Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

A TutoriaL oN THE SIMPLE_1 SIMULATION ENVIRONMENT

PHiLip CoBBIN
SIERRA SIMULATIONS & SOFTWARE
EsTHER AvENUE
CampBELL, CALIFORNIA 95008

Qverview:

SIMPLE 1 is an integrated modeling enviromment for
interactive simulation using the IBM PC, XT, AT and
true compatibles. The system is composed of a full
screen editor, file management routines, compiling
and run time systems for processing models written in
SIMPLE 1. This tutorial will overview the modeling
environment and provide an introduction to the
SIMPLE 1 modeling language with an emphasis on the
animatIon and advanced statistics features for
simulation of manufacturing systems.

The SIMPLE 1 programming language supports modeling
discrete and continuous systems world views using a
network modeling orientation. Features of the
language include the ability of the user to declare
variables aund statistics requirements, perform I/0
operations on files and to animate simulation results
in real time easily utdlizing bullt in features of
the language. SIMPLE 1 utilizes a repetitive
approach to run control to facilitate goal seeking
modeling. The language has features particularly
suited for modeling assembly operations in
manufacturing due to SIMPLE 17s unique approach to
managing groups of entities 1in models of discrete
systems.

At the time of presentation this tutorial will be
augmented with slides to illustrate features of the
SIMPLE 1 modeling enviroument.

SIMPLE 1 an integrated modeling environment:

Simulation projects inherently involve the
integration of many activities and analysis skills to
accomplish study objectives. In addition to the
obvious requirement to construct, execute and analyze
simulation results, data collection and analysis,
model validation, and convincing decision makers as
to the merits of simulation are important 4issues in
simulation that emerging simulation software must
address.

SIMPLE 1 has been implemented as an integrated
modeling environment to facilitate simulation related
activities by organizing the software into a set of
integrated modules for performing the tasks of:

1) Editing models via a full screen text editor
coupled to the compller and run time system”s error
detection routines.

2) Managing disk files with a function key driven
operating system to manage disk directories, active
path names and drives, etc.

3) Collection and analysis of data via "toolbox"
programs written in SIMPLE 1 to accomplish histogram
generation, runs testing for correlation of data
sets, Mann-Whitney U test, etc.

168

4) Interactive compilation of models with errors
reported back to the full screen text editor.

5) Interactive execution of models with disk or
keyboard input of program variables.

6) Animation of simulation results using SIMPLE 1
language elements to animate results as they occur
during the simulation.

7) Interrupt model execution to allow an amalyst to
review and alter program variables during the
simulation. This feature is particularly useful for
verifying model execution.

8) On-line tutorials to facilitate learning the
system and accessing key documentation quickly.
Syntax and theory of operation data on language
elements is available on-line.

Design requirements for the software included the
avoidance of special hardware. Accordingly,
SIMPLE_1 has no special hardware requirements for
graphics adapters or special monitor requirements.
The software runs on the IBM PC, XT, AT and like
compatibles such as the AT&T PC 6300 equipped with
either a monochrome or a color monitor.

SIMPLE_ 1 is an integrated modeling environment: hence
it is more than a compiler and run time system for
models written in SIMPLE 1. Basically, how SIMPLE 1
works is as follows: Upon execution of SIMPLE 1 the
software displays an initial banner then a screen for
displaying file related information and executing
file commands. Disk directories can be reviewed and
the default disk drive and DOS path name for model
files can be changed. Files are loaded into the
system for editing or compiling by pressing the Fl
Function key and inputing the file name for the
model. Editing, compiling and execution of the model
are controlled using the key board”s built in
function keys. Figure 1 is a reproduction of a
typical SIMPLE_l environment display.

All of the various elements of the SIMPLE 1 modeling
environment include banners at the top of the screen
to show the user how to use the function keys. Much
of the software and language documentation is
avallable on-line via tutorial screens. At the top
of Figure 1 the function keys: F1..F10, X, C, A, and
,D keys are listed along with the functilon associated
with each key. To obtain the directory listing of
files on the disk displayed in the figure, the "D"
key was depressed. To load a file called "IV I0,MDL"
into memory the Fl was depressed and the file name
entered. Once loaded into memory the file could be
edited, or compiled & executed by depressing the F7,
F9 and F10 keys.

A Tutorial on the SIMPLE_1 Simulation Environment

Figure 3 illustrates the interrupt menu and a listing

STERRA SIMULATIONS & SOFTWARE: DATE:8/18/86 TIME: 12.41:46 pm of the global variables defined for a model.

GET FILE | F5 DELETE FILE | F9 ~ COMPILE MODEL | X - EXLT SYSTEM

REVISE FILE | F6 RENAME FILE [F10 RUN MODEL | A ~ CHANGE
SAVE FILE | F7 EDIT FILE | C ~ CHANGE DRIVE DIRECTORY Reviewing program variables during execution is
COPY FILES | F8 TUTORIAL | D - LIST BIRECTORY particularly wuseful for program debugging and
N . TV_10.MDL CRANE.MDL GT EXMPL.MDL validation. In addition the interrupt feature can be
DATA.MDL HISTO. INP ROCKET.MDL CONVEYOR.MDL T_GRAM.MDL used to allow the analyst to interrupt the simulation
PILOT.EJT SHORT TV.MDL TESTER.MDL ANIM_TRL.MDL “DISK.MDL to introduce
MULTIPLE.SCH ELEVATOR.MDL WAFER.MDL ~ MULTIPLE.MDL ABC MFG.MDL and change the values of variables to £
TRNSFR_L.MDL MACH BRK.MDL MULTIPLE.DTA Q_THEORY.MDL SPRING .MDL problems into the model and to see the reaction o
CAFE .MDL CPU,MDL SHORT, IF MODEL.BAT CASH.DTA the system.
TEST.MDL CASH,MDL SHIP.MDL TIME.DTA TV_I0.REP

Disk Free Space: 24 K-Bytes

BLK STRT: 0 coL: O
FILE :TV IO.MDL LINE: 1 COL: 1 INSERT
— BLK END : 0 COL:
F4 DEL BLK F7 con BLK

SCRN LINE:

USING DISK DRIVE :C AVAILABLE MEMORY: 443872 DIRECTORY: \modelsl3
FILE IN MEMORY :TV_10.MDL

F1 FIND STR F10 WRITE BLK]CTRL F3 EDITOR

COMHAND: F2 DEL LINE | F5 MK BLK TOP | F8 MOVE BLK |Ctrl F1 ToP TUTOR
F6 MK BLK BOT | F9 READ BLK |CTRL F2 BOTTOM
DECLARE;
GLOBALS: TIME IN _SYSIEM OBSERVE_STATS;
ENTITIES: TV(T): CONTROL(1);
DEF_SCREEN: PL ;
Figure 1 - SIMPLE 1 main environment display. + SORUEN: PICIURE,1,1,80,16,YES
TIME :
+< : +
: 11 TV INSPECT/ADJUSTHENT EXAMPLE 1! :
H Kkkkx
. . : B X x
The text editor is a full screen text editor coupled : INSPECT TV : iy
to the compiler and run time systems. When the . : ADJUSTOR
compiler or run time system detects an error the CREATE : :***;;*******: : STATION
editor is called after displaying a descriptive A N >% INSPECTORS *-e—-3d——n=n3 PACKING
message of the problem encountered. Figure 2 is a TOTAL: * BUSY = * TOTAL:
sample reproduction of an editor display. From the RIS
initial environment the model was loaded into memory
and the editor accessed by subsequently pressing the Figure 2 - Full screen text editor display.
F7 key.

X HALT = Y CONTINUE SIMULATION =c
Information on varlous aspects of SIMPLE 1 are LIST VARIABLES = L CHANGE/LOOK AT VARIABLES = V
available through on-line tutorial screens. This LIST BLOGKS THFO Tanel; Typp | VLSS APPROPRIATE LETTER -~
feature facilitates debuging and learning the STOP TIME SCALAR
language quickly. Information on syntax and language Kélflﬁi‘cggzg 332%
elements are available through extensive on-line RELATIVE ERROR SCALAR
tutorials. Table 1 is a listing of SIMPLE 1 block ABSOLUTE ERROR ~ SCALAR
types. The block summarized in the table can be used vg,';ggé:.g ;g:“m*}
to open and close files, buffer keyboard input and WT FUEL SCALAR
perform discrete/continuous modeling of systems. In sumzmg ggﬁm
addition general purpose concepts like an G SCALAR
IF-THEN-ELSE and a WHILE loop comstruct are included _RATE SCALAR
. IMPLE 1 al cai b £ MAX_HEIGHT SCALAR
in the language. S 1 also contains a number o THRUST SCALAR
built in function to perform arithmetic operations WT_ROCKET ~SCALAR
and access statistics and intermal SIMPLE 1 DRAG SCALAR

variables. Table 2 is a listing of the functions
built into the language.

Figure 3 - SIMPLE 1 interrupt menu and listing of

When an error is detected by the SIMPLE 1 compiler or variables for a sample program.

run time system a message describing the nature of
the error is displayed. After displaying the error

message SIMPLE 1 returns control to the editor with SIMPLE 1 "Toolbox" programs:
the cursor initially at the problem area. Once — progran
returned to the editor the usual routine is to The SIMPLE 1 language and environment support

consult with the on-line tutorials to check syntax or

development” and use of a "Toolbox" approach to
language concepts. Once the error is isolated and P PP

systems analysis, Programs can be written in

fixed in the the editor the wuser exits and SIMPLE I to collect and analyze data: real or
re—compiles the revised model. SIMPLE 1“°s coupling synthetic data. Examples of programs written in
of a full screen text editor with the ¢ compiler, run SIMPLE 1 to provide a basic "tool kit" include
time, and tutorial systems provides an effective prograt_n-s to:

‘mechanism for program development and speeds up the 1) Collect timing data using the keyboard.

learning process for beginmners. 2) Construct Histograms of data sets (with or

without a rums test to check for correlation i
SIMPLE 1 simulations are interruptible. When a key the data set). ¢ n

is depressed during the simulation a menu is 3) Perfor the Mann-Whitne
displayed at the top of the screen. The SIMPLE 1) " Y
interrupt sub-system allows the user to:

1) Halt/Continue the simulation The histogram program reads a data set and

2) List the global variables in the model automaticall
y sets histogram cell parameters. Using
3) Change or Look at the values of global variables SIMPLE 1“5 character based graphics scheme the

4) Review statistics on block utilizatien. program interactively displays a histogram of the

test on two data
sets.

169

P. Cobbin

data set and allows the user to alter histogram

parameters. This | program illustrates the
capabilities of the software for modeling and
analyzing systems. The abllity of the user to build
"tool box" programs .in SIMPLE 1 provides an open
ended means of expanding the capabilities of the
system. The open ended nature of SIMPLE 1 is a
direct consequence of merging simulation language
concepts with general purpose programing language
concepts common in BASIC, Pascal, C, or FORTRAN.

SIMPLE_l: The Language

SIMPLE 1 employs a number of unique approaches to
simulation from a language design point of view.
The code is structured into five segments, one of
which is a declaration phase. The other four phases
of SIMPLE 1 describe the discrete and continuous
nature of the model and run control aspects of model

I

execution.

SIMPLE 1 uses a repetitive approach to run control
employlng a PRERUN and POSTRUN code sections to set
initial conditionms and,analyze run results. Figure 4
illustrates SIMPLE 1”s approach to running the user’s
model. The PRERUN section of the model is executed
first to establish model parameters and run control
limits such as the stopping time for the simulation.
After execution of the PRERUN code the DISCRETE
and/or CONTINUOUS seétions of the model are
processed. Using SIMPLE 17s repetitive approach to
run control one can Jlook at the results of a
simulation to base decislons for parameter values of
the next run.

Discrete event aspects of the model are defined using
an activity on node network structure. The
Continuous aspects of the system model are described
using algebralc state equations which define
variables overtime ¥vla first order differential
equations. The Continuous aspects of the model are
simulated using a Runge Kutta fourth order fixed step
procedure with the step size assignable by the
modeler, The discrete aspects of the model are
processed via an event scheduling mechanism to
sequence the flow of entities through blocks in the
network model.

@lscrerd

START
OF ~—#{(PRERUN) CROSTRUNY—RETURN T
SIMULATION MODELING
ENV IRONMENT

Comos)

I& RE-RUN SIMULATION IF STOP
BLOCK NOT ENCOUNTERED [N

POSTRUN

Figure 4 - Schematic of run control in SIMPLE 1

SIMPLE 1 is a declarative language in that the user
can define variables. SIMPLE 1 variable identifiers
can have up to 20 significant characters including
the underscore to facilitate self documentation of
the model. The language supports the declaration of
the following classes of data structures:

1) Globally scoped reals: scalars and arrays with
single or double subscripts.

2) Entities: Entities are declared by name with each
type having thelr own unique number of attributes.

3) Screens: Windows and an assoclated character
schematic to define a background for model animation.

4) TFiles: File variables to . control reading and
writing to files and logical devices.

Statistics on globally scoped variables of an
observation or time persistent nature are collected
automatically by appending key words to the variable
declaration. When statistics are declared for arrays
the statistics are collected for each element in the
array; accordingly SIMPLE 1 models can collect
extensive statistics on model variables.

Screens can be declared in SIMPLE 1 which define a
character schematic to be used as a background over
which animation of the model state 1s to be
performed. SIMPLE 1“s approach to formating of
screen images emphasizes a "quick and dirty" approach
to minimize modeling effort and overhead.

Entities are created by name in SIMPLE 1 and have
thelr one unique attributes, Entities with
identifiers 1ike: CPU_BOARD and CHIP_SET can be
declared in SIMPLE 1 each with differing attribute
requirements. CPU_}OARD can be declared to have one
attribute and CHIP_ﬁET entities can have say five
attributes associated with them. Entities are
created by name in SIMPLE 1 models and can be brought
together into groups. Entities formed into groups do
not lose any of their attributes in SIMPLE 1.
Manipulation of entity attributes by name simplifies
referencing entities traveling in groups and tends to
improve the self documentation aspects of SIMPLE 1
models. -

The body of a SIMPLE 1 model 1s composed of £five
sections: DECLARE, PRERUN, DISCRETE, CONTINUOUS, and
POSTRUN. Figure 5 illustrates the organization of
SIMPLE 1 model code, the sequences of the segments
describes the data structures first, followed by the
code segments in their relative order of execution.
The DECLARE section i1s used to define key model
variables such as entities, screens, and so forth.
The PRERUN and POSTRUN sections execute in a basic
subroutine 1like manner much like BASIC or FORTRAN,

SIMPLE_1 employs seven (7) basic block types to
define discrete and continuous models. The brevity
of language concepts for discrete system modeling is
due to the flexibility of the SIMPLE 1 CONDITIONS
block. The network representation, syntax, and brief
description of the CONDITIONS and the other SIMPLE 1
basic block types are summarized in TABLE 1.

Discrete system models involve construction of
networks defining the flow in time of entities.
Conceptually, entities are distinct individual
objects that flow through blocks in the unetwork

model. Typically, entities are used in models to
represent real objects: tools, parts, people, and so
forth. The network model is used to define the

interrelationship between entities and other elements
of the system. In the wmost basic form, network
models describe the processes to:

1) CREATE entities in the model

2) QUEUE entities (in walting lines) until specified
CONDITIONS are met.

170

A Tutorial on the SIMPLE_1 Simulation Environment

BLOCK TYPE SYMBOL SYNTAX/FUNCTION

BLOCK TYPE SYMBOL SYNTAX/FUNCT ION

LABEL ACCEPT,X,Y,VAR,L,H;

ACCEPT ACCEPT!
—>QLASEL B X Y VAR,L, >
ACTIVITY =) CRDURAT{ON >

ACCEPT at a screen location
a variable value.

LABEL ACTIVITY DURATION;
Engage arriving entitles In an

actlvlty for a duration of time.

LABEL. BRANCH

BRANCH =~ =] COND, LBL:[w=> CONDITION/PROBABILITY,LBLT:
> " n »LBL2:
—d " " »LBLN;
COND, LBL;g~~> Route entities using a condltlonal
or probabllistic criterla.
CHART pam CHARTH LABEL CHART,X,Y,DIR,SYM,CNT,LIM,
X, Y, DIR FORE COLR,BACK COLR;
——>|LABEL SYM, CNT, > - -
LIM, CHARTS varlable or expression

FORE COLOR
BACK COLOR

ccccecece
CLEAR >0 ABEL. fIC CLEAR Com>

Iccececccee

value using ASCI| characters +o
written CNT time to represent
varlable values graphlcally.

LABEL CLEAR;

CLEAR all statistics

C| LABEL CLONE QTY,LBL;
CLONE—>ILABEL L oTY > PARENT
CLONE arriving entities and
N CLBL §—> CLONES route them to block with label
LBL,
LABEL CLOSE,FILEVART: oo @
cLose _> FILEVAR,
CLOSE a flle.
CONDITIONS CONDITIONS,
< > GLOBAL., QNAME, LOCAL, L.BL s
< > QNAME, LOCAL, LBL ;
< >
< > Monttor system state untll
< > speclfled conditlions are
< > mots CONDITIONS controls

flow of entities from QUEUES

ONDITIONS to other blocks in the model.

ccee

c CREATE,BQ, ENAME, TBC, TF,CL IM;
CREATE C §B80,ENAME, TBC,g—>

C QiF,CLIM Creates groups of entitlies of

C
¢cce

entitles of type ENAME,

TaBLE 1 - SumMaARY oF SIMPLE_1 BLock TvpEs

171

IF-THEN-ELSE;;
SIMLE 1 JER SIMPLE 1

J— ++BLOCKS.. §L§ ..BLOCKS,. >
1F TRE RsB IF FaLsE

SYNTAX & FUNCTION:

LABEL {F CONDITION THEN;
;;r:f"LE_‘l BLOCKS
LABEL ELSE;“.
;;P;’LE_I BLOCKS

oo

LABEL END IF;

IF CONDITION TRUE execute
body of SIMPLE 1 blocks
up to ELSE statement '

IF CONDITION FALSE execute
body of SIMPLE 1 blocks
AFTER ELSE STATEMENT

Define Rate of change for

VAR:EXPRESSIONR-> VAR-as EXPRESSION,

I

K X=X
KILL ->|I KILL_INcR
1 X=X

INTEGRATE
-—>ILABEL

LABEL KILL,KILL INCR;

Elimlnate entities from system.

LABEL OPEN,FILEVAR A FILE EXT;

OPEN —_—3 FILEVAR AS
FILE EXT > OPENs & flle for subsequent
read or write operations.
LABEL PREEMPT,LBL,NUM, VAR;
PREEMPT —->|LJBEL PREEMPT >
PREEMPT entltles engaged In the
LBL,NUM, VARJ—> LBL labeled actlvity.

QNAME QUEUE, RANKING;

QuuamQ
QUEUE —>JONAME @ RANK Q- -
Que—=Q
R
READ —->ILABEL E FILE VAR,VAR:
A - ",

D VARN;

Hold entities In QUEUE until
CONDITIONS are met.

LABEL READ,FILEVAR,VART: ...:
VARN;

READ data from flles.

LABEL REPORT;

REPORT =~ — REPORT f—>
Generate a standard REPORT on
simulation results.
RRRRRRRRR LABEL RESET;
RESET -—>R RESET Re—>
RRRRRRRRR Destroy all exIsting entltles

in the model.

P. Cobbin

BLOCK TYPE SYMBOL SYNTAX/FUNCT ION

LABEL SCREEN,SCR NAME,TEXT SW,

SCREEN BORDER. SW,CLEAR SW,

Activates SCR NAMEd SCREEN and
optionally resets the foreground
and background colors in use on
color systems.

LABEL SET VAR:=EXPRESSION: +¢0 ¢

$ eee : VAR:=EXPESSION;
SET entity attribute and global
variable values.

SHOW SHOM! LABEL SHOW,X,Y,EXP,1,D,
—> X,Y,EXP,1,D, > FORE COLR,BACK COLR;
FORE COLOR, - -
BACK COLOR; SHOWs varlable or expression
- value at the speclfled area
of the active screen.
; LABEL SPLIT:ENAME,QTY,L8Lz4sst
SPLIT =] [—> 2e043ENAME,QTY,LBL;
; SPLIT entitles from arriving
NAME, QTY, LBL:f==> group and route to block with
w,n , 8 ;Ree> the labe! LBL.
i
LABEL STOP;
STOP ~—>BLABELY STOP

STOP slmulatlon processing and
return to model Ing environment.

WHILE & END WHILE
SIMPLE, 1
««BLOCKS.«

SYNTAX & FUNCTION:

LABEL WHILE,COND!ITION; Executes a WHILE loop untii
cons +he CONDITION expression Is
SIMPLE 1 BLOCKS; faise

LABEL END WHILE;

WRITE
W LABEL WRITE,F ILEVAR,VAR1, |,Dz.0.

-> FILE VAR,VAR,FORMAT: > VAR2,1,Dz...
| VARN, 1,D;

n,oon

to flle,

TABLE 1 - CONTINUED

FORE_COLR,BACK COLR;

WRITE numeric or string constants

FUNCTION NAME

DESCRIPTION

ARITHUETIC:
ABS
ARCOS
ARCSIN
ARCTAN
cos
EXP
LoG
LN
MAX
MIN.
MOD
ROUND
SIN
SQRT
TAN

BLOCK STATISTICS:

AVE NUM
COUNT
MAX NUM
MIN NUM
NUM
STD_NUM

ENTITY GROUP ACCESS:

NUM ENTITY
VAL _ENT ITY
SET_ENTATY

Absolute value

Arc coslne

Arc sine

Arc tangent

Coslne

e taken to some power
Base 10 log

Natural log

Maximum of two arguments
Minimum of two arguments
Modulus

Round value to Integer portion
Sine

Square root

Tangent

Average actlivity level

Count on number of times block encountered
MaxImum activity [level

Minlmum actlvity level

Current number of entity groups In 'block
Standar deviatlion for activity levet

Number of entlties of a glven type In group
Yalue of an attribute for non-pole entities
Set tunction for non-pole entity attributes

INTEGRATED VARIABLES:

LAST STATE
DER1Y
LAST DERIY

RANDOM NUMBERS:

UNIFORM
NORMAL
EXPON
TRIAG
LOGNORMAL.
POISSON
SEED
DlSQ_?TEP

VARIABLE STATISTICS:

OBSERVE AVE
OBSERVE MIN
OBSERVE MAX
OBSERVE N

OBSERVE STD

VARIABLE STATISTICS:

TIME AVE
TIME STD
TIME MIN
TIME MAX

TIME RELATED:

STIME
SYS TIME

RUN_CONTROL :
KILL COUNT
STEP SIZE
STOP TIME

FILE RELATED:
EOF

Last state vaiue
Current derivative
Last derlvatlve

Unlform distribution
Normal "
Exponential n
Triangular "
Lognormal "
Polson "

Seed setting function
Discrete values & probabllities passed
by an array

—- Observational statlstics ~—
Average
MinImum
Max imum
Number of observations
Standard devlation
—- Time persistant statistics ——-
Average
Standard devlation
MInimum
Max Imum

Simufation time
Real system time

Termination count for run
Integration step slize
Stopping time for run

Return end of flle status of a file

TABLE 2 - SummarY OF SIMPLE_1 FUNCTIONS

A Tutorial on the SIMPLE_1 Simulation Environment

3) ACTIVITY: activities are undertaken by entities
and involve the passage of time.

4) BRANCH: branching of entities between alternative
pathways through the network model.

5) KILL: Disposal of entities in the system when they
are no longer needed in the model.

6) SET variable values to describe changes in system
state or entity attributes.

DECLARE ;

DECLARATION OF USER-DEFINED VARJABLES:
1) GLOBAL variables
2) ENTITIES
3) SCREENS
4) FILES

IEND;
PRERUN

INITIALIZE RUN:
1) READ/WRITE Information to tlles
2) SET user defined varlable values
3) SET run Iimfts: stoppling tlme, entity termination limi+s
4) CLEAR statlstlcal accumulators

Jeno;
DISCRETE;

MODEL OF DISCRETE PROCESSES IN SYSTEM
1) Statements based on an activity on node network scheme
2) Character animation ot simulation resul+ts
3) READ/WRITE data fo disk, keyboard, monitor etc.

END;
CONT INUOUS ;
MODEL. OF CONTINUOUS PROCESSES IN SYSTEM:
Statements use network scheme to defline dltferential
equatfon models of continuous system efements.
END;
POSTRUN;
ANALYSIS OF RUN RESULTS/RUN CONTROL
1) standard/custom reports on simutatlon results
2) output of simulation results to files or devices
3) CLEARIng of statlstlcal accumutators
4) RESETIng of mode! state
5) Calculation of revised run parameters.
6) STOPplng program execution
|END;

Figure 5 - Schematic Diagram of SIMPLE 1 Code

These six concepts plus a set of advanced modeling
concepts comprise the basic building block processes
used in 'SIMPLE] discrete system models. Detailed
descriptions of all Simple 1 block concepts are
avallable through the on-line tutorials.

CONDITIONS block: A key language element

The CONDITIONS block defines the state conditions
required for entities to leave queues. In a basic
queue/server relationship a CONDITIONS block is used

to associate a specific QUEUE with an ACTIVITY block.
Figure 6 illustrates a fragment from a network model
describing the processing of computer mother boards
through an dinsertion activity. A parameter of the
CONDITIONS block in Figure 6 specifies that the
number of active INSERTION activitles must be less
than one (idle) in order for a board to be released
from the QUEUE labeled CPU_BOARDS,

*B0ARDS™ —>cru BoARD] @ fcru soarosy ... | (nserion —->I INSERT 10N l 15 J->
- CTIVITY

NUMC INSERTI0N)<1
BMUCOND I T10HS svm—

Figure 6 - Basic Queue/Server SIMPLE_l network
fragment for CPU assembly process model.

In most situations you start off modeling the main
processes and add embellishments to capture
additional constraints on system operatiomu. In a
model of a CPU assembly process we would start
modeling with a basic simulation of the CPU”s mother
board flow through the production process.

The assembly aspects of system operation can have a
dramatic bearing on the performance of the system and
SIMPLE 1 has features especlally useful for modeling
assembly constraints in models of manufacturing
processes., After construction of the initial model
of the mother board”s processing additional details
can be added to the program to model assembly
processes. Taking the basic queue/server code, a
slight modification to the CONDITIONS block will
model the assembly of the CPU_BOARD with a CHIP SET
entity. To add in an assembly constraint for the
operation we would add a queue to store the required
chip sets and augment the conditions block. The
revised network fragment is illustrated in Figure 7.
In the revised situation an entity must be in the
CPU_BOARDS queue and the CHIP SETS queue as well as
an 1dle INSERTION activity d4n order for the
CONDITIONS block to route the entities to the
INSERTION activity. When the criteria for releasing
the queues is met the conditions block routes the
board and chip set entities to the insertion activity
as a group. In the created group the board and chip
set entities travel together and keep their unique
attribute values, (they do not give up any attributes
as a result of traveling together as a group).
Figure 8 schematically illustrates the resultant
entity group that d1s ultimately routed to the
INSERTION activity.

1NSERTION

»8oARDS" —>fcry_BoARDS| @ keru_soARD:

"CHIPS* —>CHIP SETS @ JCHIP SETS

NUM{ INSERT2ON) <1
M COND | T | ONSuae—

>I INSER‘I’IONI 15 I-’
CTIVIT

INSERTION

Figure 7 - Revised Queue/Server SIMPLE_} network
fragment to model assembly of CHIP SET
and CPU_pOARD entities.

P. Cobbin

< EVYENT CALANDER

(Y

SIMPLE 1 Entity
group formed by
etwork fragment
] illustrated In
Fligure 7

CPU BOARD

CHIP SET

_J

Figure 8 - Schematic representation of SIMPLE 1
entity group concept using the CPU
assembly process as an example.

In addition to the basic modeling block types
SIMPLE_1 models can employ blocks to manipulate
groups of entities created with CONDITIONS blocks.

The SPLIT block allows splitting specific entity

types from a group .and re-route them elsewhere and
the CLONE block is wuseful for creation of exact
duplicates of entity groups. As the name implies,

the PREEMPT block 4is used to preempt the completion
of activities by entities.
Notably absent in the SIMPLE 1 language is the
concept of a resource. The reason SIMPLE 1 does not
employ resources is that by it”s npature, the
CONDITIONS block can be used to model simplistic and
complex resource situations. Key system resources in
SIMPLE 1 models are typically modeled as entities
that are grouped with "customer" entities while in
use and SPLLIT from the customer and routed to a queue
when the resource entity becomes idle. The advantage
inherent in modeling resources as a separate type of
entity in SIMPLE_l models is the ability to model
explicitly the decision making processes of the
resource. SIMPLE 1“s handling of complicated
resource situations is in a fashion a highly
generalized version of the selector node concept for
resource modeling employed in INS.

SIMPLE 1 employs four specialized blocks for rum
control purposes. A CLEAR block is used to control
clearing statistical accumulators and a RESET can be
used in the POSTRUN to eliminate all entities in
existence in the discrete portion of the model. A
standard report on system performance can be obtained
using the REPORT block in the POSTRUN. The key rum
control block in SIMPLE 1 is the STOP block. The
STOP block is wused In the POSTRUN to halt model
execution and return to the main SIMPLE 1
environment.

An original GPSS example of a basic TV inspection and
adjustment situation illustrates how SIMPLE 1 code is
written. In this example we have TV”s arriving to be
inspected by one of two available inspectors. After
inspection good sets are routed to shipping and
defective sets are routed to an adjusting station.
At the adjusting statdion the sets are re—aligned by a
single adjustor and routed back to the inspectors for
re-testing. Using Schriber”s GPSS TV imspection and

174

adjustment example the

SIMPLE 1
would be:

code for the model

DECLARE
GLOBALS: TIME IN SYSTEM OBSERVE STATS;
ENTITIES: TV(D); -

END;
PRERUN;
SET STOP TIME:=1440;
END; -
DLSCRETE ;
CREATE, 1,TV,UNIFORM(3.5,7.5,1);
SET TV(1l):=STIME;
WAIT INSP QUEUE,FIFO;
- CONDITIONS,
NUM(INSPECT)<2,WAIT INSP,,INSPECT;
INSPECT ACTIVITY UNIFORM(6,12,1);
BRANCH 0.85,PACK:
0.15,WAIT ADJ;
WAIT ADJ QUEUE,FIFO; -
- CONDITIONS,
NUM(ADJUST)<1,WAIT ADJ,,ADJUST;
ADJUST ACTIVITY UNIFORM(20,40,1);
BRANCH,WAIT INSP;
PACK SET TIME IN SYSTEM:=STIME-TV(l);
K1y =~ 7
END;
CONTINUOUS; END;
POSTRUN;
REPORT;
STOP;
END;

The global variable TIME IN SYSTEM is declared with
the key word OBSERVE STATS appended to signal
collection of statistics. When the set block near
the bottom of the code assigns the wvalue of
TIME IN SYSTEM with the expression:

TIME IN SYSTEM:=STIME-TV(1)
The creation time for the TV and the current
simulation time (STIME) are used to calculate the
time in the system for the exiting TV. As a side

affect of the the assignment SIMPLE 1 updates
observatioanal statistics for TIME IN SYSTEM.

The CONDITIONS blocks in this model employ a built in
function NUM which returns the current number of
entity groups currently at a block in the model. NUM
is one of an extensive number of built in SIMPLE 1

functions available to the modeler. Built in
functions of the language provide access to
arithmetic functions, random number generators etc.

Table 2 is a summary of SIMPLE 1 functions.

Input, Output and Animation:

The SIMPLE 1 simulation language has input and
output concepts for both file I1/0 and screen
animation with the screen being updated while the
model is running. SIMPLE 1 supports I/0 operatioms
using specialized block constructs. The dinput and
output operations supported in the language are for
two types of operations. Block constructs in the
language control 1I/0 to the screen or keyboard and
to DOS. Screen I/0 comstructs include mechanisms for
writing ASCIL characters and numbers coupled with
template images. The character and number based
display formats of SIMPLE 1 combined with screen
generation features of the language form a character
based animation capability. In summary, SIMPLE 1
supports file and screen I/0O Operations associated
with:

A Tutorial on the SIMPLE_1 Simulation Environment

1) SCREEN activation to display a text background.

2) SHOW block to display numeric values on a screen.
3) CHART block to display characters on a screen.

4) ACCEPT block for reading variable values from the
keyboard.

5) READ and WRITE blocks for file input/output.

6) OPEN and CLOSE blocks for managing files during
model execution.

VIDEQ COLOR FIELDS

The screen 1/0 blocks: SCREEN, SHOW, and CHART have
two optional fields to select the foreground and
background colors to use on machines with a color
monitor. The fields are optional and specify the
foreground and background color to wuse when writing
to the screen. Integer numbers are used to turn on
specific colors as defined by the color numbers:

0: Black 6: Brown 11: Light Cyan

1: Blue 7: Light Gray 123 Light Red

2: Green 8: Dark Gray 13: Light Magenta
3: Cyan 9: Light Blue 14: Yellow

4: Red 10: Light Green 15: White

5: Magenta

Revising the IV inspection and adjustment example
illustrates the I/0 concepts of SIMPLE 1 for both
character animation of the simulation and generation
of disk files. A screen will be used to form a
schematic of the TV inspection system. SHOW and
CHART blocks will be used to animate the state of the
system using the schematic diagram of the system as a
background. Figure 9 is a listing of the revised
code for the TV repair model.

In the DECLARE section a CONTROL entity type has been
added for managing the animation of the screen on 10
time unit intervals. The screen named PICTURE is
associated with a schematic of the system A FILES
declaration is made in the DECLARE section to define
file variable OUT1, OUT1 will be used to store time
in system observations.

During the PRERUN phase an OPEN block will open
"HISTO.INP". When a TV completes processing the
length of time spent in the system by the TV will be
written to the fille for post processing with the
histogram analysis program implemented in SIMPLE 1
that is supplied with the software. A CLOSE block
is used in the POSTRUN to close the disk file when
the model is finished. Prior to returning to the
SIMPLE 1 modeling environment menu a standard report
on run results is obtained using the REPORT block.
The REPORT block at run time allows reports to be
written to the screen or to file.

A CONTROL entity is created every 10 time units in
the DISCRETE section to manage updating the screen.
The CONIROL entity executes a series of SHOW and
CHART blocks. The SHOW blocks are employed to write
numbers for the time, queue sizes etc. The CHART
blocks are used to write ASCIL characters. The
number of ASCII characters written by the CHART block
1s used to graphically represent the number of busy
inspectors and adjusters in the system. In effect,
the animation of simulation results using the CONTROL
entity causes "SNAP SHOTS" of the system to be taken
on fixed time intervals. Alternatively, SHOW and
CHART blocks can be inserted between ACTIVITY and
QUEUE blocks to update the screen as specific
portions of the system change state. This
alternative method produces screen results that are
generally more active and representative of the

activities being simulated however, additional coding
overhead is generally required.

-y
CONTINUOUS;;

e
POSTRUN;

DECLARE;
GLOBALS: TIME IN SYSTEM OBSERVE STATS;
ENTITIES: TV(1): CONTROL(1);

DEF SCREEN: PICTURE,1,1,80,16,YES;

L=

TIME :

11 TV INSPECT/ADJUSTMENT EXAMPLE It
AR
: e e -
H INSPECT TV 3 HRERR
$ ADJUSTOR

AN TR R KN STATION

CREATE H * NO. * H

TV % INSPECTORS ¥=—m—=>4mwmm—> PACKING

TOTAL: * BUSY = * TOTAL:
Ea s e

+
FILES: OUT1,WRITE;
END;
PRERUN;
OPEN,CUT1 AS HISTO INP;
SCREEN,PICTURE, , ,, 15,03
SET STOP TIME:=1440;
END; -
DISCRETE;
CREATE, 1,CONTROL, 10, 10;
SHOW, 36, 2,STIME, 7,2,12,0;
CHART,27,11,4,177,NUMCWAIT INSP), 125
CHART,57,6,4,177,NUMIHAIT ADJUST), 10;
CHART,38,13,4,178, NUM(INSPECT) , 2;
CHART,61,7,4,178,NUMCADJUST OP),2;
SHOW, 65, 13,COUNT(PACK) ,3,0;
KILL;

CREATE, 1, TV, UNIFORM(3.5,7.5,1);
SET TV(1):=STIME;
WAIT INSP QUEUE,FIFO;
- CONDITIONS , NUMC INSPECT) < 2,
WAIT INSP,, INSPECT;
INSPECT ACTIVITY UNIFORM(6,12,1);
BRANCH 0.85,PACK:
0.15,WAIT ADJUST;
WAIT ADJUST QUEUE,F IFO; -
- CONDITIONS, NUMCADJUST OP) < 1,
WAIT ADJUST,,ADJUST OP;
ADJUST OP ACTIVITY UNIFORM(20,40,1);
T BRANCH ,WAIT INSP;
PACK SET TIME IN SYSTEM := STIME-TV(1);
WRITE,OUT1,TIME IN SYSTEM,8,3:/;
KILL; -
END;

END;

CLOSE,QUT1;
REPORT ;
STOP;

END;

Figure 9 - Revised SIMPLE ! code for TV repair model.

P. Cobbin

Running this example will produce the file:
HISTO.INP which contains the individual time in
system observations for TVs. Using a histogram
program written in SIMPLE 1 a runs test was performed
on the data and histogram generated. The histogram
results are illustrated in figure 10. The report
generated by the REPORT block was saved to a disk
file and is reproduced in Figure ll.

RELATIVE ENTER 1 TO RETURN TO MENU: ?

R CELL UPPER #
FREQUENCY

NO. LIMIT 0BS.

FREQUENCIES;
REL., CUM.

0.2897 5 # 1 6,000 0 0.0000 0.0000f
0.2607 : 4 2 9,000 57 0.2262 0.2262
0.2317 ;. # 3 12.000 73 0.2897 0.5159
0.2028 ¢+ # { 4 15.000 51 0.2024 0.7183
0.1738 1 # 4 4 5 18,000 26 0,1032 0.8214]
0.1448 : # ¥ # 6 21,000 11 0.0437 0.8651
0.1159 : # 4 # 7 24,000 3 0.0119 0.8770
0.0869 : # # £ # ¥ 827.000 0 0.0000 0,8770
0.0579 ¢ # # & # # 9 30.000 0 0.0000 0.8770
0.0290 : # # 444 # 10 33,000 0 0.0000 0.8770
0.0000 +~+ b pmm I FI1 36,000 1 0.0040 0.,8810)
12345678 91011121314151617181920 12 39.000 0 0,0000 0.8810)
--— CELL RUMBER ——- 13 42,000 0 0.0000 0.8810
14 45,000 2 0.0079 (.8889
--~ STATISTICS ~-—- 15 48,000 1 0,0040 0.8929
AVERAGE vevovssanvasea ¢ 24,0069 16 51.000 0 0.0000 0.8929
STD DEVIATION vvivuews @ 40,5338 17 54,000 2 0.0079 0.9008
MINIMUM oevusiveenanns ¢ 61620 18 57.000 0 0.0000 0.9008
MAXTMUM 4ovevvanennees ¢ 367.6200 19 60,000 0 0.0000 0.9008

NUMBER OF OBSERVATIONS : 252 20 5

10 — Histogram generated from data created by
TV model. Results were obtained using a
160 line program written in SIMPLE 1.

Figure

SIMPLE 1
SIERRA SIMULATIONS & SOFTWARE

(C) Copyrlight 1985 Phlllp Cobbln
All Rlights Reservad

SUMMARY REPORT FOR: tv_lo.MOL

GENERATED ON: 8/16/86 10.45:;46 pa

COMMENT: Samplo standard SIIPLE_I sumary report for TY model
SUMMARY REPORT: BLOCK STATISTICS

SIMULATED TIME: STIME = 1,4400000000£+03

STATISTICS CLEARED AT : 0.0000000000E+00
BLOCK LABEL TIPE AVERAGE STO DEV MIN MAX CRNT CNT
WAIT INSP: QUEUE: 0.574: 0.772: 0: 4: 2p 299:
INSPECT: ACTSVITY: 1.8472 0.366: 0r 2: 23 297;
WAIT_ADJUST: QUEVE: 1.1633 10123 03 4 21 43:
ADJUST OP: ACTIVITY: 0.834: 0.372: 0 1z 1: 41
PACK: 0.000: 0,000 0: 1: 03 252

SET:

SUMMARY REPORT: OBSERYATIONAL STATISTICS

SIMULATED TIME: STIME =
STATISTICS CLEARED AT :

1.4400000000E+03
0.0000000000E+00
TYPE AVERAGE STD DEV

VARJABLE LABEL MIN MAX CRNT KO.

TIME IN SYSTEM: SCALAR : 24.007: 40,534: 6.21367.6:10.63 252

Figure 11 - SIMPLE 1 standard summary report
generated by TV model.

SIMPLE 1 will model continuous systems definable as a
set of first order differential equations. A simple
rocket model illustrates SIMPLE 1“s approach to

[oECTAR 3

continuous modeling. The height of the rocket
attained over time will be integrated and is based
upon the initial fuel 1load of the rocket. In this
example we would define velocity height, weight etc.
in the declare section. The SIMPLE 1 key word
INTEGRATED follows the declaration of varlables whose
values are obtained by numerical integration.
SIMPLE 1 integrates continuous variables using a
Runge—-Kutta fourth order fixed step procedure. The
SIMPLE 1 code for this example is illustrated in
Figure 12.

GLOBALS:
VELOCITY INTEGRATED:
BURNING: K: G: RATE:
ENTITIES: CONTROL(2);
DEF_SCREEN: PICTURE,1,1,80,23,YES;

HEIGHT INTEGRATED: WT FUEL INTEGRATED:
MAX HEIGHT: THRUST: WT ROCKET: DRAG;

+
TIME :
15 ¢
14 : ROCKET MODEL
13 =
12 VELOCITY &
1z HE IGHT :
H10 : MAX HEIGHT 3
E 9:
1 8: INITIAL FUEL
6 7 WT (500-1500) :
H 63
T 5
43
3
2:
1:
20 40 60 80 100 120 140 160
- Time -
+
EyD;
PRERUN;

SET STOP TIME 3= 150: STEP SIZE := 1,03 WT ROCKET := 300:
BURNTNG = 200 K 1= 0.05: 6 1= 9813
HEIGHT t= 0z VELOCITY = O: MAX HEIGHT s= Os
THRUST :=35003 -

INTEGRATE WT FUEL:0; INTEGRATE VELOCITY:0;
SCREEN,PICTURE, 1,1,1,15,0;
SCREEN,PICTURE,0,0,0,12,0;
- ACCEPT,65,11,WT_FUEL,500,1600;
END:

INTEGRATE HEIGHT:0;

DISCRETE;

CREATE, 1,CONTROL, 2,0;
SHOW, 36,2,STIME,7,0,11,0; SHOW,66,6,VELOCITY,7,1;
SHOW, 66,7,HEIGHT,7,1; SHOW, 66,8,MAX HEIGHT,7,1;
CHART, 7+ST IME/ 4, 18-ROUND(HE | GHT/1000) ,1,35,1,1,12,0;

KilL;

176

JEND;
CONT INUOUS ;
SET MAX HEIGHT t= MAX(MAX HEIGHT,HEIGHT):
DRAG 1= K*VELOCITY*ABS(VELOCITY):
WY FUEL := MAX(O,MT FUEL):
THRUST 1= THRUST*(WT FUEL>0);
INTEGRATE WT FUEL : ~BURNING*(THRUST>0);
INTEGRATE VELOCITY : G*(THRUST-DRAG)/(NT ROCKET+WT FUEL)-G;
INTEGRATE HEIGHT & VELOCITY; - -
END;
POSTRUN;
STOP;
EAD;

Figure 12 ~ SIMPLE 1 model of a simple ROCKET.

A Tutorial on the SIMPLE_1 Simulation Environment

A benefit of SIMPLE 1“s DECLARE section 1is the
ability to define and use variables with identifiers
related to the physics of the problem such as height,
velocity, drag, etce.

In this model the PRERUN establishes the initial
state variables prior to the run. A discrete section
is used to periodically update the monitor to display
the rocket”s state over time both numerically and
using the character graphics capabilities of the
language. Figure 13 illustrates the information
displayed on the monitor while execution of the model
is progressing.

TIME : 120

15 ¢

14 ¢ ROCKET HODEL

13 ¢

12 : VELOCITY H =-77.5

11 = FegRoRe HELGHT ¢ 7651.9
H 10 : # i MAX HEIGHT : 11474,2
E 9 : # ani
L 8 : # bi1i] INITIAL FUEL
G 7 # WT (500-1500) : ?1100
i 6 : #
T 5 : M

4 #

3: i

2: W

1 #

#a ¥ +
20 40 60 80 100 120 140 160
=== Time ~=-

S R

Figure 13 - Screen display during execution of
rocket model.

Applications of SIMPLE 1:

Since announcement of SIMPLE 1 at the 1985 Winter
Simulation Conference held in San Francisco, SIMPLE_1
has been applied in manufacturing, academia, and by
the United States Military. Applications of SIMPLE 1
to date have ranged from wmanufacturing systems,
robotics justification, health care systems,
emergency planning, and analysis of logistic support
systems.

Summary

SIMPLE 1 has a number of dianovative features not
found in current simulation software. The system
combines a full screen editor with compilation and
run time systems to speed up the edit-debug cycles
involved in model building. The language supports a
"tool box" ability whereby support programs can be
written din SIMPLE 1 to post process simulation data.
SIMPLE 1 utilizes a built in capability to animate
simulation results wusing a character graphics
methodology which stresses a "quick and dirty"
approach to model animation. The language supports
reading and writing of data sets via standard ASCII
text files in addition to the animation and key board
data 1input capabilities. SIMPLE_1 is not just a
pretty plcture: the language support extensive
collection of statistics. Statistics collection
capabilities of SIMPLE 1 dinclude the ability to
easily obtain statistics on user defined arrays.

The implementation of SIMPLE_1 combines the
compilation and run time systems of the software into
an integrated environment., The SIMPLE 1 environment
includes on-line tutorials and full screen editor
coupled to the compiler and run time system. Errors
detected by the compiler or run time system initiate
a call to the editor to isolate the error and speed
up the edit-complle-debug cycle of modeling.

177

References

Cobbin, Philip, MSIMPLE l: A simulation
environment for the IBM ~ PC", Modeling and
Simulation on Microcomputers, Claude, C.
Barnett, Editor, Society for Computer
Simulation, La Jolla, 1986, pp 243-248.

Cobbin, Philip, "Applying SIMPLE 1 to
manufacturing systems", Summer Computer
Simulation Conference, July 28-30 1986, Reno,
Nevada, Roy Crosbie and Paul Luker, Editors,

Society for Computer Simulation, La Jolla, pp
724-730,

Cobbin, Philip, " Modeling tote stacker
operation as a WIP storage device" To be
published in: Winter Simulation Conference
proceedings, December 1986, Washington D.C.

Sierra Simulations & Software: SIMPLE 1 User”s
guide and reference manual, 1985. -

Starr, Patrick, Skrien,Douglas, and Meyer,
Robert,”Simulating schedule recovery strategles
in manufacturing assembly operations” To be
published in: Winter Simulation Conference
proceedings, December 1986, Washington D.C.

Philip Cobbin is the owner of Sierra Simulations &
Software and is the developer of SIMPLE 1, Phil has
developed and taught simulation to undergraduates as
an adjunct professor of Industrial Engineering at San
Jose State University. He holds a Master of Science
in Industrial Engineering from Purdue University, a
Bachelor of Science in Industrial Engineering and
Operations Research from the University of
Massachusetts at Amherst, and an Associate in Science
degree in Manufacturing Engineering Technology from
Waterbury Connecticut State College. Phil is a
native of Los Angeles and has been previously
employed by the General Products Division of the
International Business Machines corporation
performing simulation modeling and material handling
engineering activities.

