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ABSTRACT

A computer simulation model is unusual
in that the random error is under the total
control of the experimenter. Variance
reduction methods aim to take advantage of
this to improve experimental accuracy. The
fundamental ideas behind the most important
of these methods will be described and
illustrated with simple examples.

1. INTRODUCTION \

The purpose of a scientific experiment
is to understand how a system, whether
physical, biological, organisational, or
whatever, can be expected to behave. Such an
experiment is subject to chance errors and
one of the aims of statistical methodology is
to attempt to reduce the effects of such
exrors as far as is possible. Simulation
experiments differ from this kind of
experiment in one great respect: in a
simulation experiment the random error is
under the total control of the experimenter.
By being selective as to how this error is
introduced and controlled it is possible to
obtain more information from a simulation
than might at first appear. There exists a
number of different techniques for doing this
and they are referred to as variance reduction
(VR) methods. The aim of this tutorial is to
describe the fundamental ideas behind the
most important of these and to illustrate
their application with simple examples.

It is not possible, nor desirable, in a
short survey to attempt to give a comprehen-
sive picture; however to avoid merely offering
a set of unrelated recipes, an attempt will be
made to indicate the relations between some of
the more well-known methods, and thus clarify
some of the basic issues involved in the use
of VR Techniques.

The literature on VR technigues is a fast
growing one. We list some selected references
which provide a wider reference base and which
give more details of the methods themselves
and their applications than can be given here.
Law and Kelton (1982) and Morgan (1984)
provide good coverage at the introductory
level. Interesting detailed applications are
given by Fishman (1978). A fuller account at
a more technical level is provided by
Bratley, Fox and Schrage (1983). Two good
advanced articles which pay particular
attention to fundamental aspects are Wilson
(1984) and Nelson and Schmeiser (1985). 1In
addition to these, more specific references

will be given for the individual VR methods
as we come to them,

2. SOME ‘PRELIMINARY IDEAS

Before looking at specific VR methods,
it is necessary to set out some preliminary
ideas. In particular we (i) identify the key
features of a simulation that we will manipu-
late and (ii) recall a number of statistical
formulas which will be used repeatedly.

Historically Hammersley and Handscomb
(1964) introduced many of the ideas of VR
through the Monte Carlo evaluation of an
integral and this lead is still often
followed. However the specialised format
tends to obscure how certain of the VR
rethods can be extended to more general
problems; in particular to discrete-event
simulations. We shall not use this approach
but will take a viewpoint more directed
towards these latter problems.

The following problem will be used to
introduce the basic ideas. For clarity it is
kept very simple, and indeed there would be
no need to tackle such a problem by simulation
rmethods at all as its properties can be
obtained easily by direct analysis. However
it has sufficient structure to illustrate all
the VR methods to be considered.

Suppose we wish to investigate the number
of men, Y, assigned each day to a long running
project. The assignment is made daily, each
day being independent of other days. The
number of men, X, available for assignment
also varies daily and, from past records, X
is known to be a random variable with
probability distribution: P(X=1) = 0.3,
P(%¥=2) = 0.45, P(X=3) = 0.25. Each day Y is
determined from X in the following way: If
only one worker (i.e. X=1) is available (s)he
works on the project with probability 0.4.

If two (i.e. X=2) are available, then the
first is assigned with probability 0.71 and
the second is assigned only if the first is,
and then only with probability 0.72. If three
(X=3) are available then one is definitely
assigned to the project, one is definitely
not, and the third is assigned with probab-
ility 0.8.

A Monte Carlo simulation of the daily
assignment process is easily set up as
follows:

(i} Generate a uniform U(0,1l) variable, Uy,
to determine whether the number of
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men available on a given day, X, is 1,
2 or 3.
(ii) If one man is available use a second
U(0,1) variable, U, to determine if he
works on the project.

If two men are available use a second
U(0,1) variable, Uy to determine if the
first is assigned, and if so, use a
third U3 to determine if the second is
assigned.

I1f three men are available, allocate
one man and use a second U(0,1l) variable,
Uy, to determine if a second man is
assigned or not that day.
(iii) Output the number of men, ¥, assigned
to the project on that day.

The above can be regarded as a typical
simulation run which, in an overall
simulation, will be repeated (replicated) n
times, say. Each individual run, in general,
has the following features

(Al) A stream of U(0,l) <nput variables
possibly variable in number (in the
example, two or three) is used in the
simulation to produce

(A2) A response vartable Y (in the example,

the number of men allocated to the
project).

It is the distribution of Y, or characterizing
properties, like its mean E(Y) and variance
var(Y) that is of major interest. More
generally we may be interested in some
quantity g(Y¥) associated with Y. (Strictly
speaking, g(Y¥) is known as a functional of Y.)
Our objective is to carry out the n simulation
runs in such a way that we obtain as good an
estimate of g(¥) as is possible from the:
results of the runs.

Note that we think of a single run as
producing just one observation of the response
Y. We need to be a little careful with this
interpretation in certain discrete-event
simulations where in a single run we may
measure a number of identically distributed
random variates, like waiting times W5 j=1, 2,
..., m, which are not independent; and where
we are interested in the distribution of a
typical W. This situation does not quite fall
into our above format. If however we limit
interest to E{(W) (or Var(W)}) then an estimate
of this such as

_1
Y=2 7w, (2.1)

J

can be thought of as the response of interest
obtained from a single run. In steady-state
simulations replication can be achieved by
simply extending the length of a run, so
confusion can arise over what constitutes a
single run unless it is clearly defined.

It is possible to discuss VR methods
using only assumptions Al and A2. However it
turns out to be much more satisfactory if we
introduce one additional component to our view
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of a basic simulation run:
(A3) In addition to a response, Y, the run
produces a shadow response, X. In the
worker-assignment example we shall take
X to be the number of workers available
on a given day.

Simulation and regression literature sees
various uses of concomitant, contxol,
auxiliary, intermediate variables which are
related to the response but are not of
primary interest in themselves. Our defin-
ition and use of a shadow response is not
unlike that of the well-known control
variable, but as will become clear, is more
general purpose. Unlike the response, which
is usually prescribed and over which there is
no choice, the shadow response, X can be
selected by the simulator as he or she sees

fit. The major property that it should have
is

(Cl) X is (highly) correlated with Y.

In addition it should ideally satisfy eithex
or both the following conditions:

(C2) The distribution of X is known,

(C3) The conditional distribution of the

input stream U;, i=1, 2, ..., M given
X is known.

For clarity we shall usually think of ¥, X as
univariate (i.e. scalar) gqguantities and of a
single input stream. However all our remarks
generalise to the multivariate context. This
is an important practical point as almost all
simulations of real practical interest are
rultivariate.

We now come to the key step in our view
of VR methods., What we do is to strip away
the simulation context of the simulation run
and regard each run as producing a single
observation, (X, ¥), from a bivariate
distribution. The simulation can then be
thought of as being essentially a regression
problem in which Y is the dependent variable
and X is the independent variable. The joint
distribution will not be known; in particular
the marginal distribution of Y is not known,
and it is this and properties of it that are
to be estimated.

In the worker-assignment example, because
of its simple nature, we can calculate the
exact joint distribution of X and Y. This is
given in Table 1 together with associated
means and variances and covariances. When we
core to use the example we shall assume that
certain of this information is not known or
only partially known, as would be the case in
real problems.

The value of the regression viewpoint is
that we can study all VR methods by means of
two fundamental formulas. The first shows how
a quantity of interest, g(Y), can be decomposed
by conditioning on the value of the shadow
response, X:



Table 1. Joint distribution of the
daily number of men available (X)
and assigned (Y)

X
1 2 3 P(Y=3)
2 {.o .09 .20 .29
Y 1|.12 .23 .05 .40
o|.18 | .13 .0 .31
P(X=i) .3 ' .45 .25
i 1 2 3
E(Y|X=1) .4 .91 1.8
Var (Y]X=i) .24 .48 .16
E(X) = 1.95 Var(X) = .5475
E(Y) = .98 Var(¥) = .5996
cov(X,¥Y) = .379
E(Var(Y[|X)) = .3285 Var(E(Y|X)) = .2711

First fundamental formula of VR (Estimator

decomposition)

g(¥) = ] g(¥|x = i) P(X = 1) (2.2)
R

where g(Y|X = i) is the dquantity of interest
calculated under the condition X = i.

A compact way of writing (2.2) is
g(Y) = E(g(¥[x)) (2.2 bis)

where the outer ekpectation is evaluated with
respect to the distribution of X.

Two particular cases of special interest
are

E(Y) = ] BE(Y|X = i) P(X = i) (2.3)
i

and the probability that Y equals some
particular value y

P(Y=y) = | P(¥=y|X=i) P(X=i), (2.4)
i

In an actual simulation we cannot use
these formulas directly as gquantities like
P(¥=y|X=i) will not be known. However we
shall find that estimates can also be
decomposed and studied using analogous
formulas.
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The second fundamental formula gives us
a decomposition of the variance in a similar
way:

Second fundamental formula of VR (Variance
decomposition)

Var(Y) = E(Var(¥|X)) + Var(E(Y|X)) (2.5)

This formula will be used repeatedly to
examine the variance reduction achieved with
the different VR methods. The formula shows
that the variance can be decomposed into two
parts. For any given value of X, Y possesses
a residual variance and its average value is
the first term on the right in (2.5). However
in addition there is a contribution due to the
variability in X and this results in the
second term on the right in (2.5). For
instance if we apply (2.5) directly to the
worker-assignment example:

E(Var(Y|X)) = 0.3285, Var(E(Y|X)) = 0.2711 so
that Var(Y¥) = 0.5996.

A more general version of the formula is
occasionally useful:

cov(Y¥,%) = E(cov(¥,2]|X))
+ cov(E(Y|X), E(Z]X)) (2.6)

The above formulas are important in theixr
own right in stochastic modelling and a clear
introduction to them is given in Ross (1980).
Their use in VR is discussed by Bratley, Fox
and Schrage (1983).

We turn now to the VR methods themselves.

3. VARIANCE REDUCTION METHODS

The notation in this section follows that
of section 2. 1In particular Y is the response
of interest, X is the shadow response.

Each VR method will be described in
general terms, then illustrated using the
worker—-assignment example introduced in
section 2, followed by brief comments concern-
ing their properties.

In the example, X and Y will always be
taken to be respectively the number of men
available and actually assigned each day.
The objective of the simulation will be to
estimate E(Y) = o.

We begin with the basic simulation method
which we can use for comparisons. It does not
incorporate any VR as such, but because of its
simplicity is by far the most used method.

3.1 Crude Monte Carlo

The basic simulation technigue is often
called crude Monte Carlo. We make n indepen-
dent runs giving the responses ¥y i=1, 2, ...,
n. The shadow response values are not used
at all, and 6 is estimated by

~

= X =5
8 rude = 5 1Y, =D, (3.1)
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This estimator is unbiased and its variance
is

[

Var(ecrude) =3 Var(Y) . (3.2)
Example. From Table 1 we have
a 1
Var(ecrude) ==X 0.5996 . (3.3)

Comments. The method has the merit of total
simplicity. The number of replications n can
be increased till sufficient accuracy is
achieved. The method suffers from the basic
problem of all methods using increased
replication to achieve improved accuracy:
namelz that the standard deviation decreases
as n~% only. Often this implies that n be
unduly, even hopelessly, large before
sufficient accuracy is achieved. Wilson
(1982) gives an example showing the huge
number of runs needed to estimate the average
waiting time in a single sexrver queue.

As an initial exercise on the use of the
fundamental formula (2.3) note that if N; is
the number of times ¥=i is observed and

j=1, 2, ..., Nj are the corresponding
values of Y (when X—l), then we can write:

~

ecrude = g Yi(Ni/n) (3.4)
where
V o= -1
¥, =N 2 iy (3.5)
3
Clearly Yl and N; /n respectively estimate
E(Y|X=1i) “and P(X=i), so 8orude can be

interpreted as being simply (2.3) with
E(Y|X=i) and P(X=i) replaced by these
estimates,

3.2 Stratified Sampling

The shadow response, X, has to satisfy

C2 and C3 for stratified sampling to be
possible. Knowledge of the marginal distri-
bution of X is used to ensure that the

sampled proportions of the different values of
X in the n runs are exactly equal to their
probabilities of occurrence. Thus if n; is
the number of times X=i is sampled, we ensure
that

n =

i nP(X=1i), (3.6)

Writing ¥34 j = 1, 2, ..., n; for the n;
values of % observed when X=iI and Y; for their
mean we can use the estimate

5 = ] 3,P(x=1).
i

strat (3.7)

This corresponds to estimating E(Y|X=i) by Y in
(2.3), together with use of the correct

value for P(X=i). The estimator is unbiased,
moreovexr
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. _ o =
Var(b_, ..) = g P2 (x=i) Var(¥,)
= % ) Var(Y|x=1i) P(X=1i)
i

|
[

=3 E(Var (Y|X))

|
Bl

[Var(¥) - var(E(Y|X))].
(3.8)

This shows that
reduce the variance.

stratification can only

Example. From Table 1, E(Var(¥|X)) = .3285
so that
2 _ 1
Var(estrat) =4 .3285. (3.9)
Comments. This method seems rather underused

in practice. The key steps are the choice of
shadow response, X, and the need, C3, in each
run, to generate the random stream of uniforms
Al, given the value of X. The difficulty of
this last reguirement is perhaps the main
discouragement to the use of the method.
There is one useful class of shadow responses
which is amenable to stratification. This
comprises those which are sums of
independently and identically distributed
random variables from the gamma, normal or
inverse Gaussian families or from the
binomial or Poisson families. Thus, for
example, if in a queueing simulation we use
the sum of a set of exponential customer
inter-arrival times as a shadow response, it
is possible to generate a set of exponential
random variables conditional on their sum
being equal to some preassigned (stratified)
value. Cheng (1983, 84) discusses details of
such conditional sampling albeit in the
context of antithetic variates (see §3.6)
where such similar sampling is also required.

There are two forms of stratification
possible. The above is known as pre-
stratification because the nj are fixed
before the simulation runs. The second form
is called post-stratification and is easier
to apply because condition C2 is needed but
C3 is not. We make n runs as in crude Monte
Carlo, but then use

8ost = ) ¥, P(x=i). (3.10)

This looks the same as 8gyyat. The difference
is that here ¥; is the mean of a random -

number, Ni of observations (if N;j=0 set ¥j 1=0,
say) .

Fieller and Hartley (1954) discuss the
post-stratification method when estimating
P(¥=3j) as in equation (2.4) and give a
detailed formula for the variance of the
estimator in this case. Using pre-
stratification yields an estimator with the
same variance of



R. C. H. Cheng

P2 (Y= j ,X=i)]
P(x=1) !

var (B(v=3)) = Z[p(v=3) - ]
€L

(3.11)

to order n~!. However the post-stratification
estimator includes additional positive terms
of order n-? showing that the pre-stratified
estimator is preferable if it can be applied.

The advantage of the post-stratification
method is of course that it can be applied
without requiring condition C3.

3.3 Importance Sampling

This is in effect the stratified sampling
method, only taken a step further. The
shadow response X needs to satisfy conditions
C2 and C3. DNow in stratified sampling the
number of times each different value of X is
sampled is in strict proportion to its
probability of occurrence. Thus we set nj,
the number of times X=i equal to nP(X=i).
There is no need to use this precise value.
Whatever value we use for nj we can still use

Simp = g ¥, P(X=1) {3.12)
and this still corresponds to estimating @
from the formula (2.3) with E(Y|X=i) replaced

by Y.

Now, (3.12) can be viewed as

Simp = g (Y r,) P(Z=i) (3.13)
where r; = P(X=1)/P(Z2=1i) and Z is a variable

with probability mass function

P(Z=i) = ni/n (3.14)

Thus we can view (3.13) as the situation
where we have stratified according to the
distribution of Z and have compensated by
weighting the Y; by rj.

How should we choose the values of n;?
An obvious way is to choose them to minimise
Var(eimp). From (3.12) we have

(X=

Var(6, ) = ) Pzn i)Var(3z|x=i),
¢ .

imp (3.15)

1

and minimizing this with respect to nj subject
to Ini=n gives

n, =k P(X=i) YVar (¥ |X=1i)

(3.16)
where k is a constant of proportionality.
This optimal choice is called Zmportance
gsampling because it assigns most weight to
values of X which occur with high probability
and for which also the conditional variance
of ¥ is large; such combinations being the
most important in their contribution to E(Y).
Unfortunately, though P(X=i) is assumed
known it is unusual to know Var(Y|X=i).
however we can guess at its relative
magnitude this might lead to worthwhile
improvement.

If
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Eiample. If we insert the values for P(¥X=i)
and Var(Y|X=i) given in Table 1 into (3.16)
we find that ng,, nj, ni should be in the

: 11

proportions 17 : 72 , giving
a _ 1
Var(eimp) =¥ 0.31219 (3.17)

As expected this is less than Var (6 ).

strat
Comments. Just as we can post as well as
pre-stratify so we can do the same with
importance sampling. The details are
entirely analogous and are omitted here.
Importance sampling is usually presented for
a continuous X without any stratification
applied to the possible values of X. In this
case the method reduces to the post-sampling
form (see Morgan 1984).

Importance sampling can be unsatis-
factory, even dangerous, to use. The optimal
weighting, assuming it can be found at all, is
only optimal for estimating 6 and not
necessarily any other guantity. A well-chosen
X which makes Var(Y[X=i) fairly constant, as
i varies, renders the method effectively the
same as stratified sampling; and even when
this is not the case, as in the example, the
improvement over stratified sampling may
often not be particularly worthwhile.

3.4 Conditional Monte Carlo

This is the complementary method to
stratified sampling in the sense that it
removes variability in the estimation of
E(Y]X) whilst stratification removes
variability in the estimation of P(X=i). As
in crude Monte Carlo, n runs are made, except
that in the runs only sufficient of the simu-
lation need be carried out to enable the
shadow response values X:, j=1, ..., n to be
obtained. From each run, we then calculate
E(Y|X5), and take the estimator as

8 (3.18)

_ 1
cond 1 % E(YIXj) .

Notice that this can be interpreted in terms
of the fundamental formula (2.3) as

~

% cona = g E(Y|X=1i) P(X=i) . (3.19)
The estimator is unbiased, moreover
var (8 ) = Var (E(Y|X))
cond n
= % Var(¥) - E(var(¥[x))] (3.20)

so that conditional Monte Carlo can only
reduce the variance.

Example. Suppose that the distribution of X
is not known but that, given X=i, the
distribution of ¥ is known. This implies that
the quantities E(Y|X=i) are known and are as
given in Table 1. Thus
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= 0.4 x P(x=1) + 0.9111 x P(X=2)

D3

cond
+ 1.8 x P(X=3)
and
Var(® . .) = X var(E(¥|%)) = % x 0.2711
cond n n *
Comments. The main difficulty with

conditional Monte Carlo is finding a shadow
response for which E(Y|X=i) is known. A
useful list of examples is given by Bratley,
Fox and Schrage (1983). One case is where ¥
is observed at each epoch of some particular
event. Balking and other queue joining
properties fall into this category. If X
respresents the state of the system, then it
may be that E(Y|X) is known at each event
epoch. Note that it will usually still be
necessary to calculate Y as its value may be
needed to continue the simulation.

3.5 Control Variates

In importance sampling, the effect of
variability of ¥;_in (3.12) is reduced by
rescaling it to Yjry as in (3.13). 1In
control variates a similar effect is achieved
by a relocation or differencing adjustment.
The idea is that if X is correlated with Y
(for example when a large value of X tends to
give a large value of ¥ and a small value of
X tends to give a small value of ¥Y) then one
should compensate for this in estimating 6.
Only the mean of X, E(X), need be known and

not necessarily its entire distribution. The
estimate of 8 is then taken as
boont = ¥ - cl® - ()] (3.21)

which is in effect the equivalent of the
modified fundamental formula:

E(Y) = J[E(Y|%=1) - c(i - E(X))] P(X=i)
kN
(3.22)

with E(Y|X=i) and P(X=i) replaced by their
estimates. The constant, ¢, is chosen to

ninimize Var(écont), which can be written as

Var (8 )y = % (Vaxr(Y) -~ 2c cov(X,Y)

cont
+ ¢2 Var(X)) (3.23)

or using (2.5), as:

Var(écont) = %[E(Var(YIX)) + Var(E(Y|X) - cx)]
(3.24)
From (3.23), the best choice of ¢ is:
c = cov(X,Y¥)/Var(X) (3.25)
giving
Var(8 o ) = 3 (1-p2) Var(y) (3.26)
where p = correl(X,¥Y). From (3.24) we see

that unless E(Y|X) is linear in X even this
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best choice of ¢ will not reduce the term
Var(E(Y|X) ~ cX) to zero, showing that in
general the control variates method will not
give as much VR as stratification.

Usually ¢ cannot be set to its optimal
value anyway as cov(X,Y¥) will not be known.
To achieve variance reduction we need
c(cvVar(X) - 2cov(X,Y)) < O, i.e. we need c to
have the same sign as cowv(X,Y) and

le] < 2]cov(X,¥) | /Var (X) (3.27)
In practice we would hope that |p|> %, say,
before applying the method and if this is so
then for the case p > 0:

Vary¥
VarX

VaryY
VarX

2cov(X,Y)

Var (X) =2

(3.28)

A reasonably safe choice is therefore to take
c=1 provided X has been scaled, if necessary,
so that Var(X) = Var(Y) and so that p > O.

Example. From Table 1 we have Var(X) = 0.5475
and cov(X,¥) = 0.379. The optimal choice is
thus
c = 0.379/0.5475 = 0.692
giving
o 1
Var(econt) = % X 0.3376 (3.29)

which, as expected, is greater than

Var(estrat). If we had used c=1, then
~ _ l _
Var(econt) = H(‘5996 + .5475 2 x .379)
_ 1
=9 X 0.3891 (3.30)
Comments. We have discussed control variates

assuming c is a preset value. In practice one
can estimate the best value of ¢ from the
bivariate observations themselves. The
situation is closely akin to regression
analysis. A very detailed account is given
by Lavenberg and Welch (1981); a compact
summary is given by Wilson (1984). It is
worth noting that if ¥ and X are both time or
event average quantities (like average queue
length, service times) then a normal
distribution can be assumed leading to very
complete distributional results.

3.6 Antithetic Variates (av)

Suppose the aim is to estimate E(Y)
We use the same idea of compensation as was
used in the control variates method. The
shadow response X is assumed to satisfy C2 and
C3 and is correlated with Y so that a large or
small value of X tends, say, to give
respectively a large or small value of Y,
Then if in one simulation run we obtain a
larger than expected value of X, we try to
compensate, not, as in control variates, by
adjusting the estimate, but by ensuring that
X in a second or agntithetic run is smaller
than expected. The procedure is thus to make
runs in pairs in which the shadow responses

6.
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X, X! of the two runs are negatively
correlated; this in turn will induce a
negative correlation between the responses Y
and Y'. The average

Y = L(Y+Y7) (3.31)

which estimates 6 will then have variance

Var(¥) = %(1+o) Var(y) (3.32)
where p is the correlation between Y and Y'.
If p is negative, then Var(¥) will be less
than if we had just made two independent runs
(when p=0). :

The pairs of antithetic runs are obtained
as follows. Firstly, a palr of antithetic
shadow responses is generated. A convenient
method is to use the inverse transform method.
If . ;

X = Fg~H(U) (3.33)
where Fy is the cdf of X and U is a uniform
U(0,1) variable, then U’/ = 1-U is also U(0,1)
and is negatively correlated with U. Thus

X! = FX—I(U') (3.34)

is negatively correlated with X. The variates
X and X' are then used in separate runs to
obtain the antithetic response pair ¥ and Y'.

As in stratified sampling, condition C3
is needed to be able to generate an appropriate
stochastic input stream from X in order to
make the simulation. The comments made in the
discussion of stratification in connection
with this form of conditional sampling apply
here also. Some applications of this form of
sampling are given by Cheng (1983, 84).

Example. If‘antithetic sampling is used for
X only, then (3.33) and (3.34) reduce to:
1 if O <U<.3 1 1if .7 <U< 1
X =412 1f .3 <U<.75 X! = 12 if .25<U<.7
3 if .75<U< 1 3 if O <U<.25

A direct calculation then shows that the
correlation between Y and Y’ is p = -0.3868,
so that (3.32) gives

var(¥) = % x 0.3677 .
Comments. The formula (2.6) can be used to

give some idea of when the antithetic variate
technique is likely to be successful. We have

cov(Y,¥’) = E[cov(¥,¥'|X,x")]

+ cov[E(Y|X,X"), E(X'{X,x")]

0+ cov[E(Y|X), E(Y|x")] (3.35)

Now X’ decreases if X increases, so that a
sufficient condition for cov(Y,Y¥') to be
negative is if E(Y|X) is monotone in X. If
however the behaviour of E(Y|X) is quadratic
in X (first decreasing and then increasing as
X increases) then cov(Y,Y¥'}) might easily be
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positive and the antithetic method be counter-
productive.

In this connexion, the traditional
approach to antithetic variates is to make
the entire input seguence of the second run
antithetic to the first, i.e. if Uy, Ugr o
is the sequence used in the first run then
i-Uy, 1-Up, ... is the sequence used in the
second. From the above, we see this is a
reasonable procedure if (i) Y is monotone in
each U; and (ii) the objective is solely to
estimate E(Y). For example, if Y is an
average queue length and each U; is used with
the inverse distribution method to generate
either a service time or an inter—arrival
time then the first condition is likely to be
met. If however Var(Y) is of interest as well
as E(Y), then this can be regarded as the
situation where the response is Z = (Y-E(Y))2
and its mean E(Z) is to be estimated.
Equation (3.35) then indicates that the anti-
thetic technique applied to X will likely
yield a positive correlation between Z and %'
and so be counterproductive.

The technique of antithetic variates can
be thought of as a special case of systematic
samoling schemes where the uniform input
streams of several runs are correlated.

Fishman and Huang (1983) give details of such
methods. In their limiting form, as the number
of correlated runs becomes large, these methods
become not dissimilar to stratification.

3.7 Common Random Numbers (CRN)

This is the most commonly used and
perhaps the most successful VR method. It is
used to compare two similar systems. As far
as 1s possible the two systems are subjected
to the same simulation conditions, so that
any difference between the two responses Y
and Y’ can be ascribed to systematic
differences rather than differences between
random errors used in the two simulation runs.
In other words we try to induce (in contrast
to antithetic variates) a positive correlation
between Y and Y’ so that for their difference:

var(y-y’) =

Var(Y) + var(Y') - 2cov(Y,¥Y')

(3.36)

will be less than if two independent runs had
been made.

This positive correlation can be induced
via a shadow response in a manner akin to the
antithetic variates method. Suppose that a
shadow response has distribution F; and Fp in
the two systems. Then we use the inverse
distribution transform method with the same
random number, U, to generate the shadow
responses X, X' used in the two runs:

X = (3.37)

Fl-l(u) , X' = Fz”l(U)

This gives

cov({Y,¥Y") E(cov(Y,Y'|X,X"))

+ cov(E(Y|X), E(Y'|X"))
O + cov(E(Y|X), E(Y'[xX"))
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This shows that providing E(Y|X) and E(Y'|X')
remain in step in terms of monotonicity
relative to U (i.e. one is increasing or
decreasing when the other is respectively
increasing or decreasing) then cov(Y,Y') will
be positive.

Notice that this is a less stringent
condition, particularly when similar systems
are being compared, than that discussed for
the antithetic variates method, so that CRN
is often much more likely to be successful.

A convenient way to view CRN is to think
of the random number U used to generate X and
X' as being itself the shadow variable, and
because the above weak monotonicity condition
is often satisfied by all the variates Uy,

Uy, ... of the input sequence, we can then
apply the method simply by using, as far as is
possible, the same input sequence for both

runs. This is the way the method is usually
described.
Example. Suppose that the assignment

probabilities are modified (in a way which
need not concern us) so that the resulting
joint distribution of ¥ and X is as given in
Table 2, and we wish to estimate the change
in the average number of personnel assigned

" each day. Let Y’ be the number assigned
daily in the new arrangement. Then
Var(Y-Y') .5996 + .5256 1.1252 if ¥ and Y'
are obtained independently. If we apply CRN
to the generation of X as in (3.37) then
cov(E(Y[|X), EB(Y’|X')) .2486 which reduces
the variance to:

Var{y-y") 1.1252 - 0.4972 0.6280
Table 2. Modified joint distribution of
daily number of men available (X) and

assigned (Y)

X
1 2 3
2 .0 .11 .22
Y 1 .18 .25 .03
0 .12 .09 .0
4. DISCUSSION

We have not given much details of the
minutiae often required for the application
of VR methods in practical cases but instead
have concentrated on describing the motiva-
tion behind the methods. Moreover our
emphasis has been on VR in discrete-event
simulations.

There is another broad area where Monte
Carlo simulations are used, namely
distribution sampling experiments, and our
discussion covers this situation as well.
Typically we are interested in properties of
a statistic calculated from a random sample.
For instance what is the bias of a certain
estimator of a certain parameter from such-
and-such a distribution? Here the statistic

67

is the response and the input sequence
comprises the uniforms used to generate the
random sample.

In either type of simulation the choice
of a good shadow response is often crucial if
worthwhile VR is to be achieved. Xleijnen
(1974) reviews some useful types; see also
Cheng and Feast (1980) and Wilson and
Pritsker (1984).

It will be evident from the description
that care is often required to apply VR
methods effectively. We have tried to show
the relationship between the different VR
methods and to show when they may be expected
to be successful. A description of VR using
a unified framework is invaluable for this
and the work of Nelson and Schmeiser (1985)
seems particularly interesting in this regard.
One simple consequence is that it more clearly
shows when VR methods can be used in
combination and when they cannot. For example
use of conditional Monte Carlo and stratifi-
cation is a particularly effective combination.
Use of AV and CRN is an intriguing case; Law
and Kelton (1982) point to the problems
involved and Schruben and Margolin (1978)
give a particularly interesting account in
the context of design of experiments.

Finally, it should be noted that the VR
nmethods described here by no means exhaust
the list. However those discussed should at
least provide a base from which other more
sophisticated or elaborate methods can be
studied.
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