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This tutorial will emphasize concepts
and methodology and will relate them to lan-
guages and software environments which are
becoming available to support these concepts.
We will show how high level specification of
discrete event models with hierarchical and
modular properties is crucial to the sound
integration of knowledge representation
approaches of artificial intelligence. We
will discuss examples of hierarchical modular
models exhibiting self-modifying structure
capabilities and show how they may be imple-
mented in conventional, as well as object-
oriented symbolic languages. Finally, struc-
turing of model bases for simulation environ-
ments will be presented and example tools
illustrated.

Specifically, we shall discuss the fol-
lowing topics:

1. High level specification of discrete event
models with hierarchical and modular prop-
perties using pseudo-code formalism.

2. Implementation of such specifications in
procedural languages: How to express such
pseudo-code in conventional languages such
as SIMSCRIPT II.5 as well as in LISP-based
languages.

3. Examples of such hierarchical modular
models exhibiting self-modifying structure
capabilities and embedded artificial
intelligence.

4. Model/Knowledge Base Design: Organizing
models using the system entity structure
to constitute a reusable knowledge base.

Background for this tutorial may be found
in (Zeigler 1984, 1985).

1. Modularity and Model Base Concepts

Figure 1 {llustrates the fundamental
concepts of modularity and model bases. Sup-
pose that we have models A and B in the model
base. If these model descriptions are in the
proper modular form, then we can create a new
model by specifying how the input and output
ports of A and B are to be connected to each
oth$rd and %o exter%a] ports, an operation
called coupling. The resulting model, AB,
called a coupled model is once again in modu-
lar form. s can be seen, the term modular-
ity, as used here, means the description of a

*Research reported here was supported by NSF
Grant DCR 8514348, "Distributed Simulation of
Hierarchical Multilevel Methods".

model in such a way that it has recognized
dnput and output ports through which all in-
teraction with the external world is ‘mediated.
Once ptaced into the model base, AB can it-
self be employed to construct yet Targer
models in the same manner used with A and B.
This property, called closure under coupling
enables hierarchical construction of models.

—HMODEL BASE —HODEL BASE—
i in out
";' fi __:?.Ut - 4 =4
in ot 1 B ot
= B |5 - Ly
i {; a8 out
AR
‘”f inl o out in[ ¢ aut _:fut
COUPLING:

external input: A8.in -} A.in
external output: B.out-8. sut

L internal: A.out -> B.in
AB C
| < CoupLING
;/\\
7
) B

Composition tree

5

1
aut

in
¢ eAB—] #AB_
[5 o, —
in,f i/0 ]
< aut components
[jiE:] coupling
static static
dynanig dynanic)
Figure 1



B. P. Zeigler

An important benefit of such modular con-
struction is that™a model in the model base
can be readily, and independently, tested by
coupling a test module to it. The ability to
do such testing at each stage of a hierarch-
ical construction facilitates reliable and
efficient verification of 1large simulation
models, not otherwise attainable. Test modules
for models can be developed in a systematic
manner using the concept of experimental frame,
which specifies the input, control and output

variables and constraints desired of the
experimentation.
1.1 Coupling Specifications

Looking more closely at the coupling

scheme in Figure 1, we see that it has three
parts:

1) External input coupling tells how_the
input ports: the composite model are
jdentified with the input ports of the
components. For example, the notation
AB. in - A. in, means that input port
in of AB is connection to the input in
of A. Note we employ the dot notation
which prefixes that name oFf a component
in front of a port so as to uniquely
jdentify it (this obviates having to
give different names to all the ports).

2) External output coupling tells how the
output ports of the composite model are
identified with the output ports of the
components: Thus, the notation B. gut
-~ AB. out, means that the output port
out of B s connected to the output of

3) Internal coupling specifies how the
components inside the coupled model are
interconnected by telling how the out-
put ports of components are connected
to input ports of others. The notation,
A. out - B. in, means that the output
port out of B is connected to the input
port in of B.

1.2 Hierarchical, Modular Composition

The composition tree in Figure 1 summari-
zes how components A and B are coupled together
to form the coupled model AB. We think of the
coupling specification as being associated
with the 1line descending from AB before it
splits into the components A and B. In other
words, the coupling is associated with the
decomposition of AB into components A and B.
We w1;| Tater consider that there may be more
than one decomposition of a system, and that
each one has a coupling specification
associated with it.

Figure 2 illustrates the general pattern
by which hierarchical models can be construct-

ed. We see that a component can be either an
atomic model or a coupled model. In the latter
case, 1t 1s built from one or more components.
(Later, we will return to describe The notation
used in this presentation.). Since the term
component appears twice, the diagram unfolds
to an arbitrary depth. For example if we stop

the recursion after one round, we get the dia-
gram shown to the right of the arrow. We can
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construct an actual hierarchical model from
such a pattern such as shown in Figure 3. We
start at the top (root of the tree), making
the coupled model choice, we Tabel C0. This
choice necessitates specifying a coupling
scheme and a set of components which can be
atomic models or coupled models. We choose
two atomic models, Al and A2 and two coupléd
models €1 and C2. Each of the latter, in turn,
requires a coupling scheme and a set of com-

ponents. Selecting atomic models Al,1 and
Al,2 for C1 and Al,1 and A2,2 for C2, com-
pletes the hierarchial construction.
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While the modularity property is a highly
desirable one for the flexible construction of
models, some work must be put into preparing
model descriptions appropriately. Figure 4
demonstrates a modular specification of a
simple spring, formulated in such a way that
spring component models can be readily coupled
together to represent the physical connection
of the represented springs. To achieve modu-
larity, positions of, and forces on, both ends
of the spring, are made explicit. Figure 4b
provides constant inputs of 0 magnitude to re-
present a single spring standing alone with its
left end fixed and subject to zero external
force. This is the usual oscillator. Figure 4c
shows how springs may be connected. Note that
the right end of spring 1 is coupled to the
left end of spring 2 (springl.xR -> spring2.xL).
Also, the force generated internally in spring
2 on the left appears as the external force on
the spring on the right (spring2.FL -> spring
1.FR). These coupling pairs constitute the
internal coupling of the spring components.
In 1ike manner, one can concatenate successive
spring components to represent, for example, a
physical structure being assembled step by
step by a robot in space. Figure 4d shows code
that is generated by a LISP program to imple-

ment successive stages of this composition
process.
%y X
Fl e WAWPWBY e Fp.
X L N { 3 X .
SPRING 7 R
F g1 —> Fy

INPUT VARIABLES:
Xpd position of left end
Fao d external force on right end
OUTPUT VARIABLES:
Xp, o} position of right end

. FLot internally generated force on left end
STATE VARIABLES:
Xp  Xpdot

DYNANIC STRUCTURE
drar xp = xgpdot

arde Xk_dot = (FR—FL)/n

Fp = k(xp =% -1
PRRAMETERS
» = mass, k = spring constant, L = length
Figure 4a
" L XR——
SPRING
&—— Fp—=» FL
Figure 4b
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vIODEL. EXTENSION O IS:

+¢ 1 D/DT XR (0) = XRDOT (0))

{0 2 D/DT XRDODT (0) = (FR (0) - FL (0)) /M)

0 3 10ODEL . FOR RIGHT END)
(4 1 FL (0) = K (XR (0} — XL (O — L))

12 M0DEL: ORCE ON LEFT END)
(2 £ FR (0) = O)

2 2 AODEL. IGHT END 18 FREE)
{3 1 XL (0) = O)

{3 2 mewwssmmmwcm==lNITIAL CONDITION®awamuwamsecswemac=START AT O)

MODEL. EXTENSION 1 IS:

(0 1 D/DT XR (0) = XRDOT (0))

(0 2 B/DT XRDOT (0} = (FR (0) - FL (O)) /M)

[{s 1 ODEL. ONS. FDR RIGHT END)
{1 1 FL. €(0) = K (XR (0) — XL (0} - L)}

3 2 DDEL ORCE ON LEFT END)
{2 1 FR () = O)

22 1ODEL: IGHT END IS FREE)
(S 1 XL (0) = @)

{5 2 wawsnumesexe=esINITIAL CONDITION==smasassnmcosccxe=GTART AT O)

{100 1 D/DT XR (1) = XRDDT (1))

(100 2 D/DT XRDOT (1) = (FR (1} ~ FL (1)) /M)

(1060 3 GDEL. ONS. FOR RIGHT END)
(101 1 FL (1) = K (XR (1) - XL (1) - L»

(101 2 1ODEL: ORCE ON LEFT END)
102 1 FR (1) = ©0)

(102 2 10DEL: 1GHT END IS FREE)
(2 1 FR (0) = FL (1))

22 OUPLY SPRING FDRCES OLD RT.END}
(103 1 XL (1) = XR (0})

{105 2 OUPL I LEFT CBNNECTS TO OLD RT.,

MDDEL EXTENSION 2 IS:

{0 1 D/DT XR (0} = XRDOT (0))

{0 2 D/DT XRDOT (0) = (FR (0) ~ FL (&) /M)

{03 ODEL . FOR RIGHT END)
(1 5 FL (0) = K (XR (0} = XL (O = L))

t 2 ODEL! ORCE ON LEFT END)
(2 1 FR (0) = 0)

22 1DDEL: IGHT END IS FREE}
(31 XL (0) = O)

(3 2 mmmmwmomsssxw=INITIAL CONDITIONs=usnanzwammmccmxas=START AT 0)

(100 1 D/DT XR (1) = XRDOT (1))

€100 2 D/DT XRDOT (1) = (FR (1) ~ FL (1}) /M)

(100 3 HODEL: EONS. FOR RIGHT END)
(101 1 FL (1) = K (XR (1} - XL (1) - L»?

{10t 2 1ODEL: ORCE ON LEFT END)
(102 1 FR (1) = O)

(102°2 1ODEL IGHT END IS FREE)
{2 1 FR {0} = FL (1))

(2 2 OUPLI: SPRING FORCES OLD RT.END)
(105 1 XL (1) = XR (0))

{103 2 OUPL X NEW LEFT CONNECTS 7O OLD RT.)
{200 § D/DT XR (2) = XRDOT (2))

(200 2 D/DT XRDOT (2) = (FR (2) - FL (2)) /M)

(200 3 1DEL: ONS. FOR RIGHT END)

(201 1 FL (2) = K (XR (2) — XL (2) - L)}

(20t 2 1ODEL: DRCE ON LEFT END)

(202 t FR (2) = O)

(202 2 10ODEL: RIGHYT END IS FREE)

{102 1 FR (1) = FL (2))

{102 2 OUPLT: SPRING FORCES OLD RT.END)

(203 1 XL (2) = XR (1))

(203 2 OUPL X LEFT CONNECTS TO OLD RT.?
Figure 4d

2.0 Hierarchical, Modular Discrete Event

Model Development

To specify modular discrete event models
requires that we adopt a different view than
that fostered by traditional simulation lang-
uages. As with modular specification in gener-
al, we must view a model as possessing input
and output ports through which all interaction
with the environment is mediated. In the dis-
crete event case, events determine values ap-
pearing on such ports. More specifically, when
external events, arising outside the model,

are received on its input ports, the model de-
scription must determine how it responds to
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them. Also, internal events arising within
the model, change its state, as well as mani-
festing themselves as events on the output
ports to be transmitted to other model com-
ponents.

A pseudo-code has been developed which
makes such model specification straight for-
ward. Each input port requires specification
of an external transition, in the form of a
when receive x on:'input port p... phrase. The
internal state transition can be specified in
the form of a process description which con~
tains phrases ot the form send y to output

port p.

As an example, consider a simple buffer-
ing model. 1Initially, there will be two input
ports: in, for receiving items to be queued
and done, for receiving the acknowledgement of
the down stream process. Later, we shall add
ah input port stop-send for flow control from
the down stream process. The output port out,
is for sending items down stream. The pseudo-
code description appears as:

when receive x on port in
insert(x,queue)
if one(queue) then goto SEND
else passivate

when receive done on port done
if not empty(queue) then goto SEND
else passivate

SEND: hold(preparation-time)
send first{queue) to port out
queue:=rest{queue)
passivate

Note that the external transition specifica-
tion has two when receive phrases, one for
each input port. The first says that when a
input value x is the only member of the queue,
control should be sent to the phase SEND,
otherwise the model should

assivate {no next
internal event will be scheduTed]. e inter-

nal transition’ specification has only one
phase, SEND, in which the model stays for a
period, preparation-time -- this causes the
scheduling of an internal transition to occur
at time = current time + preparation-time,
Upon occurrence of the event, the model sends
the first value in its gqueue to the output
port out, removes it from the queue, and then
passivates. The PASSIVE phase (in which the
model passivates) represents a "ground" phase
of the model 1in which it waits for external
events while engaging in internal activity of
its own.

The above description 1is not strictly
correct since it immediately takes the model
out of phase SEND when vreceiving an input
rather that waiting for the resting time in
the phase to fully elapse. The following mod-
ification of the external transition specifi-
cation shows how to handle such interrupts:
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when receive x on port in
insert (x,queue§
if phase is not SEND
and one (queue) then goto SEND
else continue

when receive done on port done
if not empty (queue) then goto SEND
else continue

The phrase "continue" replaces the "pas-
sivate” in the external transition specifica-
tion., This indicates that time remaining in
the phase in which the model finds itself is
not to be changed as result of the external
event processing. Of course, to express an

cinterruption requiring a change in scheduling

we would not use such a continue statement as
the following specification Tor the input

port stop-send shows:

when receive x on port stop-send with
elapsed time e
if phase = SEND and x = stop then
processing-time~left := -~ e
passivate

if passive and x = start then
:= processing-time-left
goto SEND
else continue

This external event causes the model to
teave phase SEND, where it is holding for pre-
paration-time, and abort the current transmi-
ssion. Supposing that the time already spent
in preparing the output need not be repeated
when transmission 1is resumed, we store the
remaining time 1in processing-time~left for
recovery upon reentry to the SEND phase. Were
there several jobs that could be in suspended
states of this kind at once, we would save a
processing-time-left with each one. The pseu-
do-code assumes that variables e (elapsed time
in current phase) and (time left in current
phase) are managed by the simulation medium
(see Zeigler (1984)). Since the resting time
in phase SEND is determined by , the associ-~
ated hold statement is modified and must be
determined upon initial entry to it as
follows.

----- external transition specification~----

when receive X on port in
insert (x,queue)
if one (queue) then
:= preparation-time
goto SEND
else continue

when receive done on port done
if not empty (queue) then
:= preparation-time
goto SEND
else continue

----- internal transition specification---~-

SEND: hold(e)
send first (queue) to port out
queue:=rest(queue)
passivate
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2.1 Implementation in Simulation Environments

Figure 5 shows how such a pseudo-code
description is coded in DEVS-Scheme, a simu-
lation system developed to support hierarch-
ical, modular discrete event modelling in an
onjected oriented LISP Tlanguage. Although we
do not go into further details here to explain
this implementation, the interested reader may
obtain further information upon request to the
author. A flow chart symbolism, equivalent to
the pseudo-code specification, has been devel-
oped by the Siemens Co. (Ehr and Wnuk, 1985)
and a translator into the Borris language (Ho-
grefe, 1985) is being written. A hierarchical
modular environment for finite state models is
described by Oren (1985).

SPECIFICATION OF BUFFER MODEL IN DEVS-SCHEME

(define-structure state
queue
phase

)
(make-state 'queue NIL 'phase ‘PASSIVE),

(define (delta-ext s e x)
(case (content-port x)
(*in (insert ({state-queue s)
(content-value x))
(if (one state-queue)
(set! gstate—phase s) SEND)
I

;3 else
(set! (state-phase s) PASSIVE))
s

s external transi-
tion

("done (if (not (empty (state-queue s)))
(set! (state-phase s) 'SEND) ;else
(set! (state-phase s) 'PASSIVE))

)

(define (delta-int s) 3 internal transi-
(case (state-phase s) tion
('SEND (set! (state-phase s) 'PASSIVE)
(set! (state-queue a)
(rest (state-queue s)))
5

)

(define (ta s)
(case (state-phase s)
('SEND 0)
('PASSIVE NIL)

3 time advance

)

(define (output s)
(case (state-phase s)
('SEND (make-content 'port 'out ‘value
(first queue)))
("PASSIVE '()

;5 output

Figure 5

Returning to Figure 1, we see that each atom-
ic model has three parts to its description:
1) the input/output specification giving the
input and output ports and their ranges (val-
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ues these variables can assume), 2) static
structure giving the state and auxiliary var-
iables and ranges; and 3) the dynamic struc-
ture, which provides the external and internal
transition specification. Although other real-
izations are possible, we can have a file all-
ocated for each such description with corres-
ponding extensions. Thus we have files BUFFER.
io, BUFFER.stat and BUFFER.dyn for the BUFFER
model. A SIMSCRIPT 11.5 realization 1is shown
in Figure 6. Note that the .io file in this
case is for the model base user's information
(although a processor could use it to generate
appropriate coupling and vrange consistency
checks). The .stat file is merged into the
PREAMBLE file when this model is simulated,
and Tikewise the .dyn file is appended at the
end of the MAIN routine which will initiate
simulation. .

In the .dyn file, the external
specifications are represented by routines,
one for each input port, each routine repre-
senting the body of the when receive phrase
associated with that port. The external trans-
ition specification is realized by processes
and/or events, as desired. The send to output

ort operation of the pseudo-code is realized
Ey a call statement to a dummy routine assoc-
jated with the output port. When the model is
coupled to other components, this dummy rou-
tine is replaced by a routine representing an
input port--the input port to which the output
port has been coupled.

input

File BUFFER io

input ports: in(x) , x: packet
done , done:flag
stop~send{x) x:(stop,start)
output ports: out{y), y: packet

File BUFFER.stat

process

every buffer has a phase and owns a queue
temporary entities

every packet belongs to a queue

define queue as a fifo set

File BUFFER.dyn

----- external transition specificatione-----
routine in(x)

end
routine done

end

routine stop-send(x,e)

----- internal transition specification--=-~--
process buffer

SEND: wait ¢
call out {first(queue))
queue:=rest(queue)
suspend

Figure 6
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A coupled model has a different descrip-
tion: 1) the input/output specification, just
as for atomic models, 2) the names of the com-

onents that are coupled together, and 3) the

coupling specification, as discussed above,
Thus, for example, model AB of Figure 1,
three files AB.io, AB.comp, and AB.coup.

has

To construct a coupled model, the files
associated with 1its. components are retrieved
from the model base and merged with the files
describing the coupled model. For example, to
construct AB, we merge together the files for
A, B, and AB, as shown in Figure 7. Note that
the .coup file can be thought of as implement-
ing a co-ordinator which channels the received
inputs to the proper outputs. The co-ordinator
routines are a straightforward translation of
the pseudo-code coupling specification.

AB.io (describes the input and output
ports of AB)

A.stat (static structure (variable decla-

B.stat rations) placed in SIMSCRIPT
preamble)

A.dyn (dynamic structure (port routines

B.dyn and processes) placed after MAIN

routine)

AB.coup (coupling specification in form
of "co-ordinator")

(externa1 input

routine AB.in(x)
coupling)

call A.in(x)
end

(external output

routine B.out(x)
coupling)

call AB.out(x)
end
routine A.out(x) (internal coupling)
call B.in(x)
end.

Figure 7

2.2. Class Specification and Multiple Model

Composition
Object-oriented programming supports the

concepts of object classes and message passing
between objects, which we wish to examine visa

vis hierarchicgl, modular model specification.

Message passing in the discrete event context
arises naturally -- we need only interpret the
sending of external events from output port to
coupled input port as message transmission.
Class concepts are not new to simulation havin
been introduced by the SIMULA language. Some
work however, must be done to realize the mod-
ularity and coupling properties as we shall
demonstrate. Finally, we note that hierarchi-
cal construction, made possible by successive
couplings of Tlarger and Tlarger components,
goes beyond the standard object oriented pro-
gramming features.

Figure 8 depicts the concept of model
class. A model class' specification is actu-
ally a template for generating identical in-
stances of the same model, either atomic or
coupled. Note that there must be a naming

S
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scheme which assignes distinct names to in-
stances as they are generated. The set of such
instances itself constitutes a coupled model,
called a multigle model. For example, the mul-
tiple model, AS denotes the set of instances
of class A, currently existing in a simulation
The composition tree relating AS to its possi-
bly changing set of components is depicted us-
ing 3 parallel bars as shown. As in any cou-
pled model, the components Al, A2, ... of AS
may be coupled together.

Thus, there are three additional Tfiles
needed to realize the class A: AS.io (the in-
put and output ports of AS), AS.gen (which
contains the code to generate the next in-
stance of A), and AS.coup (which specifies the
coupling of AS: the external input and output
coupling that 1links the indijvidual dinstances
to the external input and output, respective-
ly, as well as the dinternal coupling that
1inks the instances to each other).

1!71

COURLING:

external inputs AS.dn ~) Al.in
external output:fZ, out-)A S out
internal: Al.out -} AZ.in

]

1/0
gen
coupling |

as %j i:;
]il JeoupLine /m

Figure 8
Figure 9 dillustrates how model class
instances (of different classes) may inter-

communicate. The coupled models AS and BS may
be coupled together to construct a coupled

—RIV/BS

“I[ !l as nu:x‘n- nuc;ut

AS/BS

A
gS °BS
‘f
[

1/0
gen
cnunlxng

in EBS gue __y in out JUF

#B§ —

m(!n ‘ l out lil’-_’.._

m  CoupLIG

K

out

Figure 9
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model AS/BS, with composition tree representa-
tion shown. Alternatively, instances of the
coupled model AB may be generated to form the
multiple ABS, composition tree shown.To appre-
ciate the difference, the reader may think of
A as a terminal and B as a computer. Then AS/
BS represents a bank of terminals coupled to a
bank of computers while ABS represents, a bank
of terminal-computer pajirs. The two represen-
tation are equivalent in that the same commun-
ication patterns are realizable in both, how-
ever, some are more easily expressed in one
form or the other.

Figure 10 outlines how a model description
can be converted to a class specification.
Starting with an atomic model A, the A.dyn file
is modified so that instances can be created
and given identities. To keep track of the
identities of the class instances, the extern-
al events are carried by messages that also
carry the source and destination in any trans-
mission from, or to, the co-ordinator for the
multiple model. Referring to the example of

atomic model A coupled model AS

A.io0 AS.i0: A in(x,m), A.out(x,m)
A.in(x),A.out{y) AS.gen
A.stat activate A,p called idA
A.dyn A.stat

A.dyn'

routine A.in(x) routine A.in{x,m)(m =
(source: s;
destination:
idA)

5;6éess A.p process A.p(m)
call A.out{y,m'}(m'= (sour-
ce: idA,
destination:
AS)

call A.out(y)

AS.coup
routine AS.in{(x,m)
call A.in{x,m') (m' =

ce: AS,
dest:idAl))

sour-

end
routine AS.out(y,m)

if source.m = idAl, call
A.in(y,m')
m' = (AS,m.dest)

if source.m = idA2, call

(AS.out{y,m')
m' = (AS,m.dest)

end
coupled models AS,BS coupled model AS/BS
AS.70,BS.70 AS/BS.70
AS.gen,BS.gen AS/BS.gen
AS.coup,BS.coup call AS.gen to generate
Al,A2,...
call BS.gen to generate
B1,B2,...
AS/BS.coup

routine AS/BS.in{x,m)
call AS.in(x,m)
routine AS.out(y,m)
call BS.in(x,m{
end
routine BS.out(y,m)
call AS/BS.in(x,m)
end

Figure 10
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Figure 10, each instance Al, A2,..,is given a

unique identity variable 1idAl, idA2,.., re-
spectively. When the co-ordinator for AS re-
ceives an input message, the external input

coupling determines to which instance(s) it
should so (in the example, to Al; examine rou-
tine AS.in in file AS.coup). The message sent
by the co-ordinator to the instance bears the
identity of the instance as destination. When
an instance sends a message to one of its out-
put ports, the message bears its jidentity as
source, and the co-ordinator can decide where
to channel the message from this information
(in the example, if the source is Al then it
is Kh§nne11ed to A2, otherwise to the out port
of AS).

3.0 The System Entity Structure

As we have seen, the composition tree of
a hierarchical, modular model portrays its re-
cursive structure of components and couplings.
By generalizing the composition tree concept
so as to represent not just a single model,
but a family of possible models, we arrive at
the concept of system entity structure. Full
exposition of this concept 1s beyond the scope
of this paper (refer to Zeigler, 1984; Rozen-
b1it et.al., 1986). An example is given in
Figure 11 for an adaptive computer architec-
ture, full exposition of which is again beyond
the scope of this paper. We see that the
system consists of Flexible Processors {(FPS),
a multiple model consisting of individuals of
the class Flexible Processor. As shown by the
label "FP-Decomposition", each FP is a coupled
model consisting of the components EXECUTIVE,
SUPERVISORY, BUFFER, and F-COMPUTER.

In the entity structure we use the term
entity rather than model, since the entity
may have several possible models to represent
it. We also refer to a decomposition as an

aspect since there may be several possible
ecompositions for a given entity. The three

vertical 1lines connecting a multiple entity
and its singular instance is called a multi-
ple aspect.
3.1 Variable Structure Modular, Hierarchical
ModeTs
The coupling between these components

is illustrated in Figure 12, where we see that
there are basically two types of extern- al
event messages in circulation. Packet
messages carry problem descriptions which are
routed by the SUPERVISORY component to BUFFER
queues and eventually, via other SUPERVISORY
components to F-COMPUTER components which do
the actual solution. Hire/fire messages carry
commands to hire (take on additional FPs) or
fire (return some FPs to an availability
pool). These commands are handled by the
EXECUTIVE components which decide whether to
accept them and to which other EXECUTIVEs to
pass them on. Since the number of FPs may
change dramatically during a simulation run,
this 1is an example of a variable structure
model, i.e., a hierarchical, modular mode],
whose composition tree description may vary.

Returning to the entity structure of
Figure 11, we see that the SUPERVISORY com-
ponent is further decomposed "via the SUP-
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Decomposition"” into two components: SUPERVISOR
and COORDINATOR (this model component should

hot be confused with the co-ordinator that
handles coupled models in a simulation). The
COORDINATOR can be one of three types, MS

(multiserver), D&C (divide and conquer) or PL
(pipeline) as denoted by the specialization
"COORD-Specialization". Such a specialization
indicates that a model class contains both a
FBs | Fp Fp
A=
‘PP (Flexible Processor} I’

FP_Decomposition

-

[}

/5T
F~COMPUTER L

EXECUTIVE SUPERVISORY  BUFFER
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eneric description, as well as specialized
‘gescriptions that can generate instances of
several variants. To construct a SUPERVISORY
component instance, we couple together a
SUPERVISOR instance (for which no variation
is required) and one of the MS, D&C, or PL
COORDINATOR types. Another illustration of
class specialization is shown by the "F-COMP-
Specialization" which indicates that the F-
COMPUTER class can have the indicated variants
representing different styles of problem pro-
cessing appropriate to the rote that the F-
COMPUTER 1is playing in the co-ordination con-
figuration controlling it.

4.0 Entity Structure Pruning: Synthesis of
Models
We can use the foregoing example to

illustrate how the entity structure and model
base combine to facilitate model construction.
In this example, the model base contains files
for the various model classes: FP, EXECUTIVE,
SUPERVISORY, etc. Although the adaptive compu-
ter architecture model contains the intelli-

gence to do its own reconfiguration, tet us
imagine constructing a particular configura-

tion by a process called Eruning of the entity
structure. Starting at the root of the entity
structure, we make a choice of how many FPS to
use in the architecture (each multiple entity
has a variable, e.g., FPS.NUMBER, to which we
can assign a value). Having chosen the desired
FPs, we must now specify how they are to be
coupled together (the allowable possibilities
are given by the entity struc- ture associated
gigh the multiple aspect con~ necting FPS and
P).

Each FP will be a coupled model composed
of EXECUTIVE, SUPERVISORY, BUFFER and F-COM-
PUTER components. We must select one of the
variants given by the "F-COMP-Spécialization"
for the F-COMPUTER of each FP. Moving to the
SUPERVISORY component we see that it will be a
coupled model with a SUPERVISOR and a CO-ORD-
INATOR, the type of which we must select from
the “CO0-00RD-Specialization". In this way,
moving from top to bottom, we construct a num-
ber of FPs, each of which having a (different)
F-COMPUTER and CO-ORDINATOR.

Having done top-down pruning of the en-
tity structure to select the desired componets
in the model base, we now follow bottom-up
synthesis to construct the new model. Coupling
a selected CO-ORDINATOR instance together with
a SUPERVISOR (following the coupling specifi-
cation associated with the "SUP-Decomposi-
tion)", we construct a SUPERVISORY component.
The latter is then coupled with an EXECUTIVE
instance, a BUFFER instance, and a selected F-
COMPUTER instance to construct in FP (follow-
ing the coupling specification associated with
the "FP-Decomposition"). We repeat the same
process to construct the chosen number of FP
instances. Finally, we couple these FP 1in-
stances together (following the selected cou-
pling specification) to construct the final
architecture.

The adaptive architecture model contains
intelligence to carry a similar synthesis pro-
cess. This idintelligence takes the form of
adaptive strategies that are sensitive to the
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current workload conditions and issue hire or
fire commands appropriately. In the models
studies so far, the FPs are coupled in a tree
structure, and hiring and firing takes place
only near the leaf nodes of the tree. Thus,
the structure does not radically differ from
one synthesis call to the next, a feature one
would expect in real self modifying systems.

4.1 The System Entity Structure/Model Know-

tedge Base

The entity structure/knowledge base com-
bination provides a unifying conception of
knowledge consistent with system theoretic in-
sights. System theory distinguishes between
system structure (the inner constitution of a
system)” and behavior (its outer manifesta-
tion}. Regarding structure, we have seen that
decomposition, coupling and taxonomies {class
specialization definitions) should be funda-
mental relations in a knowledge representation
scheme. Regarding system behavior, we shall
distinguish between causa11and empirical rep-
resentations. By empirical representation we
refer to actual records of datg (time history
of variable values) gathered from a real
system or model. Causal relationships are
integrated into units called models which can
be interpreted by suitable simulators to
generate data in empirical form.

The decomposition, taxonomic, and cou-
pling relationships are combined in the s¥stem
entity structure, a declarative scheme relate
to frame-theoretic and object-based represen-
tations. The model base contains models which

are procedural 1in character, expressed in
classical and Al-derived formalisms such as

production rules and logic programming.

The entity structure methodology is sup-
ported by ESP-4 (entity structurer and prun-
er), a PASCAL system available for VAX under
VMS and being ported to MS-DOS environments.

Conclusions

Fundamental concepts 1in hierarchical,
modular model construction and knowledge base
management have been briefly discussed. App-
lications of these concepts can be expected
to grow as reusable bases of models are de-
veloped to support design, management and
control of complex multifacetted systems.
Especially, the design of systems incorpora-
ting artificial dintelligence is a fertile
ground for self-modifying, variable structure
models. Another application, not mentioned
here yet 1is to distributed simulation, the
use of multiprocessors to achieve significant
speedup in simulation of highly complex mod-
els. Hierarchical, modular model specifica-
tion provides a natural way to exploit para-
11elism inherent in multicomponent models.
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