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ABSTRACT.

A sample of n 11d random varlables with a given unk-
nown denslty Is glven. ‘We discuss several lssues related to
the problem of generating a new sample of 11d random vart-
ables with almost the same density. In partlcular, we look at
sample Independence, conslstency, sample Indistlnguishabll-
ity, moment matchlng and generator efficlency. We also
Introduce the notlon of a replacement number, the minimum
number of observations In a glven sample that have to be
replaced to obtaln a sample with a glven denslty.

1. INTRODUCTION.

Assume that we are given a sample X 1o X,, of 11d
R %-valued random vectors with common unknown density
/ . and that we are asked to generate a new Independent
sample Y, ..., Y,, of lndependent random vectors with
the same density f . This Is quite an lmposslble task slnce
J/ s usually not known. The purpose of thls note Is to dls-
cuss Just what can be done, and how close we can come to
generating a perfect sample.

‘What one can do Is construct a density estimate
Jal@g)=fp(@. X,y ..., X,)0f f(z), and then generate a
sample of size m from f,. This procedure has several
drawbacks: first of all, f, Is typlcally not equal to f . Also,
the new sample depends upon the original sample. Yet, we
have very few optlons avallable to us. Ideally, we would like
the new sample to appear to be distributed as the orlginal
sample. This willl be called sample Indistingulshablilty. This
and other Issues will be discussed In thls sectlon. Some of
thls materlal appeared orlginally In Devroye and Gyorfl
(1985, chapter 8) and Devroye (1986).

2. SAMPLE INDEPENDENCE.

There Is llttle that can be done about the dependence
between X, ..., X, and Y,,..., Y, except to hope
that for n large enough, 'some sort of asymptotic Indepen-
dence 1s obtalned. In some applications, sample Indepen-
dence is not an Issue at all. '

Since the Y;'s are. conditlonally Independent glven

X, ...,X,, we need only conslder the dependence
between Y, and X,,..,, X,. A measure of the depen-
dence Is

A
D, = iuglP(YeA X EB)
-P(YEA)P(X€B)| ,

where the supremum Is with respect to all Borel sets A of
R % and all Borel sets B of B ™, and where Y=Y,and X
Is our shorthand notatlon for (X,, ..., X, ). We say that
the samples are asymptotically Independent when

Ilm D, =o0.

n—00
In slituations In which X,, ..., X, Is used to design or
build a system, and Y,, ..., Y, Is used to test it, the sam-
ple dependence often causes optimistic evaluations. Without
the asymptotic Independence, we can't even hope to diminish
thls optimistic blas by Increasing n .

The Inequality In Theorem 1 below provides us with 2

sufficlent conditlon for asymptotic Independence. Flrst, we
need the following Lemma.

Lemma 1. (Scheffe, 1947).
For all densitles f and ¢ on R ¢,

J1f-g 1 =2sw|[f-[g]
B B

where the supremum is with respect to all Borel sets B of
RY.

Scheffe’s lemma tells us that If we assign probabliltles to
sets (events) using two different densitles, then the maxlmal
difference between the probabllltles over all sets Is equal to
one half of the L, distance between the densltles. From
Lemma 1, we obtaln

Theorem 1.

Let f, be a denslty estimate, which ltself Is density.
Then

D, SE(fIfa=f ).

Proof of Theorem 1.
See Devroye and Gyorfl (1085). i}
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‘We see that for the sake of asymptotic sample Indepen-
dence, It suffices that the expected L, distance between [ "
and f tends to zero with n. This 1s also called con-
sistency. Asymptotic independence does not imply con-
sistency: Just let f, be the uniform denslty In all cases, and
observe that D, =0, yet [ | f,~f | Is a positive constant
for all » and all nonuniform f .

3. CONSISTENCY OF DENSITY ESTIMATES.
A. density estimate f a 1s consistent If for all denslties

f’
M E(f|f,~f N=0.

Conslstency guarantees that the expected value of the maxi-
mal error committed by replacing probabllities defined with
S with probabllities defined with f n tends to 0. Many estl-
mates are conslstent, see e.g. Devroye and Gyorfl (1985).
Parametric estimates, l.e. estlmates In which the form of fa
Is fixed up to a finlte number of parameters, which are
estimated from the sample, cannot be consistent because f "
Is required to converge to f for all f , not a small subelass.
Perhaps the best known and most widely used conslstent
denslty estimate Is the kernel estimate

n z—X;
3 KE(

§=1 k

=1
@) =—3 ),

where K Is a glven denslty (or kernel), chosen by the user,
and k& >0 1s a smoothing parameter, which typlcally depends
upon 7 or the data (Rosenblatt, 1956; Parzen, 1962). For
conslstency it Is necessary and sufficlent that kA —0 and
nh % —co In probabllity as n —oo (Devroye and Gyorfi,
1985). How one should choose & as a functlon of n or the
data Is the subject of a lot of controversy. Usually, the
cholce Is made based upon the approximate minimizatlon of
an error criterlon. Sample Independence (Theorem 1) and
sample Indistingulshabllity (next sectlon) suggest that we try
to minlmize

E(f1f.-f ]).

But even after narrowlng down the error criterlon, there are
several strategles. One could minimize the supremum of the
criterlon where the supremum Is taken over a class of densl-
tles. This Is called a minimax strategy. If f has compact
support on the real line and possesses one absolutely continu-
ous derlvatlve and an absolutely Integrable second deriva-
tlve, then the best cholces for individual f (l.e., not in the
minlmax sense) are
=
h =0Cn %,

K@) =207 (5|2,

where C' 1s a constant depending upon f only:

2
c — /15 IV |5
2r f | " | ’
The optimal kernel colncldes with the optimal kernel for L 9
criterla (Bartlett, 1963). The optimal formula for &, which
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depends upon the unknown density f , can be estimated
from the data. Alternatively, as suggested by Deheuvels
(1977), one could compute the formula for a glven
parametric density, a rough guess of sorts, and then estlmate
the parameters from the data. For example, If thls I1s done
with the normal denslty as inltlal guess, we obtaln the
recommendation to take

1

5

K2

|

where & Is a robust estimate of the standard deviatlon of the
normal denslty (Devroye and Gyorfl, 1985). A typleal robust
estimate 1s the so-called quick-and-dirty estimate

15¢ Ver
8n

X o -X
&= (np) (nq)'

Z,

p—l'

q

where Z, ,¥, are the p-th and ¢ -th quantiles of the standard
normal density, and X (,,) and X (ng) 8re the p-th and ¢-th
quantiles In the data, l.e. the (np )}-th and (ng }th order
statistics.

The construction glven here with the kernel estimate Is
simple, and ylelds fast generators. Other constructions have
been suggested in the literature with random varlate genera-
tion In mind. Often, the expliclt form of f » 18 not given or
needed. Constructions often start from an emplrieal distribu-
tlon function based upon X, ..., X,, and a smooth
approximation of this distribution function (obtained by
interpolation), which Is directly useful In the inverslon
method. Guerra, Tapla and Thompson (1978) use Aklma’s
(Akima, 1970) quasl-Hermlte plecewlse cuble interpolation to
obtaln a smooth monotone function colneldlng with the
empirical distribution functlon at the points X;. Recall that
the emplrical distribution Is the distribution which puts mass

% at polnt X;. Butler (1970) on the other hand uses

Lagrange’s quadratic Interpolation on the Inverse emplrical
distrlbutlon function to speed random varlate generation up
even further.

4. SAMPLE INDISTINGUISHABILITY.
REPLACEMENT NUMBER.

In simulatlons, one Important qualltative measure of the
goodness of a method s the Indistinguishabllity of
Xy, Xy and Yy, ..., Y, for the glven sample size
m. Note that we have forced both sample sizes to be the
same, although for the construction of f » We keep on using
n polnts. Let us try to quantify this notlon by means of the
following Imbedding technlque. Let A be a fixed Borel set of
R*%, and let (Q,F,P) be a probabillty space with the pro-
perty that (Y,(w), ..., Y, W) and (Z,w),..., Zm (W)
are two sequences of Hd R ¢-valued random vectors with
common density f, and f respectlvely. The sequences are
allowed to be dependent. For a fixed set A of B¢ , let
N4 and M, be the cardinalities of A induced by the first
and second sample respectively.

An approprlate measure of closeness Is the replace-
ment number

A= inf E
(Q.F.P)

THE

[s%p | Ny=My | ] .



L. Devroye

Here E s the conditlonal expectation given X, ..., X,.
This 1s different from, and stronger than, the approach taken
in Devroye and Gyorfi (1085). Indeed, A is small If the car-
dinalities of all sets A are nearly equal for all 4., We can
conslder A as the (conditlonal) expected value of the
minlmum number of Y;'s that should be altered and
replaced by other random variables to make the sample into
one that can be consldered as an 11d sample drawn from f .
The cruclal result needed here Is

Theorem 2.
For any f and f,,we have

St

Proof of Theorem 2.
First, we note that

E(sgp | Ny-M, ]]
> ; -
_SIADE“NA MAl]
ZSgD [E(Ng»-E(My)|

(Jensen’s Inequallty)

=m sup [ [fa-f1 |
A A

m
S a1
(Scheffe’s theorem) .

For the lnequallty in the other direction, we will use an
embedding argument. The oblect here 1s to construct two
dependent samples of slze m each, one drawn from f , and
one drawn from f,, such that

ASBIifa-1 ]

Observe that there Is nd hope of obtaining this with two
independent samples, for sup | Ny—My | = 2m for any

Independent samples with densltles, even If the densltles are

1dentlcal. The constructlon of the samples can be done as
follows (see Devroye, 1985): deflne
§= f I f n_f | .
Then define the followlng denslities:
o omin(f ,f,)
fon ==
. f -mm(f ,f,)
0= 7 5 ‘ 4
f’n _mln(f rfn )
Jo = Y S— 3 .

Three Independent samples of 11d random vectors are con-
sldered:

UpUp, . Up ~ f mim
ViV oy Vo ~fo
WiuWy ..., Wy ~go.

In addition, let N be blnomlal (m ,6) and let (o, . . ., O )

be a random permutation of (1,..., m), and let both N
and the random permutation be independent of the three

[
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samples. Then, deflne

Zy.-12Zy)
=W, ..., UV ..., Va),
Yy ..., ¥y)
=W, ..., UpsyWy...,Wy).
‘We claim that
Zgy ..., 2,)
Is an 11d sample drawn from f , and that
oy s Yg)

Is an iid sample drawn from f, . This is based upon the mix-
ture decomposition

f =(1—b)f m|n+6fo-

What matters 1s that the Z;'s and the Y;’s agree except In
N components, where N 18 binomlal (m ,6). Let E be the

expected value with respect to the probabllity measure
deflned above. Then

E(S'ip [NA_MA I]
m
3 | Ng-My, | ]
t=1

(Scheffe’s theorem)

=1F
2

The fact that A Is preclsely equal to '—2n- IRE I

wlll allow us to assoclate numbers with A. It also shows the
Importance of taking a denslty estlmate f, which Is close to
/ In the L, sense. This Is why we have concentrated thus
far on the kernel estlmate, and not on its ancestor, the histo-
gram estlmate. It should be noted that the kernel estimate
is very flexible, and can be adapted to many sltuations.
However, there are certaln llmitatlons. To clte two typleal
(negative) results, we have

A flf;{KE(fIf,.—f D
= L ;
V512 n ‘\/1+—1—
32n
B. f,hl,nlgz_oE(flfn—f ()

2
> (0.88+o0 (1)n 5 .

The difference between these results 1s that ln the
former case, the Infimum Is over all Integrable K, even ker-
nels taklng negative values, while In the second case, the
Infilmum 1s over all kernels that are densltles. Both bounds
however are valtd for all f ., This makes them very useful for
determlning whether the sample size Is large enough for the
kernel estlmate. As a rule of thumb, when K >0, we have
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2

E(A)>042m n &,

This gives an 1dea of what kind of accuracy we can expect.
A small table of approxlmative lower bounds for E(a) s
provided below.

n: 1 10 100 1000 10000 100000
m:

1 0.42 0.187 0.066 0.026 0.010 0.0042
10 4.2 1.67 0.66 0.26 0.010 0.042
100 42 16.7 6.8 2.8 1 0.42

1000 420 187 66 26 10 4.2
10000 4200 1870 660 260 100 42
100000 42000 18700 68600 2600 1000 420

If we could attaln this lower bound, then glven an origl-

nal sample of size n ==10000, we could generate m =10000
Y;'s with the property that If we could alter about 100 of
the Y,~ values, we would In fact obtaln a sample that Is
exactly distrlbuted. Most of the time, tables of this nature
can be used to determine whether the lower bound for E (A)
Is acceptable.

On the positlve slde, we should mentlon that for many
denstties, E(f | f,~f |)=0 (n"%/5). This Is true whenever
/ has a finite 1+¢-th moment for some €>0, and f and f!
are absolutely continuous, and f' Is absolutely Integrable.
For precise Informatlon about the rates, consult Devroye and
Gyorfl (1985).

‘We finally mentlon that A cannot osclllate a lot about
Its mean for any kernel estlmate. We have for any boxed
kernel (l.e., bounded kernel of compact support, Integrating
to one),

2
A. iu? Var(A) < Cm for some unlversal constant C
depending upon K only,
um
B. sup P(|A-E(A)]| >—
sup (I ()| i

< e for some constant C* depending upon K
only, and all ¥ >0,

Both results are valld uniformly over all densltles f
(Devroye, 1988). Together with (upper or lower) bounds for
E (A) they can be used to derive distrlbution-free confldence
Intervals for A. They also Imply that A/E (A)—1 In proba-
billty for most f, (at least those for which

VRE([ | fa=f |)=0 ).

5. MOMENT MATCHING.

Some statisticlans attach a great deal of Importance to
the moments of the densities f, and f . For d =1, the i -th
moment mismatch Is defined as

Mn,i = fzifn_fzif
(1 =1,2,3,..) .

Clearly, M, ; s a random varlable. Assume that we employ
the kernel estimate with a zero mean finlte varlance (0?) ker-
net K. Then, we have

M,,=iyx-Ex),
1

1
Ty
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My, =1 5 G5B X+ h%t
t=1

This follows from the fact that f n 1S an equlprobable mix-
ture of densitles K shifted to the X;’s , each having varl-
ance k%02 and zero mean. It Is Interesting to note that the
distribution of M, , Is not Influenced by b or K. By the
weak law of large numbers, Mn ,1 tends to O In probabllity as
n—co when f has a finite first moment. The story lIs
different for the second moment mismatch. ‘Whereas
E (M, 1)=0, we now have E (M, ;)=h%? a positive bias.
Fortunately, A 1s usually small enough so that this s not too
blg a blas. Note further that the varlances of M, 1. M, , are
equal to

Var (X))
n

Var (X ,?)
n

’

respectively. Thus, & and K only affect the blas of the
second order mismatch. Maklng the bias very small 1s not
recommended as 1t Increases the expected L, error, and thus
the sample dependence and distlngulshablilty.

6. GENERATORS FOR |, .

For the kernel estlmate, generators can be based upon
the property that a random varlate Is distributed as an
equlprobable mixture, as Is seen from the following trivial
algorithm.

Mixture method for kernel estimate

Generate Z, a random integer uniformly distributed on
{rz,...,n}

Generate a random variate W with density X .

RETURN Xz +AW

For Bartlett's kernel K (z )=%(1-.1:2)+, we suggest
elther rejectlon or a method based upon properties of order

statlstlcs:

Generator based upon rejection for Bartlett’s kernel

REPEAT

Generate a uniform [-1,1] random variate X and an fn-
dependent uniform [0,1} random variate U .

UNTIL U <1-X?

RETURN X
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The order statistics method for Bartlett’s kernel

Generate three iid uniform [-1,1) random variates V,,V,, V.
IF | Vs | >max(| Vi].]| Val)

THEN RETURN X +V,

ELSE RETURN X «V,

In the rejectlon method, X 1is accepted with probablilty 2/3,
so that the algorithm requires on average three Independent
unlform random varlates. However, we also need some multl-
plications. The order statistics method always uses preclsely
three Independent uniform random variables, but the multl-
pllcations are replaced by a few absolute value operations.

Sometimes, K takes negative values, but Integrates to
one. The density estimate Is

A ) €
falg)=c [WEK( : )]+

=1

where ¢ Is a normallzation constant. Since
fa@) S ga2(z)

c "K z-X;
nhd ,-{_)1 +( h ')!

the rejectlon method can be altered slightly:
Generator based upon the rejection method

REPEAT
Generate Z, 2 random integer uniformly distributed on
{v,2,...,n}.
Generate a random varlate W with denstty K,/ [X ..
Y Xz +hW.
Generate 2 uniform {0,1] random variate U.
Accept —({Uge (Y)S /(Y]] .
UNTIL Accept
RETURN Y.

The expected number of Iterations 1s f K e For fast evalua-
tlon of g, /f, . It Is perhaps best to use a hash structure for
the X;'s, or, when K Is polynomlal with compact support,
to compute the plecewlse polynomlal forms of f, and g,,
and to locate Intervals by blnary search trees In tlme
O (log(n )). In the latter case, the expected time of the algo-
rithm 1s O (log(n)).

‘We finally mention that for plecewlse polynomial nonne-
gative K, the inversion method can be lmplemented without
a lot of trouble. This has the advantage that the correlation
between observations can be better controlled (see Bratley,
Fox and Schrage (1983) for a discussion).

7. HISTOGRAMS.

Data-based histograms have been suggested for random
variate generation by several authors. Bratley, Fox and
Schrage (1983) use It to generalize data In a manner that
would make the inversion method easlly apollcable. This Is
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based upon the fact that the distribution functlon of every
histogram Is plecewlse linear. The allas method can be used
In general to obtaln fast Inversion algorithms (see Walker
(1977), Chen and Asau (1974), Ahrens and Kohrt (1981),
Kronmal and Peterson (1879) and Devroye and Gyorfl
(1985)). Archer (1980) Is malnly concerned with moment
matching In his definitlon of a data-based histogram. Scott

(1979) and others discuss the Issue of choosing the bin width
In equi-spaced histograms.

The difference between an ordinary histogram and a
data-based histogram is related to the deflnltion of the
height of the histogram In each Interval. For a data-based
histogram, with Intervals A, , the helght on the Interval A,
Is

number of points In 4,

n Xlength of A,

Generators for these kinds of histograms are easy to deflne.
Assoclate with each data polnt X, the Interval coordinates
(L; .R;) of the Interval to which X; belongs. Thus, the
storage Is 2n . Then proceed as follows:

Generator for a data-based histogram.

Generate a uniform {1, . . ., n }-valued random integer 2.
Generate a uniform. (0,1} random variate U .
RETURN Lz +U(Rz-Lz).

The data polnts could be rearranged In a preprocessing
step according to membershlp in the same intervals, e.g. by
sorting. This can be used to reduce the storage. What Is
more Important than storage and speed however Is the con-
slstency of the underlylng denslty estimate. For example, if
the bins are defined by the order statistics (so that each bin
has precisely one data polnt), the estlmate Is not consistent
for any f . The best one can hope for with a contlnuous
denstty f is E(f| fo,—f |)=0(n"1/3) (which 1s worse
than the best achlevable rate with the kernel estlmate), See
e.g. Scott (1979) or Devroye and Gyorfl (1985).

Some data-based histograms have Interesting optlmallity
propertles. To lllustrate this, consider Grenander's estimate
(Grenander, 1956) for monotone densitles on [0,00). The
monotone denslty f, maximizing the likelthood product for
X, ..., X, 1s a data-based histogram with breakpolnts at
some order statistics. The order statistics correspond to the
points at which the smallest concave majorant of the empiri-
cal distributlon functlon touches the empirlcal distrlbution

function. These are the polnts of contact obtalned by putting
a large elastic band around the empirical dlstrlbutlon func-
tlon and letting go. It 1s known that for many monotone
densitles the expected L 1 error tends o zero as n-1/3, For
example, If / has two bounded contlnuous derlvatives, it Is
about

L 1
0.82 8 f(%f FAADN

(Groeneboom, 1983).
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