Proceedings of the 1986 Winter Simulation Coonference
J. Wilson, J. Henriksen, S. Roberts (eds.)

THE SMALLTALK SIMULATION ENVIRONMENT

Verna Knapp
Computer Research Laboratory
Tektronix Laboratories
Beaverton, OR 97077

ABSTRACT

The Smallialk language provides easy to use support for
discrete event simulation. Smalltalk is an object oriented language
which is descended from Simula. There is a set of Smalltalk
classes which directly support simulation. A simulation of a mul-
tiprocessor computer architecture with snooper caches and shared
global virtual memory has been implemented in Smalltalk. This
simulation is discussed here to illustrate the techniques involved.

1. INTRODUCTION

The purpose of this paper is to show how the Smalltalk
language supports discrete event simulation. The Smalltalk classes
which implement simulation support will be discussed, and an
example using these classes will be presented. This example was
written as part of an investigation of multiprocessor computer
architectures with caching and shared global memory. It runs on a
Tektronix 4406 workstation,

2. CLASSES AND OBJECTS IN SMALLTALK

Everything in Smalltalk is an "object". Every object is an
instance of a "class". A class contains:

e Class variables

e A template for the instance variables of instances of objects
of that class

¢ Methods (procedures) for processing messdges sent to objects
of that class

Classes can have subclasses. A subclass inherits the vari-
ables and methods of its parent class. Classes are arranged in a
tree structure with each class a subclass of some other class. The
root class of the class structure is "Object".

In Smalltalk execution proceeds through objects sending
messages to other objects and waiting until the other objects reply.

3. SIMULATION SUPPORT IN SMALLTALK

Smalltalk provides classes for discrete event simulation, The
user will either use these classes directly or extend them through

125

the subclass mechanism to control the simulation and to act as
objects in the simulation. These classes include Simulation, Simu-
lationObject, DelayedEvent, WaitingSimulationObject, Resource,
ResourceProvider, and ResourceCoordinator. There are also
classes to provide the necessary probability distributions.

Smalltalk also provides an easily used graphics capability,
which can be used to display simulation results either after the fact
as a static display, or as an animated display of guages which show
the current state of the simulation as it runs.

3.1 Class Simulation

Object subclass: #Simulation
instanceVariableNames: *resources currentTime eventQueue
processCount stoppedFlag ’
classVariableNames: *RunningSimulation ’
category: *Simulation-support’

An instance of class Simulation controls a single running
simulation. It initializes the simulation, controls it, and does any
necessary termination processing. The class Simulation itself has a
single global variable, RunningSimulation, which points to the
running instance of Simulation in the system. Any object may

Tequest a pointer to this active instance of Simulation from the
class Simulation. This allows objects which are instances of the
other classes to send messages to the simulation control. There
can be only one simulation active at a time.

An instance of Simulation creates resources and provides
access to them, It responds to messages asking that it coordinate a
resource, produce a resource, provide a resource to the requestor,
or state whether a resource would be available if requested. Class
Resource and its subclasses describe resources further,

During initialization a Simulation object schedules the crea-
tion of instances of SimulationObject according to a probability
distribution of interarrival times or at a specified simulation time.
After initialization it responds to messages requesting that it
schedule the creation or arrival of a SimulationObject either
according to a probability distribution of interarrival times, or after
a delay interval or at a specified simulation time.

V. Knapp

The Simulation manages an event queue. When a process
sends the Simulation a message asking that it be rescheduled after
some delay or at a speciﬁed simulation time, the Simulation
creates an instance of DelayedEvent and puts it on the event
queue. When the DelayedEvent is scheduled, a reply to this mes-
sage will be sent to the original process and it will resume execu-
tion. The Simulation proceeds by scheduling all instances of
DelayedEvent which are to start at the same time as the first event
on the event queue, and then suspending itself until all of these
processes have either terminated or delayed themselves to a later
simulated time. The Simulation continues until either the event
queue is empty, or some process sends the Simulation a message
requesting that it stop.

The Simulation maintains the simulated time clock, and
Tesponds to messages requesting the current simulated time,

3.2 Class SimulationObject

Object subclass: #SimulationObject
instanceVariableNames: **
classVariableNames: **
category: ’Simulation-support’

The class SimulatiénObjcct provides a skeleton which the
user will flesh out to describe the objects which are being simn-
lated. A SimulationObject has a series of tasks to do. These tasks
describe the simulated activites. A SimulationObject can request
access to resources or the creation of resources from the Simula-
tion. It can request the Simulation to schedule the creation of any
SimulationObject, or to schedule the arrival of any existing Simu-~
lationObject which it knows about, It can request that the Simula-
tion delay it until some future simulated time. It can also stop the
Simulation. Statistics are often collected by SimulationObjects.

3.3 Class DelayedEvent

Object subclass: #DelayedEvent
instanceVariableNames:
tionCondition *
classVariableNames: *
category: *Simulation-support’

’resumptionSemaphore resump-

DelayedEvent subclass: #WaitingSimulationObject
instanceVariableNames: *amount resource *
classVariableNames: **
category: ’Simulation-resources’

An object of class DelayedEvent or its subclass Waiting-
SimulationObject is created when it is necessary to suspend a pro-
cess until some simulated time or until some resource becomes
available. It contains a semaphore which will be signaled to restart

the process at the appropriate time. A DelayedEvent will be placed
in the event queue of the Simulation, and will be scheduled at the
requested simulated time. A WaitingSimulationObject will be
placed in the pending queue of a resource, and will be scheduled

when the resource becomes available,

3.4 Class Resource

Object subclass: #Resource
instanceVariableNames: pending resourceName ’
classVariableNames: **
category: ’Simulation-resources’

Resource subclass: #ResourceCoordinator
instanceVariableNames: *wholsWaiting *
classVariableNames: *
category: *Simulation-resources’

Resource subclass: #ResourceProvider
instanceVariableNames: *amountAvailable °
classVariableNames: *’
category: 'Simulation-resources’

There are two subclasses of Resource, ResourceProvider and
ResourceCoordinator. ResourceProvider describes resources which
are created and consumed or which are requested from a pool of
resources of a given type and then returned to the pool. Examples
of ResourceProvider resources are a car dealer’s inventory of cars,
or an auto rental agency’s pool of cars. ResourceCoordinator
describes a server/customer relationship. A ResourceCoordinator
will coordinate one or more servers with one or miore customers.
At any given time its pending queue will consist either entirely of
servers or entirely of customers.

4. MULTIPROCESSOR ARCHITECTURE SIMULATION
CLASSES

The example we will discuss is the simulation of a multipro-
cessor with snooper caches, virtual memory, and shared global
memory. This architecture is discussed extensively in the author’s
PhD dissertation. Each processor has a set associative cache which
snoops the bus for activity which affects the contents of the cache.
The cached data is tagged with the system virtual address of the
data. In each cache there are identical banks of tags so that the
snooper control can read one bank while the processor cache con-
trol is reading the other bank. Writes to the tag memory require
access to both banks at the same time by whichever controller is
updating the memory. Thus each tag memory has two resources,
’bankln’ and ’bank2n’, where n is the processor number. There is
a single bus, and an associated 'bus’ resource. The memory
management units are associated with the banks of global memory
rather than with the processors. The memory management units

The Smalltalk Simulation Environment

contain a translation lookaside buffer, and fetch missing entries
from the page tables. Actual page faults are not simulated, since
the purpose of this sirulation is to determine the appropriate size
for the caches, the effectiveness of cache management algorithms,
the appropriate sizes of pages, and the desirable number of
memory management units for the system under simulation.

The parameters of the system include the number of proces-
sors, the number of memory management units, the page size, the
number of cache entries, the cache set size, and the cache line size.

The results of the simulation are displayed as guages drawn
on the bitmap display. This provides an animated display of the
simulation as it progresses. The display includes such information
as the actual MIPS rate of the processors, the cache hit ratio, bus
contention, and bus utilization for the most recent simulated inter-
val. This display is quite useful in developing and understanding of
the dynamic behavior of the model. Simulation results are also
written to a disk file for offline analysis,

4.1 Class SimMP

Simulation subclass: #SimMP
instanceVariableNames: *myProcessors myBus statGrabber
mmuCount processorCount index page set ’

classVariableNames: *’
category: "MP-Cache-Simulation’

SimMP is a subclass of Simulation. It initializes the system
by creating processors, a bus, memory management units, and a
statistics recording and display process. The processors are
scheduled for simulation time 0.0, and the statistics recording and
display process is scheduled to occur at regular intervals after an
initial startup time has elapsed. SimMP also creates the bank and
bus resources. At the termination of the simulation SimMP closes
the statistics recording file.

4.2 Class SimProcessor

SimulationObject subclass: #SimProcessor
instanceVariableNames: *myLabel myCache reads readTime
writes writeTime °
classVariableNames: *’
category: "MP-Cache-Simulation’

SimProcessor is a subclass of SimulationObject. At initiali-
zation time a processor creates its own cache controller and its
own snoopér controller. It gives the bus a pointer to the snooper.
During the simulation it reads an address and a read or write com-
mand from a trace of an actual processor, and presents these to its
cache controller. When the cache controller replies to this mes-
sage, it records statistics about the elapsed simulated time of the
reads and writes. Then it reschedules itself immediately.

A SimProcessor responds to messages to record and display
statistics from the statistics gathering process. It also passes a mes-
sage to its cache and its snooper to record and display their statis-
tics.

4.3 Class SimCache

SimulationObject subclass: #SimCache
instanceVariableNames: ‘tagMemory statistics bus bankl
bank2 ’
classVariableNames:
category: "MP-Cache-Simulation’

SimCache is a subclass of SimulationObject. A SimCache
creates its own tag memory when it is initialized. A cache
processes requests to read and write data which are sent to it by the
processor. To read the tag memory, it must first obtain the
*bankin’ resource. This resource is also used by the snooper when
updating tag memory. It requests this resource from the active
instance of SimMP. This request is queued as a WaitingSimula-
tionObject in the ’bankln’ resource’s pending queue until the
resource is available. When the cache controller has this resource,
it reads the tag memory to determine whether the data is in the
cache, and what state it is in. Then it releases the ’bankin’
Tesource.

The same data can exist with read permission in many
caches, or with write permission in a single cache at a time. There
is a cache coherency protocol to maintain this state. The protocol
requires cache controllers and snooper controllers to communicate
with each other by means of the bus.

Data in the cache can exist in one of four states: invalid, read
exclusive, read shared, and dirty. If this is a read request and the
data is read exclusive, read shared, or dirty, the cache delays for
one cache read time, updates the statistics counters, and returns a
teply to the SimProcessor which made the request. If this is a write
request and the data is dirty or read exclusive, the cache delays for
one cache write time, updates the statistics counters, and returns a
reply to the SimProcessor which made the request. All other
requests involve a bus access.

To access the bus, the SimCache must first obtain possession
of the ’bus’ resource. It requests this resource from the active
instance of SimMP. This request is queued as a WaitingSimula-
tionObject in the 'bus’ resource’s pending queue until the resource
is available. When the cache controller has this resource, it sends
the appropriate message to the SimBus. When it receives the reply

to this message it releases the 'bus’ resource. The possible mes-
sages include ’invalidate’, 'readForRead’, ’'readForWrite’, and
‘writeBack’. When the SimCache regains control, it delays as
necessary to simulate updating the cache, and then it updates the

V. Knapp

appropriate statistics counters and returns control to the SimPro-
CEessor.

During the simulation SimCache gathers statistics about its
own operation, and responds to requests to record and display
them,

4.4 SimBus

SimulationObject subclass: #SimBus
instanceVariableNames: *snoopers statistics mmus *
classVariableNames: *
category: *MP-Cache-Simulation’

SimBus is a subclass of SimulationObject. The SimBus
receives ’invalidate’, ‘readForRead’, *readForWrite’, and "write-
Back’ messages. These messages cause it to pass requests to the
SimSnoopers and SimMMUs, collect statistics on its own activity,
and delay as necessary to simulate the elapsed time. SimBus also
responds to requests to record and display its statistics.

4.5 SimSnooper

SimulationObject subclass: #SimSnooper
instanceVariableNames: ’processorLabel bankl bank2 tag-
Memory statistics '
classVariableNamgs:
category: "MP-Cache-Simulation’

SimSnooper is a subclass of SimulationObject. In response
to messages from the SimBus the SimSnoopers read and write
their associated tag memories to support the cache coherency pro-
tocol. To read its tag memory, a SimSnooper must obtain the
*bank2n’ resource from the active instance of SimMP. To write its
tag memory, it must obtain both ’bankln’ and ’bank2n’. The

SimSnoopers record and display statistics concerning their
accesses to these resources.

4.6 SimMMU

SimulationObject subclass: #SimMMU
instance VariableNames: *pages statistics id lastAdd size ’
classVariableNdmes: *’
category: "MP-Cache-Simulation’

SimMMU is a subclass of SimulationObject. A SimMMU
maintains entries for the 64 most recently accessed pages. If it
receives a message 'requesting access to one of these pages it
delays only for the time. required for a memory access. If it
eceives a message Tequesting access to some other page, it delays
for the time required to look up the page translation plus the time
for a memory access. It also records and displays statistics on its
own activity. ‘

128

5. COMMENTS ON THE MULTIPROCESSOR ARCHI-
TECTURE SIMULATION

The multiprocessor architecture simulation contains 14
classes and 140 methods. It was written and debugged by one per-
son in 2 days. This is typical of the ease of programming in a
Smalltalk environment. An example simulation using a random
number generator to generate .the address stream required 6
minutes of elapsed time to simulate a 4 processor system running
20,000 processor cycles per processor. This simulation was run on
a Tektronix 4406 workstation, This workstation has a Motorola
MC68020 cpu, no cache, and 5 megabytes of real memory. An
address trace of over a million memory accesses is currently being
collected to drive the simulated processors. The simulation will be
run repeatedly, varying the parameters to determine expected

performance of various possible implementations of this architec-
ture. Because Smalltalk programs are very easily modified, a
number of other possible architectures can be investigated.

In conclusion, Smalltalk provides easily used support for
discrete event simulation. Performance is good enough for detailed
simulation of a complex computer architecture, even while run-
ning an animated display of the current state of the simulation. The
programming environment provided by Smalltalk facilitates creat-
ing simulations, and the animated graphics display capability aids
understanding of the simulation results. Smalltalk is a highly use-
ful simulation language.

REFERENCES

Goldberg, A., and Robson, D. (1983) Smalltalk-80 The Language
and its Implementation Addison-Wesley, Menlo Park, Ca

Knapp, V., Virtually Addressed Caches for Multiprogramming and
Multiprocessing Environments, PhD Dissertation, Dept of
CSci, TR-85-06-02, University of Washington, 1985

AUTHOR'’S BIOGRAPHY

Verna E. Knapp is a Senior Engineer with the Advanced
Systems Architectures Group of the Computer Research Labora-
tory in Tektronix Laboratories. She received the PhD degree in
computer science from the University of Washington in 1985, Her
research interests include multiprocessor memory architectures
and interconnect networks.

Verna E. Knapp

Computer Research Laboratory
Tektronix Labs, MS 50-662
Tektronix, Inc.

P.O. Box 500

Beaverton, OR 97077

