Proceedings of the 1985 Winter Simulation Conference
D. Gantz, G. Blais, S. Solomon {(eds.)

A SIMULATION MODEL QOF THE FAA'S FLIGHT SERVICE AUTOMATION SYSTEM

C. R. Spooner

A.

R.

Acampora
Regner

The MITRE Corporation
1820, Dolley Madison Boulevard
Mclean, VA, 22102

ABSTRACT

The Flight Service Stations of the Federal Aviation
Administration are in process of being automated. To
study performance, a simulation model has been built.
To date, the model has been tentatively calibrated
against the first version of the real system, and used
to predict performance in a number of situations. The
paper outlines the system being modeled, describes the
model itself, and discusses some of the issues
encountered during modeling. It then describes the
calibration of the model, and the experience gained so
far in its use. Future plans are outlined.

1. INTRODUCTION

The Flight Service Stations of the Federal Aviation
Administration provide briefings to pilots, mostly
over the telephone. Each call is answered by a flight
service "specialist", who briefs the pilot on the
weather for his proposed route of flight and then,
depending on the intended flight discipline (visual or
instrument flight rules), either records the flight
plan lest a search and rescue become necessary, or
forwards it to the en-route Air Traffic Control
system.

Support to the specialist is currently being automated
with what is termed the "Flight Service Automation
System". A first version (officially entitled "Model
1" *) has been delivered; and operational site
commissioning is due to begin in December of this
year.

Because response times from the automated system had
been a concern from the start, a simulation model was
built of the hardware configuration and the proposed
software design. This paper describes that modeling
effort.

The simulation capability used for the modeling effort
is based on a previous package developed at MITRE. It
takes as input a model of the system being simulated
and a specification for the load that is to be
applied. Using this data, it performs a discrete-
event simulation, then outputs statistics pertaining
to resource utilization and response times. The
system runs on a VAX 11/780 under the VMS operating
system.

2. THE AUTOMATED SYSTEM

This section outlines the configuration for the

* Note that the word "model" is used in two different
senses throughout this paper.

automated flight service system, identifying features
which are of interest for performance modeling.

Figure 1 shows the overall configuration. Its general
size and complexity is indicated by the fact that
application software for model 1 alone exceeds 380,000
lines of source statements.

Computing capability will be concentrated in Flight
Service Data Processing Systems -- FSDPSs for short.
In model 1 there will be 13 FSDPSs, while in later
models there will be 20 to serve all of the
continental United States. Communication lines
connect the FSDPSs to each other, to neighboring air-
traffic control centers, and to central sources of
weather. The weather sources will be the National
Weather Service in model 1, and an FAA facility (a
proposed Aviation Weather Processor) plus live radar
data in later models.

central weather
data base en-route system

FSDPS FSDPS FSDPS

FEN AN

A

AFSS

/TN

/TN

specialists at

S\\§] L terminals
%* pilot being briefed

FSDPS = Flight Service Data Processing System

AFSS = Automated Flight Service Station

Figure 1: Overall View of Flight Service Automation

465




C.R. Spooner, A. Acampora, R. Regner

Each FSDPS will remotely service a number of Automated
Flight Service Stations (AFSSs for short) =-- up to 6
each in model 1, up to 11 each in later models. Each
AFSS'will locally service a number of specialist
terminals -~ up to 35 each in model 1, up to 48 each
in later models.

In model 1 the specialist's interaction with the
automated system is alphanumeric only, and consists
almost entirely of requests from the specialist
followed by responses from the system. Much of the
input is typed into skeleton formats placed on the
screen in response to previous requests. Apart from
these skeleton formats, the principal responses from
the system are weather briefings and flight plan
information.

The AFSS computing power is used mainly for
multiplexing, store-and-forward and low-level terminal
driving. There is, however, enough storage to hold
several screen images per terminal. All specialist
input is forwarded to the FSDPS for decoding and
servicing. The FSDPS holds a national weather data
base, plus a flight-plan data base for flights of
local concern.

Figure 2 depicts the subject of the model, namely a
single model-1 FSDPS and its AFSSs. It shows the
hardware which is of interest for performance
modeling. The specifications call for fail-safe
operation, which implies redundancy and dynamic
reconfiguration. The modeling, however, concentrates
on stable states (both normal and fail-safe).

Each AFSS has a number of DEC LSI 11/23 processors.
Two of the 11/23s are "communication processors".
They handle communication with the FSDPS, and each has
a disk for storing the screen images. The remainder
are "terminal processors", with up to 8 terminals
apiece in normal operation. The FSDPS consists of a
3-CPU Tandem Non-Stop-II system. Each CPU has two
disks, but only one is modeled (the other being for

back-up).
3

disk

one FSDPS
(several CPUs)

CPU

CPU
{1
communication
lines
, LI
cp CP|—==f CP CcP
several 4 I l I
AFSSs PP PP [F===1 PP PP
terminals terminals
\ J
one AFSS
CP = communications processor

PP

]

position processor

Flgure 2: The Subject of Modeling

466

3.1.1 Resources.

Connections between AFSS and FSDPS are of interest to
performance. Each communication processor in an AFSS
is connected to one CPU in the FSDPS, while each CPU
in the FSDPS can be connected to several communication
processors. On a CPU failure in the FSDPS, affected
traffic is automatically redirected to a back-up CPU
-~ through the alternate communication processor in
each AFSS, and hence over altermate lines. Other than
that, the connections are permanent. Clearly the
communication lines have to be configured to take into
account various possible failure situations.

Software on both types of computer is organized as
permanent processes (in other words, as a fixed number
of processes). In the AFSS, a process serves one
transaction at a time, in the main, to completion.
the FSDPS, the system provides each process with a
data area. Application-level routines are available
to partition the data area so that the process can
serve multiple transactions; but only up to a fixed
maximum. Such a process is said to have multiple
"threads".

In

One further point is of interest to modeling. The
contractor opted against dynamic load balancing.
Instead, most of the processing of a transaction is
performed in the CPU to which the communication line
is attached. Moreover, much of the processing that is
independent of a particular specialist terminal is
performed on dedicated CPUs -~ for example, flight
data base update. Here again there is scope for
optimizing, this time in the assigning of software to
CPUs.

3. THE MODEL

3.1 Contents of the Model

An overview of the model is given first, to convey an
idea of the level of detail that is modeled.
Essentially, the model contains three descriptions. It
describes:

1) the resources in the configuration being modeled

2) the load, or traffic, that is to be directed at
that configuration. The traffic is composed of
transactions which are referred to in the flight
service context as "messages”

3) the paths, from resource to resource, along which
the individual messages are to travel.

Hardware resources that are modeled
are essentially those that were identified in the
previous section {see figure 2), namely:

in the FSDPS: 3 GPUs
3 disks
communication lines: 12 from AFSS to FSDPS

12 from FSDPS to AFSS

in each of 6 AFSSs: 2 communication processors
2 disks
from 2 to 6 position processors
up to 35 terminals

Apart from the configuration of the communication
lines, the important hardware variables are the
numbers of each type of element. Those given here (3
CPUs, 6 AFSSs, etc) are for a typical simulation run.

The throughput capacity of the actual terminals is not




A Simulation Model of the FAA's Flight Service Automation System

an item of interest. The reason why they are modeled
as resources is explained later. temory is not
modeled; nor are communication lines other than to the
AF8Ss. Both were assumed to be adequate and hence not
modeled.

Since the software processes can only service limited
numbers of messages at a time, it is appropriate to
model them as resources -~ in the multi-threaded case
as multi-server resources. In each AFSS processor, 6
processes apiece were modeled. In the FSDPS, the
operating system was modeled with 1 process per disk,
and 1 process per communication line; and the
application was modeled with 6 single processes, and 8
which were repeated in each CPU,

To model interrupts would take the modeling to a finer
level of detail, timewise, than was desired.

Therefore the individual CPU requests were increased
by a constant ratio to account for mid-execution
interruptions -- with appropriate adjustments to the
utilization statistics.

Figure 3 shows an edited extract from the model,
showing the declaration of various resources. Text in
quotes is comment, and has been added to explain
material that may not otherwise be self-evident.

3.1.2 Load. The modeling package recognizes message
types; and it recognizes "conversations", which are
sequences of messages and responses on a particular
topic between specialist and computer. For example, a
weather briefing on behalf of an individual pilot
represents such a conversation. The model describes
both the message types, and the allowable sequences
for conversations. The modeling package injects
instances of each type of conversation into the
simnlation, at frequencies specified in the model; and
as each message in a sequence completes, it injects
the next message.

The modeling package also recognizes two classes of
conversation: essentially a stable background load,
plus a foreground load that can easily be altered from
run to run. Conversations in the stable part have
their inter-arrival times specified individually in
the model (as constants, or as variable expressions
which can include random functions). Conversations in
the adjustable part of the load are specified as prop-
ortions of the total adjustable load. The proportions
are stated in the model; the total is input as a
parameter to each simulation run. From the parameter
a mean frequency is derived for each message type; the
mean is in turn used for generating the random
distribution of arrival times for that message type.

The flight service model uses the adjustable part for
the load from the AFSSs, and the stable part for the
background of weather updates from the central weather
source. This has made it easy to model the effect of
increasing work loads in the flight service stationms,
while the background remains constant. The load from
the AFSSs is modeled with 12 types of conversation,
comprising 19 message types. The load from the
central weather source is modeled as 7 types of
degenerate conversation (that is, conversations
containing a single message and no response).

An interesting problem arises when the system is
overloaded. In real life, the throughput of a system
is governed both by internal factors (the availability
of resources) and by external factors (the number of
terminals and the speed of their operators). The
external factors place an upper limit on what the
internal resources must handle: after a certain

467

constants #0fCommunicationLines = 12
#O£CPUs = 3

resources CPU (§#0fCPUs) EachServes 1

"meaning a set of CPUs, which will be
"referred to as 'CPU (1)', 'CPU (2)', etc

constants FirstCPU = CPU (1)
LastCPU = CPU (#0£CPUs)

resources disk (FirstCPU, LastCPU) EachServes 1

"meaning a set of disks, one corresponding
"to each CPU in the range FirstCPU to LastCPU

constants FirstDisk = disk (FirstCPU)
LastDisk = disk (LastCPU)

resources "these resources are software processes'
DiskProcess (FirstDisk, LastDisk) EachServes 50

Envoy (#0fCommunicationLines) EachServes 7

AFSIO (FirstCPU, LastCPU)

GDBED  serves 6

ApplicationBackgroundProcess (FirstCPU, LastCPU)
EachServes 1

EachServes 15

Figure 3: An edited extract from the model

point, overloads queue for terminals rather than for
internal resources. If we use a statistical algorithm
for generating the load, without any restraining
factor, then the load will have unrealistic temporary
peaks; and these peaks can affect internal performance
~= unrealistically. To model real life in this
respect, the terminals are treated as resources.
Conversations are generated statistically; but the
first thing a conversation does is to acquire a
terminal -- and during a peak in the load it queues
for the next available terminal (hence tending to
flatten out the peak, as in real life). While a
conversation holds a terminal, the speed of the real-
life operator is modeled by a forced delay between
each pair of successive messages. The delay is
achieved with a dummy “think-time" message type.

Two further problems may be of interest to other
modelers. Firstly, incoming calls to the flight
service stations automatically hunt for a free line.
That is, the telephone system selects a terminal from
a given set of terminals; if one is busy, then others
will be tried. This raises the question of how, in
the model, a terminal should be selected for each new
conversation. The question is important because on
the answer to it will depend which communication line,
which CPU in the FSDPS, etc, are to serve the nessages
in the conversation. The solution is to model the
terminals in sets, as multi-server resources
corresponding to the sets of terminals from which the
real telephone system makes its selections. The
conversation selects and requests a terminal set (this
is programmed in the model), then the modeling package
(emulating the telephone system) selects the
individual terminal within the set.

The second problem is more unusual, but may still be
of interest to modelers. In the simple case we wish
to select all terminals equally. To do this we make
the choice of terminal set random, but weighted by the
sizes of the sets. Sometimes, however, we do not want
equal loading. This may be a reflection of a real-




C.R. Spooner, A. Acampora, R. Regner

life situation, or it may be an artificial result of
some modeling requirement.

As an example of the latter, the performance
specifications call for a maximum AFSS (with a stated
load), a maximum total load, and a maximum number of
terminals. The three maxima are such that it is
impossible to observe all three in the same simulation
run, and at the same time to load the terminals
equally. If a maximum AFSS is to be modeled in the
same run as the maximum number of terminals, then the
terminals outside the maximum AFSS must be run at a
lower loading. Otherwise the maximum total load would
be exceeded.

To provide for unequal loading, we also arrange the
terminals in groups (each group being one or more
multi-server sets). Within a group, terminals are se-
lected equally, as described above; but each group is
allocated a proportion of the total load, and the ran-
dom choice of group is weighted by those proportions.

3.1.3 Message Paths. Each message type is associated
in the model with a message path, which is a
procedural description of the processing of messages
of that type.

While each message type has a unique top-level path,
much of the detail is delegated to common supporting
procedures *. An example of this is seen in figure 4,
which depicts an extract from the processing of one
message type. Shaded areas represent software proc-
esses. Figure 5 shows the equivalent text as presen-
ted to the modeling package; here again the comments
in quotes are for the benefit of the present reader.
(The prefixes "FR." and "M." are explained later).

3.2 Organization of the Model

When the material for a model has been collected, it
has to be organized as text which can be read by both
man and machine. Importance was attached to this step
because good structuring of the text can make a model
easier to get right, easier to understand, and easier
to adapt. In this section we discuss some of the
issues that were encountered in attempting to achieve
good organization.

3.2.1 Understandability. We have already observed
that the material of the model divides maturally into
three parts -- resources, load, and message paths.
This suggests strongly that for ease of understanding
it be structured into three separate areas -- and
presented top-down inside each area. In particular,
the separation of the external load from the internals

* At this level of description, we do not distinguish
between procedure calling and macro substitution.

"ok sk M

extract from top level procedure
StartInitialThreadIn (FR.AFSIO)

TransmitAFSSToFSDPS (M.CharactersIn)
UseCPU (.15)
HistoryRecord

call (FR.WXRIV)

UseCPU (.2)

DoTimes (3)
UseDiskForUnstructuredFile
EndDoTimes

ReturnTo (FR.AFSIOQ)

AFBAKCheckPoint
EndThread
" 4% typical supporting procedures *% Y
HistoryRecord = WithChance (.15)
UseDiskForUnstructuredFile

EndChance
EndOfSequence

TransmitAFSSToFSDPS (CharactersIn) =
... etc ...
call (FR.Envoy)
UseCPU (EnvoyOverhead)
ReturnTo (FR.AFSIO)
EndOfSequence

AFBAKCheckPoint = call (FR.AFBAK)
UseBackUpCPU (.03)
. etc ...

figure 5: A typical message path

of the system is healthy -- though not always easy to
accomplish.

While organization along these lines was attempted and
was in the main successful, it was frustrated by a
language deficiency imposed by the modeling package,
namely that words have to be defined before they are
used. Because of this restriction, material from each
topic has to be placed up-front, in the first sectiom;
and top-down reading within a section has to follow a
zig-zag path which is bewildering to the first-time
reader.

Nevertheless, in spite of these frustrations, it was
possible to order the material in a reasonably
intelligible way. The proof lies in the ease with
which new members of the modeling project found their
way around the model.

3.2.2 Adaptability. To achieve an adaptable model,
one has to identify those features which are likely to

CPU

[E;]

 J

111

"WXRTV

NN

History Recording-!)'

Figure 4:

P
“Check-Point

Message Paths——Excerpt from the Message Type "Area Forecast Request”

468




A Simulation Model of the FAA's Flight Service Automation System

be altered between simulation runs, and program into
the model the side effects of altering them. The
number of CPUs in the FSDPS is a case in point. To
change from three to two has ramifications throughout
the real system, and hence throughout the model.
However, the model is so organized that only the
constant called "#OfCPUs" has to be changed, plus a
small number of constants that define such things as
allocation of processes among CPUs. Support proced-
ures within the model, together with a cascade of
constants defined in terms of previous constants, take
care of the rest. Figure 3 offers a glimpse of this.

The extract in figure 5 illustrates another
adaptability issue., Instead of "call (FR.WXRTV)", one
could merely have used the resource-requesting
primitive "get". During the modeling, however, it was
not clear exactly what goes on in the real system when
a process is entered. Therefore it was important that
the model be easy to change in this respect. "Call”
is a support procedure in which one can model process-
acquisition centrally. The model abounds with
examples of this kind of deliberate centralization.

The question of selecting which resource to acquire
provides an example of both these issues. Many of the
resources exist in sets (several CPUs, several copies
of each process, etc); and for the individual message
the question arises: which member of each set should
it use? In the real system, the choices are all
"hardwired" once the terminal is identified; but this
is because real configurations are fixed -- whereas we
want the model to be easily adaptable from configur-
ation to configuration. In the model, therefore,
multiple resources are declared generically, as arrays
of resources.

This leaves it to the model to choose dynamically
which element of each array to use. Rather than have
it do so in a large number of places, the choice is .
made once for each conversation. To make the choice,
each conversation starts with a dummy message type,
whose message path takes it through a section of
support procedures whose sole purpose is to select
resources. In particular, all the complications
concerning terminal groups and terminal sets, etc, are
concentrated in this one section -~ so that changing
the configuration of terminals and communication lines
(which could so easily have been an exceedingly
complicated task) merely involves altering numbers in
a small table.

Having chosen its selection of resources, a
conversation must then carry this choice through all
the component messages. Likewise, there are message-
dependent values that have to be carried through the
duration of a message. This raises a language issue.
Textually scoped variables do not provide for this;
global variables and parameters are both clumsy ways
to do it. The solution is to have a type of variable
which is textually global, but is visible only to a
particular instance of a conversation or a message.
Thus "FR.WXRTV", in figure 5, means "the copy of WXRTV
for the current conversation”. The particular lexical
form is open to discussion; and there are other ways
to provide such variables. The important point is
that a neat solution to this language problem proved
invaluable to good organization.

3.2.3 Language. TLanguage and model were developed
concurrently. The original language had few of the
features usually found in programming languages. In
so far as time allowed, features were added as they
were found to be needed. The insight gained in the
process may be of interest to those involved in

469

designing or evaluating simulation languages.
Features which proved particularly helpful included:

1) treatment of resources as a data type, in
particular:

arrays of resources
arrays indexed by resources
constants of type "resource"

2) convenient constant definition, in particular:

cascades of constants defined
in terms of each other
tables of constants

3) message-dependent and conversation-dependent
variables (as discussed above)

4) the use of procedures to layer the material.

The two most serious points which could not be
corrected in the time available are common to many
programming languages. The first is a readability
issue. Without keyword parameters it is hard to make
the purpose of a parameter clear in the calling
statement. For example, the meaning of "UseCPU
(duration 10, priority 3)" is reasonably clear,
whereas the meaning of "UseCPU (10, 3)" is by no means
obvious to the uninitiated. The second weak point is
the define-before-use restriction, whose devastating
effect on structure we have already seen.

3.2.4 Discussion. Attempting to orgamize a model
could easily lead one into a vicious circle. To make
it intelligible, one layers the model in levels of
abstraction. To make it easily adaptable, one builds
extra logic into the supporting layers. These extra
layers add to the size and complexity; if the model is
to remain intelligible and easily adaptable, it will
then have to be further layered, with more supporting
logic; and so on.

The present project showed that this. vicious circle
can be broken -- by having a language in which
sufficient attention has been paid to readability and
organization. The model is some 5000 lines in length.
It could have been shorter, at the expense of being
less adaptable (ie with more of the decisions hard-
coded). Much of the length is indeed in the lower-
level supporting material; but it was possible to
organize that material in a manner which was
intelligible and which preserved the adaptability.
The evidence on understandability has been mentioned.
The evidence on adaptability will be presented in a
later section.

3.3 Calibrating the Model

Advance documentation about the real system was of
limited help for modeling. It suggested a general
shape for the model, that is, the sequence of
resource requests in each message path; but the
assoclated numbers (CPU times and loop-iteration
counts) were dubious. They were early estimates that,
as one expected, proved in due course to be
optimistic. Hence the model could not be useful for
monitoring the design of the software.

Once the first version of the real system was
available, however, it became possible (in theory) to
take measurements on it, and hence to calibrate the
model for studying subsequent problems. In practice,
some limited measurements were available from the



C.R. Spooner, A. Acampora, R. Regner

performance demonstration; and further measurements
are planned in the expectation that a system will be
available for measurement purposes.

Here we discuss calibration within the FSDPS, which is
the area of greatest 1nterest Figure 6 shows part of
a "calibration matrix" in which there is one column
for each process, and one row for each message type.
Each message type visits some but not all of the
processes. Corresponding to each process that it
visits is a cell in the table for which we need
numbers. Such cells are marked with a "?" in the
figure. The numbers that we need in that cell are CPU
times and disk-access counts.

The Tandem operating system provides a measuring
facility which will give these numbers. Unfortunately
it was not possible, at the performance demonstration,
to collect the statistics needed for modeling.
However, a subset was obtained. With these a partial
calibration was performed, in anticipation of a more
comprehensive calibration in the near future. The
simulation runs described in the next section were
obtained from the partially calibrated model.

The statistics from the performance demonstration came
in three categories. Corresponding to each row (ie to
each message type), there was a mean response time;
corresponding to each column (ie to each software
process), there was a total GPU time across all
relevent message types. These two sets of figures can
be thought of, in a broad sense, as "cross totals"
though their derivation from the individual numbers in
the row or column is anything but linear. Disk-access
counts were an even broader total -- by CPU.

The first task was to instrument the model to output
numbers corresponding to those measurements. Some
were already being output by the underlying modeling
package; the output of the remainder had to be progr-
ammed into the model. Then followed a series of sim-
ulation runs in which the numbers output by the model
were compared against the measured numbers, and the
calibration adjusted. After some 30 runs, the numbers
had converged (figure 7) to give close agreement (10%
for disk counts, CPU times and the overall mean of
response times; 30% for the worst-case message type).

A model that can be relied upon to give agreement as
close as this in all cases is usually considered very

good. For the flight service model, however,
processes| | | Response
message AFSIO|FLITE| etc Time
types  —~¢ | 1 (Seconds)
R t Fligh
prauest FLIght |, 1.68
light - =
Tacer Flig ? ? 2.42
Detailed WX T
Request ? ? o 1.98
Area Forecast ? 2.43
Request o _
[ etec. ] i l ' i
I I ! !
i i ! !
| N
% CPU used 40,75| 7.06
Figure 6: Calibration Matrix

470

4 sec

3 sec

2 sec 2

THTOL EFTEPPF TP @
& &
= measured message types
Figure 7: FSDPS Response Times

agreement was only proven in one case. Moreover,
there were grounds for uneasiness about the
calibration. In the exercise just described, an
infinite number of solutions could fit the avallable
data. While the "cross-totals" were in good agreement
with measurement, there was no hard data for the
component numbers in the individual cells. A large
amount of intuitive judgment filled the gap.

The proper solution is, of course, to obtain the
required measurements. Discussions for doing so are
currently underway. However, it was of interest in
several respects to test the partially calibrated
model. If the partially calibrated model predicted
well under a variety of circumstances, then prudent
use of it could be beneficial. There was no guarantee
as to when a full set of measurements would be
possible. If they are destined to be never available,
then we have a situation which is typical in the
modeling world -- predictions are needed before any
confirming real-life data is available. It is in the
light of these considerations, then, that the simulat-
ion runs described in the next section are presented.

4. USING THE MODEL

This section describes how the credibility of the
model was established, then discusses selected results
obtained by using thé model and the potential impact
of those results on the FSAS program. Finally,
observations concerning the model's ease of use are
given. Note that these simulation runs were done after
only a preliminary calibration had been completed (as
described in section 3 above). AFSS portions of the
model had not been calibrated at all.

4.1 Establishing Credibility

Establishing credibility in a simulation model
includes ensuring that its behaviour is reasonable
over a wide range of inputs. As with any other
computer program, 'bugs" may remain hidden beneath the
surface, waiting for events such as array out of
bounds, division by zero, etc. It is thus necessary to
stress the software not only to test modeling
assumptions, but also to uncover programming and logic
errors.

4.1.1 Varying The Input Load. The preliminary
calibration gave confidence at only one input
workload: 2.25 transactions per second (tx/sec). A
series of twenty experiments with loads ranging from
0.5 to 3.1 tx/sec were conducted. The results are
shown on figure 8. Note that these are weighted mean




A Simulation Model of the FAA's Flight Service Automation System

6 1
o Model

g 5
= ® DQT1
2
g 4
o
&
c 3
3
= *
S ..o P
; 1 _ . L ..

V]

1 2 3

Transactions per Second

Figure 8: End-To~End Response Times Versus Load

response times at the FSDPS. All runs were of such a
length that the total volume of specialist
transactions was approximately 8000 (this sample size
produced a standard deviation of 0.35 between
respective runs at the same load).

The model predicts, for example, that if a 3-CPU FSDPS
is subjected to a standard background load of weather
network message processing and an average rate of 2
tx/sec from all specialist terminals connected to that
FSDPS, then the average time for completing specialist
transactions would be 1.6 seconds.

The model also predicts a response time lower limit of
about 1.0 seconds. At the upper end of the range the
mean response time is around three seconds, but one
should not therefore conclude that all specialists
will experience a mean 3-second response time at 3.0
tx/sec. Indeed, data from the same set of runs
predicts widely varying response times for specialists
at CPU O compared to those connected to CPU 2. (Refer
to figure 9). Thus an acceptable overall mean can mask
quite unacceptable response from a particular CPU. In
the same way, a mean across a single CPU might mask
intolerable means for individual terminals on that CPU
-- so the model runs just quoted have to be seen as
only the first step. (In passing, we note a
specification issue which this raises: whether one
should specify a maximum for the overall mean response
time, or the mean response time which no terminal
taken by itself shall exceed).

6 1
u CPUO
e 5
E e CPU1 I
@
g€ 41— icru2
2 =
Q
[oid [ ]
5 3
D = =
2 ]
o
%’ 2 [ = oy O
o all e oo L4
= 1 ! :: ax 4 4
0
1 2 3

Transactions per Second

Figure 9: FSDPS CPU Response Times Versus Load

471

4.1.2 Varying the Configuration. The acceptance test
on which the partial calibration was based was in fact
the first of two such tests, performed in November
1984 and May 1985. They are referred to respectively
as DQT1 and DQT2 (DQT stands for "Design Qualification
Test"). Both the preliminary calibration and the runs
discussed here were conducted in the 6-month interim
between DQT1 and DQT2.

The runs described so far were based on the
configuration used for DQT1. A series of simulation
experiments then followed in which the configuration
itself was varied. The primary purpose of these runs
was to confirm that the model can be expected to
provide reasonable results over a wide range of
configurations. However, since the real-system
configuration was in a state of flux (the contractor
was meanwhile investigating alternative configurations
for DQT2) it was of interest to see how well the model
could suggest improvements. Clearly an opportunity
existed, in theory at least, in which third-party
simulationists could provide alternative system
configurations to the design engineers and vice versa.
While external constraints made such collaboration
impossible, the exercise of using the model in this
role was a valuable test of its potential usefulness.

An example of a performance improvement which was
uncovered independently by the contractor's engineers
on the test floor and by the simulation model was a
process location swap. A particular process, Service B
Transmit ($SVCBT), accounted for approximately 17% of
CPU 0's total processing power. (Service B is a
communication line to the other FSDPSs and En Route
Air Traffic Control Centers.) Figure 10 shows response
times when $SVCBT is relocated to CPUZ. Response times
for specialists at CPU 0 are reduced by over 30%,
while those for specialists connected to CPU 2 remain
reasonable.

This performance enhancement was based on optimizing
the use of existing hardware/software. It was also of
interest, however, to examine proposals for adding or
replacing hardware. Whereas it would have been a major
effort to experiment by upgrading the actual hardware,
it was a relatively simple matter to construct models
to simulate these alternatives.

For the real system the question had been raised as

to
whether to add a fourth TNSII CPU or to replace the
three TNSIIs with three TXPs, the latest Tandem CPU.
The versatility of the model was tested by applying it

to that question.

Figure 11(a) shows the effect of adding a fourth CPU
to the DQT1 baseline and moving eight terminals from
CPU2 to CPU3. This gave only a slight improvement in
response times, as compared to the DQT! baseline.
However, given a fourth CPU (GPU 3), swapping a line
on CPU3 with a line on CPUO reduces turnaround time
for specialists connected to GPUQ by a factor of two
(see figure 11(b)).

The model suggests, however, that replacing the TNSIIs
with TXPs will yield even better performance results.
Figure 12 shows a 40% further reduction in response
time for CPU O when compared to the load-balanced
4-TNSII CPU configuration. The relatively flat slope
of these curves indicates minimal utilization for all
three CPUs at these input workloads. This was Ffurther
verified by increasing the simulated TXP speed from
2.5 to 3.0 times that of TNSII: the reduction in
response times was insignificant.



C.R. Spooner, A. Acampora, R. Regner

CPUO B CPUD M cPUD M CPUO W i
cpuz O / cPuz O / cpuz O / cPuz2 O /
7 1 cpu1 o] | cPU1 O T} CPU1 O 1 CPU1 O
cPUs @ crus @
. - o) é‘bl n éﬁpl éfpl
& & o N

MEAN RESPONSE TIME {SECONDS)

8 o o ‘ o ACTUAL
| - a ° zj
g 2

Rl 8 a 5

®

«®

2 3 2 2 3 2 3

3
TRANSACTIONS PER SECOND
Figure 10: Performance Figure lla: Four FSDPS Figure 1lb: Four FSDPS Figure 12: TNSIIs Replaced
Enhancement By Process Swap CPUs With No Load Balancing CPUs With Load Balancing By TXPs

Along the way, the contractor obtained three TXPs on a These experiments likewise yielded results that

trial basis, and provided a datapoint to the FAA. The appeared reasonable, thereby increasing one's

circled point on figure 12 is an actual TXP confidence in the model.

measurement of the weighted mean response time for all

three CPUs. The close agreement between measurement Meanwhile, the contractor experimented with connecting

and model provides further evidence of the model's all AFSSs to two CPUs, reserving the third CPU for the

credibility over a range of configurations. periodic weather database updates and the transmitting
of flight plans. A new configuration baseline was

Other experiments for examining alternative submitted and approved by the FAA for DQT2. A simulat~-

configurations included: ion model was then constructed and three simulation
runs completed. The results shown on figure 13 show

o reducing the number of AFSS-FSDPS communication that response times for specialists connected to CPU 0
lines from 12 to 6. are much reduced when compared to the DQT1 arrange-

o reducing the number of AFSS-FSDPS communication ment (figure 9). However, simulation experiments with
lines from 12 to 3. (The number of AFSSs was also a failed communication line or an FSDPS CPU failure
reduced to 3 while maintaining the same number of (figures 14 and 15 respectively) predicted unaccept-
specialist terminals). able response times except at the lowest loads. These

o examining the effect of keeping a frequently used predictions were confirmed at the subsequent DQT.
FSDPS data structure (Flight Plan Mask) in main
memory instead of on disk. 4.1.3 Summary of Model Credibility. These "What

8 [

0 cPUO h o

s ® CPU
@» o
g / / o /
g4
o)
o Q)
£ éﬁp S S
w3 K & s
Z ) s>
e / "
i : 0
w
22 7 7 7
w n
g / ] / . /

[x] E
1 . el
0

1 2 3 2 3 2 . 3
TRANSAGCTIONS PER SECOND

Figure 13: DQT2 Configuration Figure 14: DQT2 Configuration Figure 15: DQT2 Configuration
With Comm. Line Failure With CPU2 Failed

472




A Simulation Model of the FAAs Flight Service Automation System

if...?" runs showed that variations in predicted
response times are 'reasonable", as the configuration
and/or load are varied -- that is, they follow curves
that are of a kind and shape that one would intuit-
ively expect. Moreover, at several points in this
load/configuration space, real data has become avail-
able, and has matched well with predictions. While
proper calibration on complete data is clearly still
very desirable, the partially calibrated model emerged
from the "What if...?" tests with considerable credit.

4.2 Practical Use Of The Model

In addition to the credibility-establishing
experiments discussed in the preceding paragraphs, the
model was used in a trial production mode to predict
response times for the actual fielded system.

Model 1 FSAS is planned to have 13 FSDPS installations
located throughout the continental U.S. Current plans
are for the DQT2 hardware and software arrangement to
be utilized, adapted as necessary for the number of
AFSSs and terminals. Eleven of the thirteen sites will
have three AFSSs, whereas the remaining two (Seattle
and Miami) will have two.

The FSAS loads used in this study were projections for
the year 1990 peak hour. These range from 1.05 tx/sec
at Seattle to 2.24 tx/sec at Washington. The rums
showed that all sites ,including the busiest
(Washington, D.C.), met performance requirements when
fully operational.

Experiments were then designed to investigate
performance in the fail-safe mode. CPU 2 was failed at
the following FSDPSs :

o the one with highest projected load (Washington,

D.C.)
o the one serving the AFSS with the most terminals
(Miami,Fl.)

Figure 16 shows the fail-safe mean response time
results for the above two sites at three loads apiece

(the 1990 peak hour load plus or minus 30%). Miami
8
I .
§7 e Wash
= 4 Miami
g
8.6
4
o
§5
@
=
B 4 o
%; .
K]
2 3 N
i *
2
1 2 3

Load

Figure 16: Fail-Safe End-To-End Response Times
For Miami And Washington

FSDPS is lightly loaded and has no fail-safe response
time problem; but Washington exhibited & significant
response time increase when in the fail-safe mode.
Experiments for other fail-safe configurations for
Miami and Washington were also conducted, predicting
end-to-end response times shown on figure 17. (In this
figure, the X-axis shows the average utilizations of
CPUs 0 and 1).

S
o

Weighted Mean Response Time

1 L
30 40 50 60 70 80 90 100
Utilization
Figure 17: Fail-Safe End-~To—End Response Times
As Function O0f CPU Utilization

The model was then used to investigate ways to improve
the Washington site's performance. Figure 18 shows
fail-safe response predictions when terminals on CPU 1
are gradually transferred to CPU 0 in an attempt to
achieve even utilizations in the two CPUs. The upper
curves show end-to-end response times for specialist
transactions, whereas the lower curves represent the
FSDPS's portion only. Figure 18a shows the unoptimized
fail-safe response times (a 113% increase over normal
operation). Moving 8 terminals from CPU 1 to CPU 0
(Fig 18b) gave an 8% improvement; moving only 4
terminals (Fig 18¢) decreased response times 15%.

The difference between the upper and lower curves in
figure 18(a,b,c) indicates queueing outside the period
recorded as "FSDPS response time"; and inspection of
Model output revealed excessive queueing for threads
in the process which handles AFSS communication. (This
process is in the FSDPS but for calibration reasons
the first part of its operation was excluded from the
FSDPS measured period.) By increasing the number of
available threads from 15 to 20, queueing decreased
significantly, as seen in figure 19, and end-to-end
fail-safe response time was reduced 21%.

4.3 Impact Of Model On FSAS Program

DQT2 was conducted in May 1985. The performance tests
at DQT2 showed that the FSAS equipment did meet the
full operation requirements but did not meet the spec-
ified response times while in fail~safe mode. This was
in agreement with the simulation model's predictions.

In regards to the six month interim betweem DQT1 and
DQT2, a much greater impact could have been achieved
had the simulation team been supplied with current-day
resource utilization updates (this would of necessity
have had to come from the design engineers).

What this series of runs demonstrated is how useful
the model could be if two-way communication is open
between designers and modelers. Instead of using the
actual system with many SYSGENS and physical recon-
figurations of cables and plugs, the simulation model
could have provided many of the same results to within
10% accuracy. Cost savings for the project could have
been realized had the simulation model been used to
determine what eventually became the DQT2 baseline.

4.4 Effort Required To Adapt Model

Preparing models for different configurations required
remarkably little effort. Figure 20 is a list of the
twenty-seven configurations used thus far. Each

473



C.R. Spooner, A, Acampora, R. Regner

' |

n ByCPU

O EndtoEnd / / /

AN

Mean Response Time (seconds)
© 2]
\
\-

[1] ] V4 7
] / / ] » // o
3 & / l. ! .
L™ // (//
1 ]
/] = - o L) [ ]
2
70 80 90 100 80 90 100 80 90 100 80 90 100

FSDPS Utilization (percent}

Figure 1Ba: Unoptimized

Figure 18b: Load balance I Figure 18c: Load Balance II Figure 19: Load Balance I

Washington Fail-Safe

(Move 8 Terminals To CPU 0) (Move 4 Terminals To GPU 0) With Increased # of AFSS

Response Times

configuration required a separate version of the
model. Column two shows the amount of elapsed time
used to modify the baseline model in assembling each
new configuration. The average number of locations
within the model that needed to be modified was 5.
Note that these are not "code-changes" in the normal
sense of altering program logic. They involve changes
to literals (usually the values of constants). A
hierarchy of system components exists, whereby an
addition/deletion of a higher order element will imply
an antomatic adjustment in the appropriate array sizes
for the lower order elements. It is this feature of

Elapsed Time

Configuration Name For Modifications

DQT1 with SVCBT moved to CPU 2 5
DQTL with 4 CPUs (no load bal) 20
DQT1l with 4 CPUs (swap commline 10,1) 6
TXP (2.5 times faster than TNSII) 15
TXP (3 times faster than TNSII) 5
DQTL (remove disk access for FP mask) 5

DQT1 with 6 commlines 10
DQT1I with 3 commlines 10
DQT2 Basilc Configuration 12
DQT2 with FP mask disk access removed 5
DQT2 with failed CPU2 45
DQT2 with failed COMMLine 5 10
CLEVELAND 5
INDIANAPOLIS 5
WASHINGTON 5
SALT LAKE CITY 5
HOUSTON 5
MIAMI 15
KANSAS CITY 5
CHICAGO 5
LOS ANGELES 5
NEW YORK 5
ATLANTA 5
SFATTLE 20
FORT WORTH 5

Figure 20:
Model's Ease-0f-Use

Communication Threads

the simulation support package which has allowed for a
relatively small amount of effort to examine many
alternative configurations.

It should be pointed out that these experiments were
carried out by team members who at the start had no
working experience with the model. That the model was
easily learned by the newcomers, and that its code
remained intact except for the "configuration
choices", are a testament both to the model
organization and the language it was written in.

5. FUTURE PLANS

Results from simulation runs to date are encouraging;
nevertheless they were obtained from a model which is
only partially calibrated. An important task will be
to obtain more measurements from the real system, and
so to place the calibration on firmer ground.

Clearly, with a system that is only just entering the
field and is earmarked for continunal evolution, there
is a wealth of opportunities for the model to be of
use. Possible applications include further
configuration planning, design monitoring on the
system enhancements that will be appearing in the
years ahead, and feasability studies on enhancements
that are still in the early planning stages.

6. SUMMARY

To study potential performance problems with the
Flight Service Automation System, a model of one hub
has been built. To date, only limited real-life
measurements have been available for calibrating the
model; so as yet the model is only partially calibr-
ated, with intuitive judgment substituting for missing
data. Nevertheless the partially calibrated model has
proved capable of giving encouragingly realistic pred-
ictions. Future plans include obtaining better data
for a more complete calibration, followed by the oper-
ational use of the model in a variety of situationms.

Acknowledgements. The work described here was
undertaken by the MITRE Corporation under contract to
the Federal Aviation Administration, whose permission
to publish is gratefully acknowledged.

474



A Simulation Model of the FAA's Flight Service Automation System

475

C. R. SPOONER was educated at Cambridge, England.
After working with ICT (later merged to become ICL),
he emigrated to the US in 1968, where he has worked
with Control Data Corporation and the MITRE
Corporation. He has published papers on Operating
System design, language design, and modeling and
simulation. He is a fellow of BCS, and a member of
ACM.

A. ACAMPORA Jr is a member of the technical staff at
the MITRE Corporation. He received an MS in Computer
Science from Stevens Institute of Technology in 1982.
His current research interests include the ADA
programming language, language design, real time
systems, and artificial intelligence. He is a member
of the ACM, IEEE Computer Society, and AAAI.

R. G. REGNER is a Member of the Technical Staff at the
MITRE Corporation. Prior to that he held staff
positions at Fairchild Industries and the Singer
Company's Link Flight Simulation Division, where his
primary contributions have been in the area of formal
systems and software test. Mr Regner holds
undergraduate degrees in Computer Science, General
Science/Philosophy and Chemistry, and is completing
requirements for an M.S. in Computer and Information
Sciences from Hood college. Research interests include
discrete-event simulation, experimental design and
analysis, and the automated testing of software. He is
a member of ACM SIGSIM, IEEE Computer Society, and
International Test and Evaluation Association.

The MITRE Corporation,

1820, Dolley Madison Boulevard,
Mclean, VA, 22102

(703) 883-6000



