Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

XCELL:

A CELLULAR, GRAPHICAL

FACTORY MODELLING SYSTEM

Richard Conway
William L. Maxwell
Cornell University

Ithaca, NY 14853, U.S.A,

ABSTRACT

XCELL is one of a growing number of new simula-
tion tools that capitalize on the graphics capability
of personal computers. It is a complete, self-
contained, interactive system intended for use by
non-programmers. Graphic representation is the
fundamental medium in XCELL, used in the comstruction
of the model as well as the display of results.

1. INTRODUCTION

The simulation tools available to model manufac-
turing systems have been improving rapidly in recent
years, after a long -period of relatively slow
progress. Realistically, a large fraction of this
improvement is directly attributable to progress in
computer hardware, whiich has inspired new approaches,
as well as made old methods more cost effective.
This help is coming none too soon, since the pace of
facilities design and rennovation is steadily quick-
ening. We no longer have the luxury of time to tune
and debug new manufacturing systems on the floor,
since the expected economic life of a new systenm,
before major revision will be required, has become
frighteningly short.

Simulation tools are progressing on two dis-
tinctly different fronts, but failure to recognize
the distinction between the two is causing some
confusion. The first front is the important task of
inereasing the productivity of the simulation pro-
fessional. The second is the campaign to make some
reasonable form of simulation available to the non-

rofessional presumably to the person who is
directly responsible for the solution to the problem.
The confusion arises in the fact that progress on
both fronts is sought by making tools that are
Yeasier to use". The difficulty is that this phrase
has quite different meanings in the two different
contexts.

To make .a tool Yeasier to use® for a pro-
fessional, one seeks to <increase the power of the
available constructs. This is often achieved by
increasing the variety of constructs available, as
well as increasing the flexibility of particular
constructs. In effect, it constitutes increasing.the
richness of the "language®, in both breadth and
depth, and if this increases the complexity of the
tool, and the difficulty of achieving competence,
that is an acceptable trade-off.

On the other hand, making a tool “easier to use"
for the non-professional Tespresents almost a dia-
metrically opposed task. The dominant criteria must
be ease of understanding and ease which one can
acquire a useful degree of competence. Richness in
this context is generally counter-productive, and
complexity must be carefully hidden. In particular,

160

efforts: to increase the modelling productivity of the
non-professional, apart from the learning time re-
quired to get started, are faced with special
difficulty. It may well be that with the simple
*hand tools" that are safe and productive for the
amateur, it takes longer to accomplish a given
modelling task than with the "power tools® available
to a professional.

Improving simulation tools for either audience
alone is a challenging task. For a particular
contribution to be valuable to both is unusual. If
one is unclear which audience is the intended bene-
ficiary of a new development, then prospects are
unnecessarily jeopardized.

The one path that offers some hope of progress on
both fronts is the development of special-purpose
systems for particular industries or particular pro-
blems. In effect, by "building-in" some knowledge of
the problem, the amount that the amateur must learn
is reduced, at the same time that the amount that the
professional must do is reduced. However, the price
is obviously loss of generality, and limitation of
the potential market. Again, if one does not clearly
understand the benefits and hazards of this path, the
prospects of success are limited.

One deceptively attractive path toward serving
both audiences is a "multi-layered" toolkit: the
amateur uses. a subset of the full professional tool-
kit. Its primaty virtue is the relatively smooth
transition as the amateur is seduced into becoming a
professional -- that is, as the techrique becomes
more interesting than the problem. As reasonable as
it may seem, an effective layering is extraordinar-
ily difficult to achieve, and it is arguable that the
result usually serves neither audience’ as well as a
system designed for one or the other. The same
worthy objective has entranced the general-programm-
ing-language community for years, but success there
too has been limited. It is simply very difficult to
devise a language where unseen features do mnot
intrude upon an introductory subset, and/or the con-
straints of a usable subset do not distort the
structure of the superset. For example, in the
computer science community, the comsensus seems to be
that a subset of a rich production language (e.g.

PL/I) is a less desirable instructional vehicle than
a frugal language designed expressly for that purpose
(e.g. Pascal). Similarly, a superset of Pascal is
less effective for sophisticated contemporary
programming tasks than a language conceived with a
nuch broader objective (e.g.' Ada).

The tantalizing parallel for those who would
develop simulation tools for the amateur is, of
course, the financial spreadsheet. A comparably
manageable simulation tool, that would drastically
expand the potential class of users, would be both of
great service and great profit. The catch may turn



XCELL: A Cellular, Graphical Factory Modelling System

out to be that simulation is inherently a much more
complex task than financial projection, and there may
be a lower bound on the complexity that can be
achieved in a simulation system of useful flexibility
that is substantially above that of spreadsheet
systems. It will be some time before the truth of
that proposition can be knowh, and in the meantime
the enthusiastic pursuit of the spreadsheet counter-
part will leave the simulation field much the richer
-~ if not the development entrepreneurs.

2. GRAPHICAL, INTERACTIVE, MICROPROCESSOR-BASED
SYSTEMS

A consensus has emerged regarding at least four
characteristics of potential simulation tools for
amateurs. (The same consensus may apply to tools for
professionals, but they are more tolerant, and that
is another story.)

1. They should be oriented to graphics,
rather than text.
2. They should be more or less interactive

in nature.

3. They should be "menu-driven", rather than

involve conventional "programming®.

4. The host system should be a single-user
microprocessor-based system -~ a
"personal computer® or a desktop work-
station.

To some extent, the fourth item is simply a
consequence of the demands of the first three, and
perhaps also just testimony to the significant power
that is available in such systems today. However,
there is probably also some psychological aspect to
the attractiveness of microprocessor-based systems —-
a do-it-yourself simulation system just seems more

appropriate on a run-it-yourself computer system. Be
that as it may, this poses little real limitation
today, for the power of an M68020-based or an I80286-
based system compares very favorably in both memory
size and processing power with the partition of a
time-shared mainframe that was the standard simula-
tion engine of the 1970s.

The position of graphics in the consensus is also
probably part logic and part emotion -- the "picture
is worth a thousand words" argument is persuasive,
but graphical systems are also just a whole lot more
fun than studying columns of numbers. Graphics in
simulation has pretty much come to imply animation,
rather than the bar charts and pie charts of busi~
ness-graphics packages. Animation is an eminently
reasonable way to observe the behavior of a dynamic
system, but after the £first rush of entrancement
wears off, it slowly becomes obvious that animation
is a less than effective way of summarizing behavior,
so that something more is required.

There is also the issue of whether the graphics
in a simulation system is pervasive and fundamental,
or is essentially an optional way of presenting a
file of event-oriented data. A truly graphical
system will employ this medium in the construction of
the model, and not just in the presentation of
results. The issue is one of degree, but there is a
subtly different feeling between a textual system
supplemented with graphics, and a graphical system
supplemented by text.

161

*Interactive" means different things to different
people. As a minimum, today, an interactive system
will check input immediately wupon entry. For
example, a detectable structural error in building a
model will be protested immediately on commission,
and not sometime later in a distinct "checking"
phase. This is directly comparable to the immediate
syntax-checkers of modern program development
environments (Hendersom, et al., 1984), in contrast
to the complete-program-check-during-compilation
paradigm of classical batch-processing compilers.

"Interactive® can also refer to the ease and
speed with which the user can pass between different
phases of the systenm. (Strictly speaking, in the
programming environment world, systems are said to be
*well integrated", or "tightly coupled" if ‘the
transition between editing and executing a program is
immediate and painless.) From the user’s point of
view, it is certainly preferable to be able to move
freely between the construction and execution of a
simulation model, without any concern for or aware-

ness of the structure of the implementation of the
tool. For example, it is desirable to be able to
change the structure of a model in the middle of a
run -~ that is, during a pause in the rum, but
without the necessity of restarting the run from the
beginning.

"Menu-driven® is also a somewhat ambiguous term,
involving both the nature of the actions that the
user takes, and the manner in which the choices are
presented. The former is the "programming issue® —-
is the user really dealing with the objects of a
programming language, or the components of a manu-
facturing system. (The distinction can actually be
very subtle ~- but if there is anything at all that
smells like a loop, or a conditional, or a sub-
routine, then you are programming, no matter how well
disguised.) The presentation issue is quite
separate. In one form or another, a simulation
system offers the user a repertoire of different
*commands®. In a *command oriented" system the user
must learn the list of commands (or keep a "User’s
Guide" close at hand) and enter the commands
textually. Alternatively, in a menu-driven system,
commands are typically grouped in a hierarchical
structure and presented to the user a few at a time.
The user may then select with a pointing device (a
mouse, lightpen or touchscreen), a special-function
key, or a letter or number key corresponding to
position in a list on a menu-screen. Although the
repertoire of commands may be exactly the same in
both cases, there is growing preference for the menu-
driven alternative as being more appropriate to the
amateur user. (It can also be painfully tedious for
an experienced user.)

3. THE XCELL FACTORY MODELLING SYSTEM

Against this background it is easy to charac-
terize XCELL. It is an entirely graphical system,
well-integrated and fully interactive, that is
intended unequivocably for amateur modellers of
manufacturing systems. XCELL is function-key menu-
driven without any special "menu screens". (The
softkey labelling of the function-keys is always
present as the current menu.) XCELL was designed and
implemented by a group with a background in manu-
facturing, who had spent a long sabbatic building
program development enviromnments, and who suddenly
realized that this same approach could be applied
directly to simulation.




R. Conway and W, L. Maxwell

The design of XCELL began with a clean slate,
with no obligation to be compatible with another
system, or to extend the life of an existing batch-
oriented, mainframe system. XCELL has been three
years in development, and the current version is the
third major generation of the system. XCELL has
evolved in a continuous dialog with the staff of the
Manufacturing Research Center of Hewlett Packard
Laboratories, and although the developers are
associated with a university, XCELL was designed from
the outset to be a practical tool for real-world
manufacturing, rather than a teaching tool.

Although the third generation XCELL is enormously
more powerful and flexible than we would have thought
possible at the outset, it is nevertheless far from a
general-purpose simulation tool, and it cannot model
every manufacturing system. XCELL’s objective
remains the modelling of a usefully large class'of
manufacturing problem, with a user-interface that can
be mastered in a few minutes. As one can imagine, as
the use of XCELL has spread we have been deluged with
impassioned requests for additional features. We are
perhaps proudest of ‘the manner in which we have
filtered these requésts to separate the broadly
useful from +the idiosyncracies of particular
problems, and have steadfastly defended XCELL from
being smothered in special features of limited
ubility. As new features have been added to XCELL,
the old ones have been refined and simplified, and
the current version is actually easier to use than
the first. As must be readily apparent from general
observation, it is all too easy to double the
complexity of a computer system in extending its
applicability by only a small amount. Repetition of
this folly is inevitably destructive.

In retrospect, XCELL undoubtedly has benefitted
from the initial decision to stay within the limits
of relatively low-performance, low-cost graphics
systems. Although the appearance of high-resolution,
three-dimensional, color animation systems is most
impressive, the ability to run on low-cost, widely-
available computers that do not have to be
specifically acquired for this one purpose is not
unimportant. If XCELL appears to be at a visual
disadvantage in showing off demonstration models
carefully prepared in advance, the real payoff is in
the speed and ease with which the viewer can
construct and modify his own models -~ and XCELL is
without equal in this respect.

Another critical design decision that contributes
significantly to the conceptual simplicity and
consistency of XCELL is the representation of the
factory floor as a rectangular grid of uniformly
sized cells -- hence the designation as a "cellular®
approach to simulation. Every component of an XCELL
model logically (and graphically) occupies one cell,
and each cell can hold at most one component. The
result is geometrically distorted, since distances in
the model display are not proportional to real
distance (and are not significant in the operation of
the model). Similarly, the component symbols
represent their functional identity as XCELL
components, with no attempt to graphically depict the
size or shape of the real system counterpart. This
is certainly a major advantage in the implementation
of XCELL, and we believe that the user benefits as
well. We have observed no difficulty whatever in
users’ dealing with 'the somewhat distorted image of
the XCELL display, and have often been pleasantly
surprised when a fresh observer recognizes the real
system being modelled on the XCELL screen.

162

The key to the implementation of XCELL is the
fact that there is really only one model, and that is
already built-into the system. While the user is
carefully lead to believe that he is creating new
components and positioning them on the factory floor,
in reality he is simply moving components that
already exist to a visible part of the display. Each
component is already completely populated with
default attributes —- the user is only selectively
changing these values. The user is literally just
changing values in various attribute tables, under
the control of an editor that limits entries to valid

values. This makes it relatively easy to ensure that
the model is always logically consistent. It also
means that a model is always executable, since

although the user may consider the model incomplete,
XCELL really always has a complete model to rum.
Similarly, this makes it relatively easy to allow the
model to be changed during a pause in a run without
requiring the run to be restarted.

From a computer science point of view, XCELL is
an interpretive rather than a compiled system, and it
enjoys the diagnostic and interactive advantages

typically associated with that form of
implementation. Presumably it also suffers the
relative performance penalty of interpretive

execution, but there is little opportunity for direct
comparison in this regard, and execution speed has
not been a significant problem.

4. THE BASIC XCELL COMPONENTS

Probably the most important decision in the
design of a simulation system like XCELL is the
choice of the basic component types, and we did not
get this right at first. The set that has evolved
after a good deal of trial and error is the
following:

The "physical" component types that occupy a
cell are the following:

Workcenter —- the primary active element; the
limiting resource

Buffer ~— a finite-capacity storage element
interposed between Workcenters

Receiving Area —— a source of input material from
outside the model

Shipping Area ~- a sink from which finished
material leaves the model

Maintenance Facility -~ a source of a type of
*repair® resource for
Workcenters

The *logical® component types that are super-
imposed upon the physical types are the following:

Process —- an activity that takes place at a
Workcenter. A Workcenter can
perform a variety of activities,
but only one at a time

Stock -- the quantity of a particular "part" in a
Buffer

Link - a "path' over which material flows from
one cell to another.



XCELL: A. Cellular, Graphical Factory Modelling System

There are many ways in which this collection of
component "types' could be expanded or contracted,
and we have tried many variations. We certainly
cannot prove that this is the best set of choices,
but is has stood the test of use well, and it has
been some time since we were seriously tempted to add
or eliminate a type. In principle, any manufacturing
system can be modelled as a network of queues, and in
fact, there are simulation systems that take exactly
that view, and have an elegantly frugal set of types.
But in practice, we believe that XCELL’s choice
provides a more natural modelling kit for manufac-

turing problems, and we attribute much of the con-
ceptual simplicity of the system to this choice.

On the other hand, certain types of asynchronous
materials handling systems automatic guided
vehicles, for example are not conveniently
modelled by these components. We are currently
trying to figure out what additional types of
components will most effectively extend XCELL’s scope
to cover such systenms.

5. CONCLUSIONS

XCELL clearly seems to represent significant
progress in the campaign to provide simulation tools
for amateur modellers in particular, for non-
programmers. There is no question that it is readily
mastered and easily used. The real issue is just how
rich a «class of manufacturing problems it
encompasses. With as much objectivity as we can
muster, we must conclude that opinion is still
divided on the general utility of such systems.

If the current version of XCELL itself does not
yet constitute a "spreadsheet breakthrough" in
simulation tools, we no longer believe that there is
a practical limit to the power of this approach, and
each new generation represents a major expansion in
capability. Moreover, many other investigators are
pursuing similar approaches and rapid progress in the
next few years is certain.

Unfortunately, the industrial use of XOELL has
revealed a somewhat sobering fact that has heretofore
been obscured by the difficulty of constructing
simulation models. That fact is that the modelling
process itself, quite apart from the task of
implementing the model, is a conceptually difficult
undertaking. The ability to effectively abstract the
essential logical core of a large "noisy" system is
not widely or wuniformly distributed over the
population of engineers and managers. The insight
required to identify critical issues and formulate
viable solutions is not commonplace. Professors, of
course, are inclined +to believe that these
characteristics can at least be improved, if not
created, in students. Nevertheless, this suggests
that even if the effort to implement a model were
driven to zero by some magic tool, the modelling of
manufacturing systems will never be trivially easy or
obvious, and simulation tools will never rival
spreadsheets in frequency of use. It also suggests
that the need for expert consulting and instruction
in the art of simulation will be increased rather
than diminished by the growth of tools like XCELL.

The implications for instruction are much
clearer. Even in its present form, XCELL is capable
of revolutionizing a wide variety of engineering and
management courses. Where previously, such courses
could only afford the time to describe the use of

163

simulation, it can now be a practical, hands-om,
laboratory experience. In several courses at
Cornell, we have repeatedly demonstrated the ability
Yo use XCELL in laboratory assignments with students
who have had no previous experience in simulation,
and other professors at Cornell and elsewhere have
confirmed these observations. Using XCELL, one can
now make routine, daily assignments that would
previously have constituted a major term project.

REFERENCES

XCELL is distributed by Express Software Products,
Inc., 115 Warwick Place, Ithaca, NY 14850.
607-257-6614

Conway, R., Maxwell, W., and Worona, S. (1986)
User’s Guide to the XCELL Factory Modelling
System. Scientific Press, Palo Alto, CA.
415-322-5221 (Scientific Press is also the
distributor of the educational version of XCELL.)

Henderson, P.; editor (1984). Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments.
SIGPLAN Notices, Vol. 19, No. 5.

AUTHORS® BIOGRAPHIES

RICHARD CONWAY is a professor in the Johnson
Graduate School of Management, and WILLIAM MAXWELL is
the Andrew Schultz Professor in the School of
Operations Research and Industrial Engineering, both
at Cornell University. Both received their PhD in
operations research from Cornell.

Their collaboration in simulation and
manufacturing spans a thirty year period. Both were
at the RAND Corporation in the early 1960’s, working
with Dr. Harry Markowitz in the development of the
SIMSCRIPT language. Their work in industrial
scheduling ("Theory of Scheduling", Addison Wesley
1967) has long been the standard reference for the
topic.

Richard Conway

Johnson Graduate School of Management
Cornell University

Ithaca, NY 14853

607-255-7207

William Maxwell

School of Operations Research
and Industrial Engineering
Cornell University

Ithaca, NY 14853
607-255-9134




