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ABSTRACT

Computer models for various applications are closely
scrubinized both from the standpoint of questioning the
correctness of the underlying mathematical model with
respect to the process it is attempting to model, and from
the standpoint of verifying that the computer model
correctly implements the underlying mathematical model.
A process that receives less scrutiny, but is none the less
of equal importance, concerns the individual and joint
modeling of the inputs. This modeling effort clearly has a
great impact on the credibility of results obtained from
simulation studies. Model characteristics are reviewed
that have a direct bearing on the model input process and
reasons are given for using probabilistic based modeling
with the inputs. Discussions are presented on how to
model distributions for individual inputs and how to model
multivariate input structures when dependence and other
constraints may be present.

1. INTRODUCTION

The selection of appropriate models to represent the
inputs utilized in simulation studies with complex com-
puter models usually receives far less attention to detail
than does the actual construction of the computer model
itself. This is usually related to the fact that the modeler
has spent a great deal of time and effort in developing the
underlying mathematical modél and in verifying the com-
puter model that implements the mathematical model.
Once developed and tested, it is then a simple matter to
run the computer model. This latter viewpoint is reason-
ably correct if the analyst’s objective is to perform a first
cut screening analysis on the inputs to the computer
model. However, if the analyst has objectives that are
more statistical in nature, such as estimating quantiles, or
the mean and variance of the computer model output vari-
able, careful attention must be paid to modeling the mul-
tivariate structure of the input with respect to the
appropriateness and validity of distribution assumptions
and the degree of dependence that may be required among
the inputs.

In this paper the characteristics of computer models
are briefly reviewed with respect to their implications on
the method of modeling the inputs. Reasons are presented
for using probability distributions to model the inputs.
This is followed by a discussion of how to model
distributions for individual inputs. The paper concludes
with a discussion of the importance of correctly modeling
the multivariate structure of the inputs.
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2. CHARACTERISTICS
MODELS

Computer models are used in almost every setting
imaginable. These settings range from quite simplistic to
extremely complex, such as probabilistic risk assessments
on nuclear power generating stations. There are several
important computer model characteristics that have a
direct bearing on the model input process:

1. The computer model
(perhaps hundreds).

2. The computer model output may exhibit discontinui-
ties with respect to some of its inputs.

or COMPUTER

may require many inputs

3. The computer model inputs may not behave indepen-
dently of one another. '

4. The computer model predictions may be nonlinear,
multivariate, time-dependent functions of the inputs.

5. The relative importance of the individual inputs may
be a function of time.

The analyst needs to keep these characteristics
clearly in mind when adopting 2 method for modeling the
inputs. Monte Carlo based modeling techniques have a lot
to offer the analyst with respect to these computer model
characteristics. A discussion of the value of using Monte
Carlo based modeling techniques is now given.

3. WHY USE PROBABILISTIC BASED MODEL-
ING OF INPUTS

It is not uncommon for an analyst to run a computer
model with all values fixed except for one input whose
value is varied at high and low values or some variation
thereof. Such ‘“‘one-at-a-time” approaches do not provide
an efficient way to perform a screening analysis, provide
only conditional information, and may be prohibitively
expensive. It is highly unlikely that discontinuities in the
output would be detected with a ‘“‘one-at-a-time”
approach. As long as pairs of inputs are physically rea-
sonable (such as temperature and relative humidity not
being set independent of one another) the “one- at-a-time”
approach can be used with dependent inputs. The detec-
tion of nonlinear relationships between inputs and outputs
can be difficult without utilizing the entire range of each
input. Since the “one-at-a-time" approach yields a condi-
tional analysis it would be difficult to argue that any rela-
tive importance ranking of the inputs is meaningful.

An alternative to the “one-at-a-time” approach is to
model the inputs in a Monte Carlo fashion, that is, associ-
ating a probability distribution with each of the inputs.
There are several reasons for preferring Monte Carlo
modeling.
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1. If properly done, Monte Carlo modeling can be
designed to avoid the pitfalls mentioned above.

2. The Monte Carlo approach varies all inputs simul-
taneously, thoroughly explores the input space, and
can be made very efficient.

If the probability distributions assigned to the inputs
are meaningful then statistical estimates of output
quantiles, means and variances can be made.

4. HOW DO YOU DETERMINE MODELING DIS-
TRIBUTIONS

Information available on inputs varies from one com-
puter modeling situation to the next. The following
categories characterize many types of information with
regard to modeling input:

1. The modeling information consists only of a range of
values such as the interval {a,b] for a particular input
without any associated probability distribution
assigned to the interval.

The modeling information consists of a probability
distribution over an interval where the probability
distribution is either known or is possibly based on
expert opinion.

3. The modeling information consists of empirical data
without a fitted probability distribution.

4. The modeling information consists of empirical data
to which a probability distribution is fit using max-
imum likelihood procedures and tested with
goodness-of-fit techniques.

5. The modeling information consists of a prior probabil-
ity distribution which is updated with empirical data
utilizing Bayesian techniques. Each of these types of
information will now be discussed in detail.

Range of the input is given. If only a range of values is
available for a particular input, say the interval [a,b],
then it may be convenient to use a uniform distribution to
model the input. In many cases a simple uniform distribu-
tion will suffice; however, if the range covers several orders
of magnitude, a loguniform distribution (uniform on the
interval [log 2, log b]) can be quite useful. Uniform distri-
butions produce equally likely sampling of the entire range
of the input (either on a linear or log scale) and provide
insight into the relationship between the input (X) and the
output (Y) when graphed in a scatterplot of X versus Y.
Their use also provides a convenient method for generat-
ing random test problems for a computer model. Clearly
it would be inappropriate to subject the computer model
output to probabilistic interpretation when modeling the
input with uniform distributions merely as a tool to facili-
tate the sampling. Helton and Iman (1082) provide an
application of using uniform and loguniform distributions
to model input.

A probability distribution is given for the input. In
many computer modeling situations the input is modeled
by probability distributions (which could include uniform
and loguniform). These distributions may be attributable
to some mathematical derivation, may be based on histori-
cal information, or may result from subjective opinion.
‘When a probability distribution is given, it is only neces-
sary to find the inverse of the distribution function of the
input based on a uniform random number generated in
some manner with respect to the interval [0,1].
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The analyst should take care with respect to the
source of the probability distribution when interpreting
the results. That is, while modeling distributions derived
from mathematical results or historical data can be sub-
jected to probabilistic interpretation, results based on
modeling distributions arising from use of expert opinion
should be regarded as conditional on the specified distribu-
tions. Iman and Helton (1985) provide several examples of
modeling input with probability distributions.

Use of empirical data. When empirical data are avail-
able the analyst has two choices. One is to construct an
empirical distribution function (e.d.f.) from the data and
use this as a model for the input. The e.d.f. looks like a
stairstep function as it proceeds from left to right, having
a value of O to the left of the smallest data observation
and a value of 1 to the right of the largest data
observation. In between, the cumulative step heights will
start at 1/n at the smallest data observation and increase
to 2/n, 8/n, and so on to n/n = 1 as additional sample
observations are encountered from left to right along the
horizontal axis. Samples are obtained from this empirical
function in exactly the same manner as they are with a
mathematically defined cumulative distribution function.
That is, the inverse of the e.d.f. is found based on a uni-
form random number generated in some manner with
respect to the interval [0,1]. This approach has the
advantage of not introducing additional uncertainty into
the analysis by assuming a probability model for the input
that may provide a less than adequate representation of
the data. Cranwell et al. (1982) provide an example with
the input modeled empirically.

The second choice the analyst has is to use statistical
techniques to fit a probability distribution to the data and
then sample from the cumulative distribution function in
the usual manner. That approach will now be discussed.

Fitting o distribution to the empirical dats. The
analyst is frequently confronted with fitting a probability
distribution to the data from among many different distri-
butions that may be tried for a given set of data. A good
starting point is to graph the data as either an e.d.f or as
a histogram in order to get some feel for the shape of the
distribution with respect to symmetry, degree of skewness,
or long tails. The standard procedure is to use maximum
likelihood techniques to estimate the parameters of the
desired distribution and then to use some goodness-of-fit
technique to test the adequacy of the fit. For example,
Iman (1982) provides graphical methods based on a plot of
the e.d.f. for testing the adequacy of fits for normal, log-
normal and exponential distributions. If a distribution
function has been completely specified without making any
parameter estimates from the data, the Kolmogorov
goodness-of-fit test can be used to test the adequacy of fit
for any distribution. Complete details of the Kolmogorov
test are given in Conover (1980), as are references to other
goodness-of-fit techniques. Once the distribution is fit the
sampling takes place in the manner described previously.

Bayesian updating. If a particular input has been pre-
viously modeled by some probability distribution (that is,
a prior distribution) and some new data become available,
the new data can be used to produce a posterior distribu-
tion for modeling the input by incorporating Bayesian
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techniques to update the prior distribution. For example,
suppose a particular failure rate has previously been
modeled by a lognormal distribution and some new data
are made available consisting of x failures recorded in n
demands. The new data could be modeled by a binomial
distribution and used to update the prior distribution.
The input values for the computer model are obtained
from the cumulative distribution function of the posterior
distribution. The posterior distribution may or may not
be some well recognized distribution and may require
numerical integration and iteration to produce the needed
inverse values for the inputs. Hora and Iman (1986)
present a tutorial on Bayesian updating with application
to system unavailability.

5. MODELING DEPENDENCE AND OTHER
CONSTRAINTS AMONG THE INPUTS

Many times the inputs are not independent of one
another, and yet are not functionally related. For exam-
ple, temperature and relative humidity could represent
two inputs to a computer model. It is known that the two
quantities do not behave independent of one another, but
they do not necessarily behave as a functional relation-
ship. It would be a mistake to treat two such inputs as
independent of one another, as any output generated
under such an assumption would be meaningless. Gen-
erally, dependence is quantified in terms of a correlation
coefficient. Correlation works fine if the affected inputs
both have been modeled with normal distributions. Other-
wise, the correlation coeficient quickly loses meaning. A
quantification technique that can be used to model all
types of distributions, including normal distributions, is
the rank correlation coefficient. The rank correlation
coefficient is merely the simple correlation coefficient com-
puted on the ranks of the data (see Iman and Conover,
1983).

Iman and Conover (1982) have provided a distribution
free technique for pairing observations in a multivariate
structure based on vank correlations. This technique is
easy to use, preserves the integrity of the sampling scheme
(perhaps simple Monte Carlo, or stratified Monte Carlo
such as Latin Hypercube sampling as given in McKay,
Conover and Beckman, 1979), and preserves the marginal
modeling distributions of the individual inputs. This pro-
cedure has been incorporated into a computer program for
producing Monte Carlo samples by Iman and Shorten-
carier (1985). This program will produce simple random
samples, simple Latin hypercube samples, random samples
with restricted pairing, and Latin hypercube samples with
restricted pairing.

The restricted pairing can be used either to induce
desired rank correlations among the inputs or to reduce
spurious rank correlations among the inputs that occur in
simple Monte Carlo with random pairing. To demonstrate
the impact of the restricted pairing technique with
independent inputs, consider the following illustration. A
sample of size 20 was generated for 10 independent inputs.
The magnitude of the correlation coefficient was observed
for each of the 45 possible pairs of inputs. This process
was repeated with restricted pairing. The results are sum-
marized in Table 1.
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Table 1.8ummary of the magnitudes of the correlations
among the 45 possible pairs of correlations for random
pairing and restricted pairing.

Absolute Value Random pairing  Restricted pairing
of correlation Number of pairs Number of pairs

.00 to .05 11 37
.05 to .10 10 8

.10 to .15 9
.15 to .20 1
.20 to .25 9
.25 t0 .30 2
.30 to .35 1
.35 to .40 1
40 to .45 1
45 45

Table 1 makes it clear that spurious correlations can
be eliminated from the multivariate sample structure by
using restricted pairing whenever desired. On the other
hand if the analyst desires to induce correlation among
one or more pairs of variables, the restricted pairing tech-
nique can be used to accomplish this objective also. Iman
and Davenport (1982) provide scatterplots of inputs aris-
ing from various distributions that have been subjected to
varying degrees of rank correlation. Helton et al. (1986)
provide an application of input modeling with correlated
input.

There may also occur situations in which the analyst
must impose restrictions among a pair of variables which

" cannot be accomplished through inducing a correlation.

For example, suppose it is required for X to be less than
or equal to Xj and that X; is uniform on the interval [a,b]
and Xj is uniform on the interval [c,d] with the require-
ment that 2 > ¢ and b > d. In the rectangular region
defined from a to b on the horizontal axis and from ¢ to d
on the vertical axis, the only pairs of points allowed are
those that are either on or above the line X; = X If both
Xj and X are generated in the usual manner and all pairs
(X, X;) are transformed to pairs (X, Xj*) where

X = (X~ e)ld=X)/(d—c)+X;

then X; will be less than or equal to Xj*. Under this
transformation X; will remain uniform on the interval [a,b)
[a,b] but Xj* will be uniform on the interval [X;,d], that is,
the distribution of X; becomes conditional on the value of
X;. Moreover, the conditional distribution creates a corre-
lation between X; and X,-*. Examples of this type of
modeling can be found in Iman and Helton (1985).

8. CONCLUSIONS

The correct modeling of inputs to computer models is
a task that deserves careful attention, but frequently
receives only superficial treatment. This paper has indi-
cated how different sources of information can be incor-
porated into the modeling of the individual inputs. The
modeling of the multivariate structure usually receives
even less attention than the modeling of the individual
inputs. This paper has presented a brief discussion of how
to model multivariate input and provided references for
the interested analyst.
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