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ABSTRACT

The objective of this report is to
investigate the behavior of various variance
estimators arising in computer simulation
experiments. We give large and small sample
results pertaining tp the bias, variance, and
confidence interval performance of
nonoverlapping batched means, overlapping
batched means, and standardized time series
estimators.
1. INTRODUCTION

A primary concern in simulation output

analysis is confidence interval estimation for
the mean §t of a stationary stochastic process,
Xl,...,Xn. There are a number of difficulties
involved in estimating confidence intervals for
K. One problem arises from the presence of
in the

that is, the Xi's are not independent. Serial

serial correlation simulation output;

correlation can result in the violation of the

conditions required for proper confidence

interval estimation. For example, if the Xi's
then

interval estimators (c.i.e.'s) for p based on

are positively correlated, confidence
the sample mean }=(n = EXi/n and the variance
E(Xi - i’n)z/(n—i) may have

probability

estimator S2 =

coverage lower than the nominal

coverage:

Pr{peini s/n}<1-«a,

t'n—l, 1-Kod

where t is the upper 1-%x quantile of a

n—-1, 1=Xe
t—distribution with n~1 degrees of freedom.
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Another difficulty is related to the fact
that the underlying stochastic process may not
produce stationary output, especially during the
For

initial portion of the simulation run.

instance, customers from the early portion of a
queueing system simulation initialized empty and
idle have lower expected waiting times than do
""'steady state” this

to the

later customers. In

article, we shall restrict ourselves

analysis of stationary simulation output.

Over the last two decades, a number of

confidence interval estimation methodologies

have been proposed and studied: nonoverlapping
ARMA
spectral representation,

[ef. Fishman (1978)

batched means, independent replications,

time series modeling,
and

regeneration and

Bratley; Fox, and Schrage (1983) for reviews of

these five techniques.] Two recently developed

methodologies are standardized time series
[Schruben (1983)] and overlapping batched means

[Meketon and Schmeiser (1984)]. ,

The main difference the above
methodologies concerns the estimation of Var(}_?n).
This

estimators to better understand their large and

among

paper studies a number of variance

small sample behavior in confidence interval

procedures. In the next section, we introduce

several estimators of interest. Section 3

discusses large and small sample properties of
these variance

estimators. Section 4 gives a

summary and conclusions.
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2. SEVERAL VARTANCE ESTIMATORS

In this section, we will review some
variance estimators and provide the necessary
notation.

2.1 Nonoverlapping Batched Means (NOBM)

Suppose that we divide the stationary
process Xl,...,Xn into b>1 contiguous,
nonoverlapping batches each of which has mn
observations (n = bm). Batch i consists of
X-nmrr Xm0 Xy 35heesbe
Define

. =41

am
Xim =5 Lj=1 X(i-1)mtj
as the i-th batched mean, i=1,...,b.

‘The method of NOBM assumes that the batched
means are approximately i.i.d. normal random
variables with wunknown mean p and variance
aa/m. Then a 100(1-x)% c.i.e. for p is given by

fy=n z?=1[ %0 - % 1700

. . 2 _ 1 =
is the NOBM estimator for ¢ = 11mn _mnVar(Xn).

2.2 Overlapping Batched Means (OBM)

The method of OBM has recently been
developed for use in simulations by Meketon
(1980) and Meketon and Schmeiser (1984). Ve
define the i-th overlapping batched mean,
i=t,...,n-mt+1, as

ET 1 -1
X(i,m) = ZJ.=0 xi+j .

The OBN estimator for 02 is given by
s -mtl el $ 3R
Yo=m Z?____I: {X(im) - Xn] /[(n—m+1)(1—§)] .

Based on results from Meketon (1980),
Meketon and Schmeiser propose that the degrees
of freedom from Vo be equal to 1.5 times the
degrees of freedom from the NOBM estimator ?N;
however, Monte Carlo results show that when n/m

is small, the proposed degrees of freedom may be

o]

too small. Schmeiser (1986) has suggested a
slightly revised formula for the OBM degrees of
freedom.

2.3 Standardized Time Series (STS)

STS uses a functional central 1limit theorem
to transform Xi""’xn into a process which is
asymptotically distributed as a Brownian
bridge. Properties of Brownian bridges are then
used to estimate confidence intervals for p.

Suppose that the stationary process
xl,...,xn [satisfying other mild assumptions
from Schruben (1983)] is divided into b batches
of size m. For i=1,...,b and j=1,...,m,
denote the j~th cumulative mean from batch i as:

X. .=

1
1,5 55 Ykt (G- Dmike

For 0<t<1, and all i and j, let

Si,j = xi,m - Xi,j and
Jmt s,
T. (%) = 2T, e
1.0 olm

vwhere ||-|| is the "floor" function and Ti’m(t) is
the standardized time series from the i-th
batch. Schruben shows that as m » o, Ti,m(t)
converges in distribution to a standard Brownian
bridge (i.e., conditioned Brownian motion).

Finally, define for all batches,

~

- v N
A = Ljeg 38,50

K, = argmax §jSi’j§, and
J
Si = Kisi,ﬁ.'

i
The following are estimators for 02:

Area estimator:

& 12 b 2 g x (b
V, = —3=— ¥ . &Y
A (m3—m)b i=1 7i

Maximum estimator:

R
¥, =30 ' z P (an)
M i=1 3bii (m_ii) 3b
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(where "#'" reads '"is approximately distributed
as'') Schruben showys that VA and \7“ are
asymptotically  independent of VN' Hence,
additional estimators for 02 are:

Combined NOBM-Area estimator:

2.2
Py - e . 9 x"(Rb-1)
VNA = [(b—].)VN + bVA]/(Zb—i) 4 b1

Combined NOBM-Maximum estimator:

2.2
$ = [(hat)¥ G _ . o x"(4b-1
Vi & [G-0)¥y + 36V, 1/(40-1) 2 —"p=

To construct confidence intervals based on
the above estimators, we substitute the
appropriate degrees of freedom and variance

expressions into equa{:ion (1.

3. PROPERTIES OF THE VARIANCE ESTIMATORS

We survey results concerning the bias and
variance of the NOéM, 0BM, and STS variance
estimators, and the performance of each
estimator in confidence interval -estimation

procedures for .
3.1 Bias of the Estimators

The bias of an estimator is the difference
between the expected value of the estimator and
the parameter to be éstimated. If we denote a

generic variance estimator by ¥, then
R 2 5
Bias = ¢~ - E[V].

All of the variance estimators under
consideration here are asymptotically unbiased
as the batch size m becomes large.

We first state results which are analogous
to the asymptotic continuous time results from
Goldsman and Meketon (1986) (G-M): For large m
and b,

Bias(¥

[
Blo

W =

Bias (\7’0)

L
m
Bias(¥,) = 3¢ | g
A m

80

2
as(fy = 28 _ &
Bias(Vy) = 5 - %5 »
where ¢ is a constant and 02 is defined in
Section 2.1. (These bias results do not
include small order terms.)

¥e see that, for large m and b, the NOBM and OBM
methods yield approximately the same bias. Since
the bias expression for the area estimator does
not include the cg/b term, the area estimator is
not directly comparable to the NOBM and OBM
estimators; however, if b is very large or if 0'2
is small, then we would expect the area
estimator’s bias to be approximately three times
that of the NOBM and OBM estimators. Analogous
results are not available for the maximum and
combined NOBM-maximum estimators.

It is possible to calculate the exact bias of
the variance estimators for specific stochastic
processes. As an example, we compare the exact
bias of the NOBM and area estimators for the

familiar  AR(1)  process: X, = X

i ey,

i-1
i=1,2,..., where the &;'s are i.i.d. Nor(O,l—wz)

and -1 < ¢ < 1.

- m+1
Result 1: E[V\] = -i%‘f - B¢ = + RY = -
et 9%

Result 2: E[VA] =

o1 m1)? | 20[1-(nt1-mg)g®]
14 | 120 5 + P
1__% + , (1-9)

3 _ \R
(n”-m) (1-9)
=i—f(2 - —6-(2-2—- + small order terms .
A €
Results 1 and 2 follow from (A.5-7) and (A.5-15),
respectively, of Goldsman (1984).

Since o° = (1+¢)/(1~¢) for the AR(1) process,
the bias of the area estimator is asymptotically
three times that of the NOBM (as expected). It is
also possible to show that the bhias of the OBM
estimator is approximat.ely the same as that of the
NOBM estimator. It is clear that the bias
decreases to 0 as the batch size m + .
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The following remarks illustrate why the bias

of a

-
variance estimator V is an

important
consideration in confidence interval estimation.
Let T = (fn-p)/(?/n)x. Then T is asymptotically
(as b+ ©) normally distributed with mean 0 and
variance oz/E[?] [instead of Nor(0,1)]. It
E[¥] < oF if bias > 0), then making the
false assumption that T is Nor(0,1) will result in
smaller than

intervals for

(i.e.,

desired coverage when confidence
i are calculated; this coverage
asymptotically converges to
E - 4

24){ 24y (B[V]/c™) }— 1, )
where &(-) is the standard Normal c.d.f. and 24 e
is the upper 1~X« quantile of the Nor{0,1) [see
e.g., Schruben (1980)]. Table 1 uses equation (2)
and Results 1 and 2 to find the limiting coverages
for the AR(1) model.

Table 1 - Limiting Coverages (as bow) for

the Mean of the AR(1) Process

Xi = 0.91(1_1 + si (1~« = 0.90)
m NOBM AREA
R 0.397 0.095
4 0.521 0.166
8 0.652 0.293
16 0.763 0.476
32 0.836 0.667
64 0.871 0.795
128 0.887 0.854
256 0.894 0.879
51 0.897 0.890
1024 0.898 0.895
© 0.900 0.900

For this AR(1) case, the NOBM coverage reaches the
nominal value 1-o = 0.9 more quickly than the area

estimator.

3.2 Variance of the Estimators
G-M report that as m and b become large,

Var(¥ 2 2e*p
5y =44
var(g) = 5ot
& . 4
Var(VA) =20 /b,
Var(f,,) = o*/b

NA ?

Var(\?n) = -30‘4/1) , and
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- 214
Var(VNM) 250 /b .

Note that the NOBM

approximately the same asymptotic variance.

and area estimators have
G-M
also calculate the mean squared error of the
variance estimators.

3.3 Large Sample Confidence Interval Estimation

The

estimator (c.i.e.) is to indicate the accuracy and

purpose of a confidence interval
the variability of a point estimator of q. To
the c.i.e., the
following measures are commonly used: (a) the
(b) the expected half-
and (¢)
the variance of the half-length, Var(H), where we
denote the random variable corresponding to the
half-length of by H.
c.i.e.’s which achieve the desired coverage (1-c,
say), that c.i.e. which yields the smallest E[H]
is preferred.

evaluate performance of a

achieved coverage of p,

length, E[H], of the confidence interval,

a generic c.i.e. Among

It is also preferred to have small
Var(H), this meaning that the c.i.e. is "stable.”

We first survey asymptotic properties of the

c.i.e.'s. As m and b become large, all of the
c.i.e.'s under study achieve nominal coverage.
Following Schmeiser (1982) and Goldsman and
Schruben (1984), we can derive:
ot
oz —SE )
(nd)
.G % r(u(d+t
E[H] = 33 tg 1 xR/ —Fggy™= » and

4

v+ £ (18 [ra@m ),

x(d) denotes
of freedom

where the chi distribution with d
(d being the
of freedom associated with a particular

and r'(s) is the

degrees appropriate
degrees

variance estimator)

gamma
function.

The show that
large, the STS area, combined NOBM—area, maximum,
and combined NOBM~maximum estimators all yield
smaller E[H] and Var(H) than the NOBM and OBM
methods;

above papers as m becomes

as b becomes large, all of the estimators
have approximately the same E[H].
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3.4 Small Sample Confidence Interval Estimation

Small of
difficult, and we must resort to Monte Carlo

sample  analysis c.i.e.'s is

methods. In one such study, we generated

observations from a steady state AR(1) process
with ¢ = 0.9.
directly

[The steady state process can be
by the
run  from a

generated initial

of Nor(0,1)
distribution.] We considered batch sizes m = Zk
(k=0,1,..,10) and numbers of batches b= n/m= 2
and 16. A confidence interval was calculated for
each combination of m and n/m for the different
(NOBM,  OBM,
we shall not report here

taking

observation each

estimators
NOBM~area) ;

maximum and combined NOBM-maximum estimators since

area, and combined

on the

it turned out that they performed poorly in this
small ¥e replicated 1000
and Figures 1 and 2 show the

(the proportion of the 1000
confidence intervals which contain p) and average
half-lengths (EHL) produced by the c.i.e.'s of the
study.

sample environment.
independent runs,

achieved coverages

¥e first discuss Figure 1, where the number
of batches is "large’ (b = 16). The behavior of
the NOBM and OBM coverages is about the same when
b = 16,
estimators have the same

mainly because the NOBM and OBM variance
asymptotic bias; see
Since the bias of the area estimator
is asymptotically three times that of NOBM, the
area estimator's achieved coverage approaches the
desired nominal than the
NOBM's. The EHL of the NOBM c.i.e. is the
largest; the EHL of the OBM's c.i.e. is nearly the
as m + ®, all four estimators have

the

Figure 1(a).

value more slowly

same. However,

the same EHL, as explained in previous

subsection; see Figure 1(b).

¥e now refer to Figure 2, in which case b is
"small” (b = B). the OBM method yields
approximately the coverage and EHL as the
NOBM
But as m

Here,
same
area and combined NOBM—area c.i.e.'s.
approaches the desired coverage fastest.
beconmes the OBM STS

outperform the NOBM c.i.e., since the OBM and STS

while

large, and estimators

estimators achieve the desired coverage

simultaneously obtain;ing smaller EHL; see Figures
2(a) and 2(b).

282

4. SUMMARY

This paper investigated the behavior of a
number of estimators for o° = lim;l_mnVar(Xn). In
particular, we studied the popular batched means

estimator as well as estimators arising from

overlapping batched means and standardized time
series. We reported asymptotic and small sample
results pertaining to the bias and variance of the
estimators, and to their performance in confidence
interval estimation.

In order to form a conclusive picture of the
small sample c.i.e. performance characteristics of
the NOBM, OBM,

conducting a large-scale Monte Carlo

and STS c.i.e.'s, the authors are
currently
study involving a number of stochastic processes.
Our tentative results from these experiments show
that the NOBM the
coverage more quickly than the other estimators.
Yet OBM and STS perform better when sufficient

observations are available.

estimator reaches desired
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