared error as a function of M for
P = 32 and several values of 8 and y2/¢. These mean squared
errors are normalized by the mean squared error obtained us-
ing iid replications (M = 1). Thus any value in Figure 2 that is
greater than one means the method is less accurate than repli-
cations. This figure again shows that replications is statistically
more efficient for either long runs, weak transients or low ef-
ficiencies. For the stronger transient (y2/t = 0.10), the opti-
mal policy uses distributed simulation with only a small number
of processors per replication except for very high efficiencies
(B close to 1.0). Although not shown in this figure, if 8 and
v%/t are fixed, then the optimal number of processors per rep-
lication increases as the number of processors increases.

4. STATISTICAL PROPERTIES OF PARALLEL INDE-
PENDENT REPLICATIONS

In this section we will discuss the statistical properties of par-
allel independent replications. Unlike the previous two
sections which were concerned with steady state resuits, this
section will deal with estimating a quantity from a transient,
or-terminating simulation.

The model is as follows. Assume there are P processors and
that X, is the estimate from replication j on processor i. We
shall be interested in estimating p = E[X,]. If a fixed number
of replications, R, are run on processor 7, then an unbiased
estimate of u is given by

Let F(¢) denote the distribution function of the time to com-
plete a replication. If F() < 1 for all # > 0, then the expected
completion time (the time until all processors finish) converges
to infinity as P —» eo,

Suppose now that a finite amount of computing time # is avail-
able on each processor for estimating p via simulation. Thus
replications are run on each processor for ¢ units of real time
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and a random number of replications are obtained. Let
N,(t), i= 1’ sev
processor i by time £. One possible estimate for p is

P be the number of replications completed on

P NG

> > (X;/ M)

A i=1j=1
() = 7 .

Under appropriate technical conditions, the results of Meketon
and Heidelberger (1982) show that E[ﬁl(t)] =pu+ O(1/%)
which means that ﬁl(t) will not converge to g if # remains fixed
as the number of processors increases. Another possible esti-
mate of p is

P N0

2 2%

i=1j=1
() = —

ZN.~(t>
i=1

bowever, in a forthcoming paper Heidelberger (1986) shows
that E[ﬁ,(t)] =p+ O@/1) + O(1/tP) which again means
that, for a fixed ¢, ﬁz(t) converges to the wrong quantity as the
number of processors increases. Now consider the estimate

P N(®D+1
P
y() = ——

Zl(Ni(ﬂ +1)

which requires letting each processor complete the replication
in progress at time z Heidelberger (1986) shows that
E[;%(t)] = u + O(1/tP). Thus ﬁ3(t) converges to p if either
t -+ o« or P »  whereas ﬁ,(t) and ;/)q(t) converge to g if and
only if #- «. The proofs rely on Wald’s Equation (
E[é&] = E[N]E[X] if N is a stopping time and the X;’s are iid,
see Chapter 4 of Karlin and Taylor (1975)) and the fact that
N() + 1 is a stopping time whereas N(z) is not a stopping
time.

However, the price to be paid for using ﬁs(t) is an increased run
length. As with (R), if F(s) < 1 for all s > 0, then the ex-
pected completion time using ﬁ;(t) converges to infinity as
P > «, For example, if the replication completion times are
exponentially distributed (F(z) —Pl — e~M), then the expected
completlon time is ¢+ (1/}\)2(1/ i) =t + In(P)/A. Using
p.l(t) or p.z(t) V\;lth an eqmvalent expected completion time of
f=t+(/ 7\)2(1/ i) would yield strongly consistent esti-
mates for p as P -+ . However, the bias of p.,(t) and uz(t)
would be of order O(1/(¢ + In(P))) as opposed to the bias of
2,(¢) which is of order O(1/tP).
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5. SUMMARY

This paper has considered the statistical properties of estimates
obtained from discrete event simulations that are run on par-
allel processing computers. A model comparing the statistical
accuracy of parallel distributed simulation and parallel inde-
pendent replications was formulated. This model shows that,
because of the random nature of simulations, a new set of fac-
tors must be considered in addition to the usual speed-up
measure of a parallel computation’s efficiency. These factors
include the extent of the initial transient and the inherent vari-
ability of the system being simulated, the amount of computing
Generally
speaking, if the run length is long or if the initial transient is

time available and the number of processors.

weak, then replications will be statistically more efficient than
distributed simulation in estimating steady state quantities.
Given a reasonable speed-up factor, distributed simulation will
be statistically more efficient than replications for short runs,
for systems with a strong initial transient or if a large number
of processors P are available and the speed-up ap + o« as
P - o, This model was extended to consider a combination
of replications and distributed simulation. If the number of
processors is large and the transient is moderate relative to the
run length, then the optimal policy uses distributed simulation
with a small number of processors per replication and a large
number of replications.

Finally, the problem of estimating a transient quantity using
parallel independent replications was considered. The bias
expansions of several different estimators were presented. If
the expected time until all replications are completed is re-
quired to be finite, then none of these estimators are strongly
consistent as the number of processors increases to infinity
unless the computational time to complete a single replication
is bounded.
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