Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts {eds.)

SIMULATING WITH ACTIVITIES USING C.A.P.S5./E.C.S.L.

(THE BRITISH APPROACH TO DISCRETE-EVENT SIMULATION)

Alan T.

ABSTRACT

This paper is designed to illustrate the
British Approach to Simulation and how it
would be wused in conjunction with the

CAPS/ECSL package. There are several features
of this approach which are significantly
different to the usual BAmerican approach,
most notable of which is the wuse of the
"Activity Structure" rather than the Event or
Process Bases. It was from this structure
that many of the recent discrete simulation
developments originated, for example program
generators and visual interactive modelling.
The approach of the paper is to describe the
steps which a typical user would follow in
developing a model to solve a problem using
simulation. The CAPS/ECSL system is designed
to assist as many stages of this process as
possible, <c¢laiming to be more complete than
competing systems. It is hoped that two new
developments will be described in the verbal
presentation.

1. INTRODUCTION

This paper is designed to introduce the
British Approach to discrete simulation as it
would be followed when using the CAPS\ECSL
package. It is presented in the form of a
guide to a potential new user of the system,
except that, since it is being presented at a
conference of simulation experts, a knowledge
of simulation is assumed.

The steps are:-

a) Formulation of the model with an Activity
Cycle Diagram.

b) The analysis of the diagram to discover
which are the critical parts of the model

c) The analysis of data to be used as input
to the model.

d) The construction of a program.

e) The validation of the model.

£f) Analysis of a pilot run and the design of
an experiment.

g) Running the experiment.

h) Analysing the experiment.

i} Selling the results.

2. ACTIVITY CYCLE DIAGRAMS

Activity cycle diagrams are essentially

diagrams showing the progression of states

through which entities pass as time passes.,

They are usually drawn with each entity

represented by a different colour. Two

different types of state must be

distinguished. These ‘are called “activities"

and "queues". An activity is represented by a
rectangle drawn in a neutral colour. A queue

Clementson
Department of Engineering Production,
University of Birmingham,
England, Bl5 2TT

113

is represented by a circle drawn in the
colour assigned to the entity type concerned.

The states for one entity type are connected
by arrows (i.e. lines with a direction
indicator) drawn in the colour assigned to
the entity type. Each state is given a name

which is written in the rectangle or circle.

The following four definitions are the basis

of the method:-

a) An entity is an "indivisible" element of
the system.

b) Entities are organised into groups such
that all members of the group obey the
same rules of behaviour. Such a group is
called a "class" (and represented by a
colour).

c) An Mactivity® is a state for which the
duration can be calculated at the
beginning of the state. (Note: the
formula for this calculation can be as
complex as required and often involves
taking a random sample.)

d) A ‘"queue" is a state for which the
duration is not able to be calculated at

the start of the state, typically because
it depends on the state of other entities
which are also involved in the next
activity. Thus, queues are delays between
activities.

From these definitions we see that as the
lines £for a class are followed by any legal
route, they must always pass alternately
through queues and activities.

By convention, the diagram for
which is called a “cycle", is closed.

this dis not naturally the case,
achieved by adding an artificial

‘ DRINK

4)
. 4
= &
. - !
-)

-

Pour @(__

one class,
Where
it is
queue

He1) ARRIVE

wWaAsSH

A. T. Clementson

containing all entities which are currently
not in the system. The class size must be
chosen to be larger than the largest possible
number of entities in the system at one time.

The diagram above' is a very trivial example,
that of a bar. This is used since it is not
possible to adequately represent a realistic

diagram without the use of «colour. This
printed version of the paper is based round
this trivial example, whereas the verbal
presentation will be based around a "small

but realistic" flexible manufacturing system.

It should be noted that the
Diagram has been the basis of simulation in
the UK since the late fifties, but that it
can be viewed as an extension of the "Petri-
Net"™, The prime virtue of the activity
approach is that it "decomposes" the system
complexity in a way that simplifies the
modelling of that system.

Activity Cycle

3. ACTIVITY CYCLE DIAGRAM ANALYSIS

Enitities travel. through the sequence of
states represented by their cycles. Suppose,
for the moment that each cycle consists of a
pure cycle - i.e. it has no branches. Then,
suppose that the total of the average
durations of each of the activities in the
entity's cycle is obtained. If this type of
entity were never delayed by any other type
of entity, this total is the average time it
would take for an entity to travel round the
cycle -~ this we call the "cycle time". The
cycle time divided by the number of entities
of this type, which is called the "cog-time",
is the average undelayed time between repeats
of any activity in the cycle.

It is now possible to view the complete
diagram as analogous to a train of gears, the
activities represent places where the cogs of
two (or more) cycles interlock. At such an
interlock, both "wheels" must move at the
same speed, measured in cogs per unit time.
Thus, the system cog~time is the maximum of
the cog-times of the various entity types.
This represents the rate at which the system
would work if all activities in the system
were deterministic. (Although not described
here, it is easy to remove the restriction
that the c¢ycles be without branches.) The
entity type with the maximum cog-time is the
"hottleneck"., By dividing the cogtimes of
each entity type by the system cog-time we
get the "criticality" of each entity type.

It is well known that the effect of
randomness 1in queueing systems is always to
slow the system down, but the reduced speed

cannot be easily estimated without performing
the simulation. However, it is clear that the
higher the criticality of the non-bottleneck
entity types, the greater will be the effect
of the randomness.

Suppose the above calculation were now
repeated with the mean durations for those
activities which are not in the cycle for the
bottleneck entity replaced by their maximum
durations., It is clear that, only those
- entities whose cogtimes are now greater than
the original cogtime of the bottleneck entity

114

can ever be even temporarily critical. By
experimenting with different numbers of
entities of the various types, it is possible
to narrow down the "design" of the system.

The value of this analysis is two-fold. It
gives upper (using the means) and lower
{(using the maxima) bounds for the system

speed. This will restrict the range of the
experiment that has to be performed.
Secondly, it 1is «c¢lear that the accurate

representation of those entities which cannot
even become temporarily critical is not
necessary. In particular, this will enable
the costs of data collection to be trimmed.
For critical activities a complete accurate
probability distribution of duration is
required. For semi-critical activities
perhaps it is only necessary to have mean and

variance correct, while for non-critical
activities the use of a fixed mean may be
sufficient.

The ECSL system contains an element designed
to assist in the above analysis with a
"spread-sheet" like tool.

4. INPUT DATA ANALYSIS

Most simulation languages allow the user to
use histograms £for the sampling of input
random number distributions. In the case (at
least) of activity durations, it is to be
expected that these distributions ought to be
capable of being represented by one of ' the
theoretical distributions. ECSL contains a
routine for the fitting of theoretical
distributions to collected data. The output
from the procedure is the formula to be used.
It is well understood by statisticians, that
the use of the proper underlying distribution
is an important aid in wvariance reduction.

Secondly, it is important that the different
points in a model which use random numbers
should be properly independent of each other.
ECSL contains a help facility to analyse the
proposed set of "seeds" to ensure that they
are not "neighbours" in the segquences.,

5. CONSTRUCTION OF THE PROGRAM

CAPS is an acronym standing for "Computer
Aided Programming of Simulation". The program
called CAPS operates in a wuser friendly
conversational mode with a user who supplies
the problem definition by his responses. At
the end of a session (typically from 15
minutes for a simple problem up to an hour or
more for a large problem), CAPS generates an
ECSL program that contains the logic as
conveyed by the user during the session. This
program will almost never fail to «compile and
execute. This, however, only means that a
valid program has been generated - not that
it 1is the correct one, Thus the user should
never become complacent: an unrealistic logic
might have been entered as part of the CAPS
session. Alternatively the user may have
omitted some details of the problem with a
view to enhancing the generated program using
the computer's normal editing facilities.

the
for

user
the

Before approaching the

g computer,
will need to have

prepared

Simulating with Activities Using C.A.P.S./E.C.S.L.

conversation.
of the
prepared:-

The following is a check 1list
things that should have been

a) A complete detailed activity cycle
diagram. It is recommended that this is
drawn using different colours to
represent each entity type. Each state,
activity or queue, must be given a
different name.

b) The maximum number of each type (or
class) of entities to be used in the
simulation. This number must not exceed
999, In some cases the "theoretical
number is infinite - such as the
CUSTOMers in a bar. In these cases the
user must guess a safe upper bound to the
number that might be in the system at any
given time. (Note that the number chosen
is NOT critical, the program has a built
in check that it was sufficient and it is
easy to change it later,)

c) Optionally, the queue disciplines for any

queues which are not FIFO (First-In-

First—-Out). Particular attention should

be paid to queues where the choice of

entity is restricted by the need to
satisfy rules of matching between the
entities involved in an activity. (Note
that the system provides a wide variety
of queue disciplines which are capable of
handling quite complex scheduling ideas.)

d) for the duration of each

activity. If it is not constant, then it

is 1likely to be a sample from a given
probability distribution.

The formula

e) An idea of which class sizes are likely
to be the subject of experiment and the
range of values which may be required,
(This, of course, is obtained from above)
f) A decision as to which queues are to
recorded and in which way (length of
queue, delay time, ' utilisation). 1In
selecting this data, it is desirable in
the first instance to produce a time
series of the queue length of a couple of
significant queues. This output should
then be analysed as discussed below to
determine the appropriate run-in period
and simulation duration for the main
experiment.

be

The chosen length of the
including any run-in period. (In the
first instance this is probably zero, to
be modified after the analysis mentioned
above has been performed.

g) simulation

h) An initial state, expressed as activities
in progress and entities in gqueues. 1In
selecting this it is often appropriate to
choose a state in which as many
activities are in progress as possible,
since this is likely to be near to the
equilibrium condition. (CAPS does contain
a procedure which will do this for you
which will be appropriate in many cases.)

The CAPS session will take the user
thirteen stages of discussion.

through
These are

115

listed below in groups
phases of the work.

representing major

Describing the Activity Cycle Diagram

1) Input and Editing of Cycles

2) Batch Activities

3) Analysis of the diagram— bound activities
and parallel realisations

Priorities

4) Queuve disciplines and matching rules

5) Activity priorities

Arithmetic

6) Formulae for activity durations

7) Calculations of attributes and other

variables

Experimental Design

8) Set of variable class sizes and ranges
Recording
9) Recording of queues

10) Recording of attributes
11) OQutput Control

Initial sState

12) Activities in progess, initial queue

lengths
Rationalisation
13) Keyword and Function name check.
Aggregation
14) Program Generation
At the end of each stage the user is given
the opportunity to go back to any earlier

section if it is thought necessary to correct
information has been entered.

Since this step of the process is one in
which the value of a good system is greatest,
we illustrate it in detail. The following is
an anotated complete run of CAPS for the
trivial problem illustrated in the diagram
above.

The input (the answers to questions from the

computer) always follows a question mark as
is printed in upper case. In reality, the
output is neatly presented as a number of

distinct screens, but for economy of space it
is presented here as a continuous output with
the screen headings etc omitted. Line lengths
have also been adjusted to fit. Some
discussion has been inserted between sections
to help the reader.

Problem name?PUB
Are you going to use implicit queue mode?No

The principle type of entity is called
CUSTOMER. The behaviour of these entities is
now described. .

Type name of one kind of entity?CUSTOMER

How many?10

Type a list of the states through which these
entities pass. Precede gqueues by Q and
activities by A. Blank ends the list,
?QOUTSIDE,AARRIVE,QWAITING,APOUR,QREADY
?ADRINK,QWAITING, CNEED>0,QOUTSIDE

?

is this cycle correct?Yes

A. T. Clementson !

The blank line of input indicates the end of

the 1list and after extensive checking the
computer indicates that it was acceptable by
the question. Then we go on to the next type
of entity.

At present the model has the following entity
types:—

CUSTOM

Your model includes the following activity
names:- i
ARRIVE, POUR, DRINK

Type name of one kind of entity?GLASS
How many?12

Type list of states as above
?QCLEAN,APOUR,QFULL,ADRINK,QDIRTY, AWASH
?QCLEAN
?

Is this cycle correct?¥es

will have noticed that the two
cycles which have so far been entered are
similar in type. They both consist of a
series of states which must occur in a £fixed
sequence. The béhaviour of the "barman" 1is
different. This consists of two activities
which can occur in any order dependent on the
circumstances and a single "idle" state.
Cycles of this type, often called facilities,
are described to the computer as a list of
activities without the intervening queue.
Cycles of this type can have as many
activities in the list as required.

The reader

At present the model has the following entity

types:—
CUSTOM,GLASS

Your model
namess-
ARRIVE,POUR,DRINK,WASH

includes the following activity

Type name of one kind of entity?BARMAN
How many?l

Type list of states as above
?AWASH, APOUR,

Is this cycle correct?¥Yes

At present the model has the following entity
types:—
CUSTOM,GLASS,BARMAN

Your model includes the following activity
names:-
ARRIVE, POUR, DRINK,WASH

Type name of one kind of entity?
Do you wish to modify any of the data given
so far?N

The f£first question above was answered by a
blank to indicate that there are no more
cycles to be described. The second will occur
at the end of each section of the discussion,

thereby allowing the user the chance to
correct any errors,
Are there any (other) activities which use

more than one entity of a particular type?Yes
Which activity?WASH

Which entity type?GLASS

How many entities of this type are used by
this activity?3

116

Which activity?

Do you wish to modify any of the data given
so far?No

On occasions some activities "process" a
batch of entities at once. Here it is
supposed that washing up involves three

GLASSES at a time.

The computer is now able to analyse the total
diagram and to check that it makes sense. As
part of that checking the following analysis
is displayed and questions are asked about
it.

From what you have said so far, the following
are the maximum number of simultaneous
realisations of the activities.

Activity Number

ARRIVE 10
POUR 1
DRINK 10
WASH 1

Limited by the number of BARMAN
Limited by the number of CUSTOM
Limited by the number of BARMAN
Do you wish to apply any limits which are
lower than these?Yes

Which activity?ARRIVE

What is the 1imit?l

Which activity?

The above can often, as in this
out that some entity, whose
might be a limitation on one or

case, point
availability
more of the

activities, has been forgotten. In this case
the entity DOOR was omitted.- The added
limitation on ARRIVE will achieve the

required result.

Activity DRINK appears to be bound to POUR
I.E. The following queues are dummies

READY, FULL

Do you agree?Yes

Do you wish to see a summary of the cycles?Y

When an activity seems to be bound, this may
represent reality or, again, it may indicate
that something has been omitted or specified
incorrectly. For example, in this problem it
might be required that a customer obtain a
chair before beginning drinking: If this were
so, then the entity chair would have to be
added and this addition would prevent the
activities being bound.

Finally, the user can check for himself by
requesting a summary of all that has now been
agreed., This summary may be divided into
sections if it will not fit onto the screen
of the terminal being used. This principle
applies throughout the system. Consideration
of the summary shows it to be correct. Thus,
the next section may be entered.

CUSTOM,10 ,QOUTSID,AARRIVE,QWAITIN,APOUR,Q
¢ADRINK,QWAITIN, CNEED>0,QOUTSID
GLASS ,12 ,QCLEAN,APOUR,Q,ADRINK,QDIRTY
» BWASH*3 ,QCLEAN
BARMAN, 1 ,AWASH,APOUR
ZZARRI, 1 ,AARRIVE

ARRIVE uses 1 CUSTOM 1 ZZARRI

POUR uses 1 CUSTOM 1 GLASS 1 BARMAN
DRINK uses 1 CUSTOM 1 GLASS
WASH uses 3 GLASS 1 BARMAN

Simulating with Activities Using C.A.P.S./E.C.S.L.

Do you wish to modify any of the data given
so far?No
Although the complete diagram has now been
entered, definition of the model is nowhere
near complete. The next two sections of the
discussion are both concerned with
priorities. Firstly, queue disciplines and
then the relative priority of activities.
Are there any queues whose discipline is
F~I-F-0?No

not

Do you wish to preview the ECSL coding for
the test head of any activity?

Do you wish to modify any of the data
so far?No

given

Most simulations require most of the queues
to be processed first in first out (F-I-F-0).
However, there may be some gueues which
require different treatment. In this case
there are no such exceptions.

The only question of priority that remains to
be settled, is the order of priority of the
activities. In this case the BARMAN is able
to WASH or POUR, and would normally give
preference to an instance of POUR. WASHing
will, therefore, only occur when for some
reason POUR is not possible.

The following are bound activities:-
DRINK

The order of the following activities is
unimportant:~

ARRIVE

I propose ordering the remaining activities
as follows:—

WASH, POUR

Do you wish to raise the
activity?Yes

Which activity?POUR

Which activity?

priority of any

The revised order of the activities is
POUR,WASH

Do you wish to raise the priority of any
activity?No
Do you wish to modify any of the data given

so far?No

From now on the course of the conversation is
more actively controlled by the computer.
Essentially, the remainder of the discussion
is concerned with filling in the details not
yet given.

After each activity name, type formula £for
its duration, if any duration might be zero,
type 0+...

POUR 7?NORMAL(6,1,S)

WASH 25

ARRIVE?0+NEGEXP (20, 8S)

DRINK ?5+RANDOM(5,S)

Do you wish to modify any of the data given
so farz?No

All of the formulae which are used in the
system must be integer expressions which
would be valid in E.C.S.L. (except that the
subscripts of entities must be omitted). 1In
the above examples, NORMAL, NEGEXP and RANDOM
are pseudo-random functions which generate

117

samples from the normal, negative exponential
and uniform distributions. The variable S is
a random number sequence, Many other
theoretical distributions are available,
together with those specified by the user as
histograms. Here, as above, variables can be
used without prior definition. The computer
will £ill in the details later., The "0+" is
necessary to allow for the "coincidence" of
two simultaneous arrivals.

In which activity is NEED of
evaluated?ARRIVE, POUR

Please give the formula for its
during ARRIVE

21+RANDOM(3,S)

Please give the formula for
during POUR

?NEED-1

s is a random number "stream".

Please give an initial (0dd) random number?13
Does any attribute have further evaluation
points?No

Do you wish to define any more attributes for
entities?No

Do you wish to preview the ECSL coding for
the evaluation section of any activity?No

Do you wish to modify any of the data given
so far?No

CUSTOM

evaluation

its evaluation

Note: It is not necessary to say "need of
customer"”, since the fact that need is an
attribute of the customers is already known.
The next section is ignored in this example.
Do you wish to set
design?No

Do you wish to modify any of the data given
so far?No

up an experimental

The model itself is now complete. It is
always necessary to record, in some way, what
happens when the model is wused. This is,
therefore, the subject of the next section of
the discussion.

Do you wish to see the instructions for
section?No

this

WAITIN?5 (This requests queue length and
OUTSID?0 and waiting time as histograms)
DIRTY 20

CLEAN 20 (Zero requests no output)
Do you wish to modify any of the data given
so far?No

Do you wish to record any attributes?No

Do you wish to modify any of the data given
so far?No ’

What length of Run-In period is required? 50
Do you wish to have intermediate results?No
Indicate required output mode-

1 All output to terminal
2 Intermediate output to terminal, £inal
output to printer.
3 All output to printer.
Which mode do you require?l
Please give the total duration of the
simulation?1000
Do you wish to modify any of the data given

so far?No .

A run-in period of 50 units is allowed to
avoid the results being too dependent on the

A. T. Clementson

starting conditions.

Finally, we come to establishing the initial
conditions of the model. A system would
rarely get into the state where nothing was
happening anywhere in the system. Thus, it is
often necessary to establish a starting point
which includes the representation of some
activities in progress.
Are there any activities in progress?Yes
Do you wish me to set up the activities in
progress?No :
Which activity?ARRIVE
Termination Time?l
wWhich activity?
Type how many entities should be in each
queue listed after the queue name.
CUusTOM 10 Entities.

1 used by activities in progress.
WAITIN?ZO
OUTSID?9
GLASS
DIRTY 2?8
CLEAN 24
Do you wish to modify any of the data given
so far?No

12 Entities.

The final questions and answers now complete
the process. 1In some cases the user may have
used a reserved word for a name of an element
of the model (the computer will reguest
replacement of these) or used a function that
is not in the library (the computer will
query these).

Some entities are apparently suitable for
aggregation. I.e. they have no attribute, no
delay recording and use only FIFO Q-
discipline. ‘

Do you wish me to aggregate GLASS?Yes

Do you wish to usé a cell structure?No

Your program has been written into A:PUB.ECS

The program is written by the computer and

placed into file and the details of this
discussion could be preserved for later
amendment if any other versions of the model

might be required. It would now be usual to
compile and execute the program (indeed, many
versions of the system do this auto-
matically). However for the readers benefit
the program is listed below in its entirety
(except that some adjustments have been
removed so that the longer lines will fit on
the printed page).

CLASS 10 CUSTOM SET WAITIN OUTSID WITH NEED
THERE ARE 1 BARMAN

FUNCTI PICTUR NORMAL RANDOM NEGEXP
ARRIVE+1FOR 1

NEED OF CUSTOM1l = 1 + RANDOM(3 , S)
CUSTOM1 INTO WAITIN AFTER 1

TIME OF ZZARRI = 1

RECYCL ‘

RUNINZ= 50 AND PREVCLOCK = RUNINZ

SWITCH ADD ON AFTER RUNINZ

ACTIVITIES 1000

RECORD

DURATION= CLOCK ~ PREVCLOCK

FOR BARMAN WITH TIME OF BARMAN LT 0
ADD DURATION TO EZBARMAN

ADD ARRIVE*DURATION TO FZZZARRI
PREVCLOCK = CLOCK

BEGIN POUR
CLEAN GE 1 AND TIME OF BARMAN LE 0O
FIND FIRST CUSTOM A IN WAITIN
DURATION= NORMAL{ 6 , 1 , S)
POUR +1 FOR DURATION
NEED OF CUSTOM A- 1
AADURATION= DURATION+ 5 + RANDOM(5 , 5)
DRINK +1 AFTER DURATION
DRINK -1 AFTER AADURATI
CHAIN CUSTOM A
NEED GT 0
CUSTOM A FROM WAITIN FOR AADURATION
OR CUSTOM A FROM WAITIN
CUSTOM A INTO OUTSID AFTER AADURATION
CLEAN — 1 AND DIRTY + 1 AFTER AADURATION
TIME OF BARMAN = DURATION
ADD 1 TO AZPOUR

BEGIN WASH

DIRTY GE 3 AND TIME OF BARMAN LE 0
WASH +1 FOR DURATION

DIRTY - 3 AND CLEAN + 3 AFTER 5
TIME OF BARMAN = 5

ADD 1 TO BZWASH

BEGIN ARRIVE
ARRIVE LT 1
FIND FIRST CUSTOM A IN OQOUTSID
NEED OF CUSTOM A= 1 + RANDOM(3 , S)
DURATION= NEGEXP(20, S)
CHAIN
DURATION GT O
OR RECYCL
ARRIVE+1 FOR DURATION
CUSTOM A FROM OUTSID
CUSTOM A INTO WAITIN AFTER DURATION
ADD 1 TO CZARRIVE

FINALISATION

TYPE **'Final report from simulation PUB '/
TYPE 'POUR was started' AZPOUR ' times'
TYPE 'WASH was started' BZWASH ' times'
TYPE 'ARRIVE was started' CZARRIVE ' times'
REAL, 27

2Z2=CLOCK—-RUNINZ

TYPE 'Utilization of BARMAN', (l.-EZBARMAN/ZZ)
TYPE 'Utilization of ARRIVE', (FZZZARRI/ZZ)

DATA

DIRTY 8
CLEAN 4
QUTSID2 TO *
END

6. ENHANCING THE SIMULATION PROGRAM

While CAPS can generate quite a sophisticated
program, it cannot incorporate every feature
of which ECSL is capable. However the analyst
can easily edit the generated program so as
to enhance it.

7. RONNING ECSL
The procedure for running ECSL is:—

In response to the system prompt, type ECSL.
When ECSL has completed its initalisation, it
will prompt the user with ECSL>. Each time it
occurs the user responds with a command. The
usual order for first time users is:-

Simulating with Activities Using C.A.P.S./E.C.S.L.

ECSL>COMPILE modelname [This

compiles the program.]
ECSL>EXECUTE O [This runs the
program. The zero is a
debugging switch which
cuases the program to
pause before clearing
the screen, so that
the user has time to
read the output. Other
switches are used
below,]
ECSL>STOP [This terminates the
ECSL session.]

The following is the output from the program
above,

Final output from simulation PUB

POUR was started 13 times
WASH was started 5 times
ARRIVE was started 7 times
Utilisation of BARMAN .9100
Utilisation of ARRIVE 1.0000

Histogram of length of queue WAITIN
Cell Frequency *=2

0 JGrhkkkkhhhkhhhkhhhk

1 A0 **hkkkkkhkhhhdkhkhhhk
2 20k kKKK khhhk

3 Ik

4 1*

Histogram of delays at WAITIN
Cell Frequency

1 GRER kKR
3 Jhkk

5 2%%

7 Brkk%

9 Jkkk
11 0

13 1*

8. VERIFYING AND VALIDATING THE MODEL

Some simulations have a "driving"
In the case of PUB, it is ARRIVE. Provided
the distribution used for the duration of
this activity does not have a large wvariance,
then the number of times it occurs in a
simulation run should be very close to the
period recorded divided by the mean duration
of this activity. The number of occurrences
of each of the other activities should be
capable of approximate estimation £from the
number of occurances of the "driving"
activity. (In other cases the CAPSCOG program
can be used to estimate these figures.) 1In
the case of the PUB, the average number of

activity.

DRINKs per customer is 4, so DRINK should
occur four times as often as ARRIVE. Each
WASHing up activity cleans 5 glasses, so the

number of WASHings should be one fifth of the
number of drinks. If the results are far from
these figures then the model was not in
equilibrium for a significant portion of the
period of recording.

The utilisation (which measures the
proportion of time that an entity was busy)
of the entity which controls the "driving"®

activity, here the DOOR, should always have

119

.occur

the value 1.00. If this is not true, then the
number of CUSTOMER entities was insufficient.
In this case the results MUST BE DISREGARDED,
the size of the class increased and the model
re—-run.

The summation of the frequencies in
histograms of lengths of queues should be the
same as the recording period. The summation
of the frequencies in the histograms of delay
time in gqueues should be the same as the
number of times the subsequent activity(ies)
started. If the cell size of any delay
histogram has become very large or if the
lowest cell printed does not include zero,
the user should consider adjusting the origin
and/or number of cells for the histogram.
Note that in this case the MEAN estimated
might be quite inaccurate because of the
rounding effect cause by the wide intervals.
The accuracy can often be estimated by
observing that the inner product (i.e the sum
of the products of corresponding elements) of
the queue length and their frequencies and of
the delay times and their frequencies should
be equal if no inaccuracy has occurred.

The £first concern of the user should be to
get the model to run correctly. Wwhen the
program has been written by CAPS, the

principle reason for difficulty in ac¢hieving
this 1is the initial conditions. The most
frequent and obvious symptom of wrong (that
is wunrealistic, perhaps even "infeasible")
initial conditions is that the activities
have occurred a very much smaller number of
times than expected from the static analysis.
Three cases can be considered. First a model
in which perhaps a few activties occur at the
beginning (may be before the recording
starts) and then no more action occurs. (For
reference purposes we will call this "dead".)
Secondly, a model in which the activities
at the rate expected for quite some
time and then, quite suddenly, things grind
to a halt. (This we will call "stuck".)
Thirdly, the case where the model runs
consistently throughout the time period, but
at a much lower rate of activity than
expected. (This we will call "slow".) Even
when the model has apparently run correctly,
the user should check, using for example, a
postmortem that there was no entity which has
been stuck in one place for a very long time.
(Look for a large negative TIME element.)

In all of these cases, the postmortem is the
most valuable piece of evidence with which to
seek out the "bug". The user should convert
the state in which the model has terminated
back to a state diagram using the activity
cycle diagram. Place "“counters" on the
diagram to represent the state of each entity

(as if a manual simulation was to be done).
Now go through each activity in turn
examining why it cannot happen. This

consideration will usually show up the reason
for the problem. The following is (a non-
exhaustive) list of possible situations,

a) The entities needed by an activity are in
the right gueues but the value of an
attribute prevents the activity occuring.
This is a particularly frequent occurance
if "complex" queue disciplines are used.

A. T. Clementson

ensure that all attributes
have values which correspond to their
initial state. This will most frequently
result in a "dead" model. This can be
true when IDENtity or WIFE relationships
are used and the initial conditions do
not obey the "rules". (This can also
result in an early failure of the program
with the message "Invalid Index")

b) Where one gqueue is "parallel®™ to a
sequence of states of some other entity.
For example, in the diagram below, the
number of entities in queue A should be
equal to the total number of entities in
states B, C and D. If this is not true
then the model will act as if the
Yexcess" entities (the amount by which
B+C+D exceeds A), did not exist. Thus the
model will appear "slow". This condition
can be difficult to spot when the excess
is a small proportion of the total number
of that type of entity.

Correction:

c) There are two activities, X and Y, which
both need an A entity and a B entity. All
the A's are available to X but none of
the B's and all the B's are available to
Y but none of the A's. This will result
in a "stuck" model. (The circumstance is
often called a "deadly embrace". This can
be due to a bad starting condition, but
is also a feature of many real systems if
sufficient ‘"control"” is not exercised.
This can particularly be caused when one
of the entities concerned has a "branch
from a gueue" :and the problem has occured
because wrong decisions have been taken.
Note that the problem cannot always (and
even when it can it probably should not)
be solved by increasing the number of
entities or changing the priority at the
branch. It may be nevcessary to
explicitly 1limit the number of entities
in each half of the cycle to being at
least one less than the total number.

d) A particularly severe gqueue discipline
can sometimes be the cause of problem.
Insistance that the first entity in a
queue be used, but applying a condition
on its attribute may cause very long
(even infinite) delays and result in a
"slow" model (or even a "stuck®" one.) The
SUIT discipline should be used with great
caution.

If the above considerations fail to produce a
correct program, then the user will have to
resort to techniques for "watching" the model
in operation. Two types of "debugging"
facilities are available in ECSL. Firstly,
the DISPLAY facilities can be used to produce
a visual representation of the model. This
can be used to watch the model to observe
where, if at all, it goes wrong. (An activity
cycle diagram type visualisation, while not
the only or necessarily the best, is a useful
one and it can easily be produced using the
program DRAW (an optional extra with CAPS)
The alternative, method is to produce a
"trace"” and "cycle dump"™ using execution
switches 2 and 4. These can be produced by
using the modified execute command

120

The DISPLAY facility can also be used to get
a valid model in another way. It can be used
interactively, 1like a ’'simulator, so¢ that
someone who really knows the real system well
can make some of the schedulling decisions
while the simulation is runing. Analysis of
these decision can be used to improve the
performance of the model, particularly in its
reaction to "extreme conditions".
It 1is important to note that these
the DISPLAY, which are by far the most
important, are only possible because the
DISPLAY is a live (as distinct from a post-
processor) activity.

uses of

ECSL>EXECUTE 24
9. ANALYSIS OF A PILOT RUN
When the model apparently runs correctly, the

next step is to determine the length of run-
in and of run that are required. Typically, a

simulation, once started, might oscillate
quite markedly until it eventually settles
down. It has then reached its "steady state"

of "statistical equilibrium". Recording which
occurs before this "point"™ will be biased.
Thus there is a need to know the duration of
this transient behaviour as it can be equated
with the run-in period for which no recording
takes place.

Unless some attempt is made to analyse . the
early behaviour of a simulation model
(transient behaviour) there is no way of

knowing whether the run-in period is too
short, which may cause biased results, or too
long, which wastes computer time and has
unnecessarily reduced the simulation time for
which results are recorded.

Two ways of determining the run—-in period can
be identitifed. Each requires that the
program be run initially without a run-in
period and then the output can be examined so
as to determine a reasonable period to cover
run-in. This is most easily done by recording

two or three queues which do contain a
significant average number of entities. Once
the run-in period is determined, the

portfolio of output data can be extended but
the analyst should always consider carefully
the reason(s) for recording any particular
queue length and/or delay time.

a} Using the Analyse and Graph Commands

The selected queues are recorded using CAPS
method three (queue length recorded as a time
series) and then subjecting the results to
the ECSL "Analyse" command. It is best if the
selected queues are of different entities and
widely scattered through the system. The
names of the time series can easily be
deduced as this is done. For example, suppose
the gueues are called WAIT, DELAY and VACANT.
The ECSL commands may well be similar to the
following.

ECSL>Load Model (This re-loads the
compiled version of the
program - there 1is no
need to recompile it if
it has not been changed)

Simulating with Activities Using C.A.P.S./E.C.S.L.

ECSL>Execute (To execute the model as
usual)
ECSL>Analyse (Giving no parameters as

yet).

The model contains the following vectors:-
ZCWAIT, ZEDELA, SIZE, SHAPE, ZHVACA

GIVE THE NAME OF THE VECTOR TO BE ANALYSED?
This list contains the three vectors required
(their names have Z-prefixes attached by
CAPS) viz ZCWAIT ZEDELAy and ZHVACAnt. Ohe of
these should be given in answer to the
question and the other two should be analysed
by further use of the analyse command when
the first has been completed.

The analysis includes, among considerable
other data, "the first point which is not an
extreme of all subsequent points®, "the first
passage thtrough the mean of all subsequent
points" and a “"standardised time series"
analysis. These give an indication of when
the simulation begins to settle.

The Graph command could also be used to give
a visual indication of the run-in time. The
same procedure is used as above but Graph is
substituted for Analyse.

b) Generating Intermediate OQutput

The output control section of CAPS allows the
user to specify that intermediate output
should be produced. The primary purpose of
this output is to'allow the user to determine
if the model has reach equilibrium., If this

is the case, the utilisations and histogram
means produced should not show a trend. The
number of times each activity has started

should of course increase linearly with time.

If this is not true, then a graph drawn from
the data should allow the run~in period to be
determined by £finding how much of the run
should be ignored to make the above
statements true.

Note however, that different points in the
model may take a different time to settle
down. Also note that run-in times can be very
variable ~ different random number sequences
can produce such different sequencies that
they can give very different run-in times.
Subject to these precautions, the run~in time
now determined should be built into the
model., It is a good idea to retain some data
collection from which the stability of the
model can be continually checked as the
experiment procedes.

It is particularly important to realise that
if the model has a cyclic behaviour, which is
likely if there is not driving activity, then
the time for which the recording takes place
nust be a whole number of cycles. The ANALYSE

command also examine the time series for
evidence of cyclic behaviour and provides
data from which the “best" method of

recording can be deduced.
10. SETTING UP AN EXPERIMENTAL DESIGN

Simulation can only properly be utilised for
assisting in the decision making process if

121

it is carried out correctly.
queue lengths or delay times for a single
simulation are of no use whatsoever for
decision making purposes. What is required is
a properly designed statistical experiment.

The averaged

This will contain two elements:~ a selected
set of values for the variable parameters of
the system and replication. However,
replication can be considered to be just an
extension of the statistical experiment, by
considering the random number "seeds" as

parameter.

The experimental design phase of CAPS will
have allowed the user to set up variability
of the number of entities in the various
classes of entities. These will be among the
parameters, The size of each such class is
controlled by a single value integer
variable. The name of this variable was given
by the user to CAPS. The default value is
specified in the DATA segment.

Similarly,

number seeds
the names of
Again the
specified in

the variables holding random
have names which, in ECSL, are
single valued integer variables.
default initial values are
the DATA segment.

If other
must also
by setting
variables.
specified
that the
conditions

parameters are required the user
arrange that they are established
the value of single valued integer
The default value must be
in the DATA segment. Don't forget
effect of varying the initial
should be examined.
Once these in
been
of

variables have been included
the program, and the program has
compiled, the user can then select sets
values for the parameters interactively, one
by one, having seen the results of earlier
runs, Thus the user will be able to conduct a
properly designed "hill-climbing" statistical
experiment.

This is done by wusing the "run-time"
parameter facility. For example we will
suppose that the BAR example has 2 parameters
BMEN, the number of bartenders, and NGLASS,
the number of glasses, Additionally there are
two random number streams SA and SB. Then
individual runs can be requested by commands
likes:~-

ECSL>EXECUTE BMEN=3,NGLASS=10,SA=135,SB=157

Most textbooks on simulation will recommend
the use of variance reduction techniques.
Perhaps the simplest and most powerful of
these is the use of antithetic random number
streams. This consists of always running
pairs of runs with the following property. In
one run all the random number parameters have
positive values. In the other, all the values
of the initial random number parameters are
given the same value but made negative. For
example, the antithetic of the above is

ECSL>EXECUTE BMEN=3,NGLASS=10,SA=-135,5B=-157

The other main variance reduction technique
is to make sure that the same random number
parameters are used for each of the different
sets of the none random number parameters.

A. T. Clementson

11. RUNNING THE EXPERIMENT
If the experimental design used is of the
fixed ‘“"classical" factorial type, the the
ECSL command DESIGN should be used to create
a batch file of execute command which will
then be run automatically. .

12. ANALYSING THE EXPERIMENT

The ECSL system contains a provision for
recording the parameters and results obtained
from the various executions in a file. This
is simply done by use of the KEEP command,
which is run before the series of executions

is initiated. The parameters of the command
are the names of the variables to be
recorded. (The DESIGN command will also set

this up, if desired)

At the end of the experimental run the
RESULTS command will tabulate the "kept"
data and the GRAPH command can be used to
present the results in a graphical form. The
file is 1in a form which can be directedly
used by the MINITAB statistical package
thus any form of analysis, appropriate to the
experimental design can be applied.

13. SELLING THE RESULTS

that all results obtained from the
experiment should be subject to proper
statistical analysis. All differences
observed should be tested for significance.
Confidence 1limits should be obtained for all
results.

Remember

Once properly validated results have been
obtained from the model, it is often quite
difficult to "sell" the conclusions to
"management". In some cases the visual
interactive display, discussed earlier, can
be used to assist in this process by
demonstrating the effects of possible
decisions, This process should however be
used with particular caution since the
understanding of any stochastic model is a
skilled (statistical) process - many results
obtained are "counter—intuitive", Wrong
impressions can be conveyed by viewing single

samples and by ™what if's"™ based on single
short runs of a model. However, when used
with the necessary professionalism, the

visual display is a very powerful tool for
selling the result of the study.

REFERENCES ‘

"Extended Control and
Computer Journal Vol

Clementson, A,T.,
Simulation Language",
9, No 3, 1965.

Clementson, A,T., Computer Aided Programming
of Simulations", User's Manual, Univeristy
of Birmingham, 1972, (later versions

published 1974, 1977, 1980)

Clementson, A.T., "Computer Aided Programming
of simulations™, Proceedings 2nd National
Coriference of the Australian OR Soc, 1975,

Control and
Users' Manual,
1982 and 1984.

Clementson, A.T., Extended
Simulation Language,
published by CLE.COM Ltd.,

122

(Barlier versions 1972,1974,1977 and 1980
published by Univeristy of Birmingham)

Clementson, A.T., "Towards Modular
Simulation", National Conference of the
British OR Society, Durham, Sept 1985.

Clementson, A.T., and Hutchinson G.K.,
"simulation of Flexible Manufacturing
Systems", National Conference of the

British OR Society, Durham, Sept 1985.

Hutchinson G.K. "An Introduction to Activity
Cycles”, Simuletter, October 1975

Hutchinson G.K. and Hughes JeJe, "A
Generalised Model of Flexible Manufacturing
Systems", Proceedings- Workshop on Multi-
Station, Digitally Controlled Manufacturing
Systems, University of Wisconsin-
Milwaukee, 1977

Hutchinson G.K., "The Control of Flexible
Manufacturing Systems: Required Information
and Algorithm Structures", Proceedings of
IFAC Symposium on Information Control
Problems in Manufacturing Technology,
Tokyo, Japan Octl977

Hutchinson G.K. and Clementson A.T.,
"Manufacturing Control Systems: An Approach
to Reducing Software Costs"™, International

Conference on Manufacturing Science and
Technology of the Future, MIT,
Cambridge,MA, Oct 1984.

Peterson J.E. "petrie Nets", Computing
Surveys, Vol 9, No 3, Sept 1977.

Tocher K.D.,Aix~en—Provence, June 1956

AUTHOR'S BIOGRAPHY

ALAN CLEMENTSON is Head of the School of

post-graduate studies in the Department of
Engineering Production at the University of
Birmingham England. He recieved a B.A. in
Mathematics at Cambridge, a Diploma in
Mathematical Statistics and a Doctor of
Philosophy from Birmingham University. He was
involved in the invention of C.S.L. at Esso

Petroleum (UK) in the early sixties and has
since the developed the E.C.S.L. system., 1In
this work he was the first to propose and
develop the current version of the activity
structure and later the program generator.

Alan T. Clementson,

Department of Engineering Production,
University of Birmingham,

PO Box 363

Birmingham

England Bl5 27T, UK.,

(41)-21-472-1301

