Proceedings of the 1985 Winter Simulation Conference
D. Gantz, G. Blais, 5. Solomon (eds.)

THE IMPLEMENTATION OF THE HIERARCHICAL
ABSTRACT SIMULATOR ON THE HEP COMPUTER

Arturo I Concepeion
Department of Computer Science
Michigan State University
E. Lansing, MI 48824

A methodology is being developed to map the hierarchical abstract simulator onto dis-
tributed simulator architectures. The hierarchical abstract simulator is a multicom-
ponent, multilevel discrete event models communicating via message passing. This
paper reports on an alternative mapping realization of the hierarchical abstract simula-
tor by using DENELCOR’s FORTRAN 77, an extension of FORTRAN 77 for parallel
programming, on the Heterogeneous Element Processor (HEP) computer. Several runs
were made on the implementation and it was found out that there are three constraints
that affect the performance {(execution time) of the HEP implementation: number of pro-
cessors available, degree of synchronization and intercommunication, and workload.

1. Introduction

A distributed simulation methodology based on Discrete
Event Specification System, DEVS, [9] was introduced in
Concepcion [2] in which multicomponent discrete event
models may be simulated by employing multiprocessor archi-
tectures. The main thrust of that research is the mapping of
the hierarchical multicomponent models onto distributed
simulators so that correct and efficient simulation Iis
obtained. The advantages of such distributed simulators over
conventional sequential simulation are:

1. The mapping of a network of discrete event components
onto the network of processors can better preserve its
structure. In the best case, each processor might
represent 2 single model component. This enhances
comprehension of the simulator-model relationship, and
therefore also, simulation experimentation and model
exploration.

Advantage may be taken of intrinsic parallelism in the
operation of model components by having concurrent
execution by each processor of its component’s state
transitions.

The distributed simulation methodology consists of 5 layers
and 4 steps. The lowest layer is the real system to be simu-
lated. By means of the DEVS formalism, the real system is
specified as a distributed model. This produces the second
layer. From the specification of the distributed model, a
transformation is applied to obtain the hierarchical abstract
simulator. This third layer is the interpretation of the
dynamics specified by the DEVS formalism. The fourth
layer is reached by applying to the hierarchical abstract
simulator a schema for synchronization and intercommunica-
tion among components. This fourth layer is called the dis-
tributed simulator. Finally by a mapping process, the distri-
buted simulator is implemented on a hardware/software
architecture.

In Concepcion I_&2], a design of a distributed simulator was
proposed, thf’ ierarchical Multi-Bus Multiprocessor Archi-
tecture (HM"A). This design can be readily implemented
with ofi-the-shelf technology and directly reflects the abstract
simulator specification. The architecture is designed around a
primitive which is a cluster of processing elements communi-
cating via a local bus and each cluster communicates via
inter-cluster bus. Mapping the hierarchical abstract simulator
onto the proposed architecture was shown to be a straight
forward recursive manner [3].

428

This paper discusses the fourth step in the distributed simu-
lation methodology, mapping the hierarchical abstract simu-
lator onto a hardware/software architecture. This step serves
as a convenient starting point in studying a variety of

alternative physical simulator implementations. Also this
paper presents an alternative realization of the hierarchical
abstract simulator by using DENELCOR’s FORTRAN 77,
an extended FORTRAN for parallel programming, on the
Heterogeneous Element Processor (HEP) computer. Section 2
reviews the dynamics of the hierarchical abstract simulator
and its algorithms while in section 3, the translation of the
algorithms to DENELCOR's FORTRAN 77 is discussed. Sec-
tion 4 presents the performance (execution time) of the
implemented hierarchical abstract simulator on the HEP
computer. Finally, section 5 proposes future directions on
this work.

2. Hierarchical Abstract Simulator

The hierarchical abstract simulator is an intermediate state
in realizing the model on a physical implementation of the
distributed simulator. The hierarchical abstract simulator
consists of a network of coordinators where each controls a
set of subordinates. If a subordinate is also a coordinator,
then it too controls a set of subordinates, and so on. A
subordinate which is not a coordinator is called a simulator.
The algorithms for the hierarchical abstract simulator define
the procedure in computing the state of the DEVS com-
ponent, updating the simulation time and scheduling new
events.

Six types of messages were identified in [2] as sufficient for
current execution of DEVS models: (x,7), (*,7), (0,7), (¥,7),
done and t., respectively, these carry external event informa-
tion, interﬁral event notices, output information, processor
termination and next event information. In this paper, the
0,7) message is not included in the implementation. The
0,7) message is used to increase the degree of parallelism in
the hierarchical abstract simulator when several simulators
have output available from the last computation. These
messages are exchanged among the coordinators in the inte-
rior and root of the hierarchical structure and the workhorse
simulators at its leaves. The routing tables and code
schemés for the coordinators and the process descriptions for
the simulators were specified in terms of functional units to
facilitate their realization at the implementation layer. The
resulting logical structure was shown to be a correct imple-

The Implementation of the Hierarchical Abstract Simulator on the HEP Computer

mentation scheme, and to be free of interferences and
deadlocks [2]. This contrasts with other approaches which
attempt to maximize parallelism by loosening up on the
strict timing requirements of simulation. These approaches
must necessarily allow for rolling back the simulation when
an out-of-sequence event is detected. In summary, our
approach aims for simplicity and uniformity of design, with
guaranteed deadlock prevention.

Procedurally, the algorithms that describe the dynamics of
the hierarchical abstract simulator are given in Figures 1 and
2. Note that each algorithm is guarded by a lock/unlock
operation to assure mutual exclusion.

The following is a list of variables used in the algorithms:

t. = time of last event.
T = global time.
t,, == time to next event.

t:L = time advance function.

i = immiment component (minimum b

e = elapsed time in this state.

s == state of the model component.

6exb = external transition function.

5int == internal transition function.

y == output from model component.

A = output function.

(%,7) = input external message x occuring at time 7.
(*,7) = input internal message occuring at time 7.
(y,7) = output message occuring at time 7.

EXT_IF TABLE = external interface table.

INT_IF TABLE = internal interface table.

OUT_IF TABLE == output interface table.

MINTN = function that determines the minimum tN'

There are two groups of algorithms, one for a coordinator
and one for a simulator. Each group is divided into: when
recewing an Sx,*r) message and when receiving an (*,7) mes-
sage. The following gives a summary of the actions taken by
the components of the hierarchical abstract simulator when
receiving a message.

When a simulator receives an (#,7) message: it checks first
the simulation time t, then it sends its output as (y,7) to its
coordinator. Simultaneously, the simulator computes its new
state which includes determining a new t,. which is sent to
the coordinator. At termination of computation, the simula-
tor sends its done signal.

1. when receive an input (x,7):

2. lock (bit)
3. done := false

i < <
4. if tL_ 7 £ tN then
5. [e:= 7 ~ tL
6. 5= Sext(s,e,x)
7. tL:= T
8. t]:N:= tL+ ta(s)
9. else error
10. done := true

11. unlock (bit)
12. end when receive

(a) Algorithm when receiving a (%,7) message.

1. when receive an input (*,7):

2. lock (bit)

3. done := false

4. if ¢ = t, then

5. [cobegin

6. yi= A (s)
7. send (y,r) to coordinator
8. s:= §,. _ (s)
9, coend int
10. tL:= T

11, 1]:N:= tL+ ta(s)
12. else error

13. done := true

14. unlock (bit)

15. end when receive

(b) Algorithm when receiving a (*,r) message.

Figure 1: Algorithms for a Simulator

1. when receive an input (x,7):

2. lock (bit)

3. done := false

4. if tLS T < ty then

5. [send input (xi,r) to all the affected
simulators i“via a table look-up of
EXT_IF TABLE

6. wait until all simulators i's done are true

7. t, =7

8. t§:= MINTN(all subordinates under

coordinator)

9. else error

10. done := true

11. unlock (bit)

12, end when receive
(a) Algorithm when receiving a (x,r) message.

1. when receive an input (*,7):

2. lock (bit)

3. done := false

4. if 7 = t, then *

5. [send the input (*,r) to i "

8. when receive an input Y sent by i

9. :Y is used in the same enclosure: *

10. send the message (x,7) to each i
influencees via a table look-up
of INT_IF TABLE

*

11. wait until i influencees' done
are true

12. tY is used outside of the enclosure:

13. send the message (y,7) to the
next level coordinator via a
table look-up of OUT_IF TABLE

*

14. swait until i done is true

15. end when receive

23. tL:= T

24. tN:= MINTN(all subordinates under

coordinator)
25, else error

26. done := true

27. unlock (bit)

28. end when receive

(b) Algorithm when receiving an input (*,r) message.

Figure 2: Algorithms for a Coordinator

Arturo I. Concepcion

‘When a coordinator receives a (g*,r) message: it checks the
simulation time, ¢, then it sends the (%,7) message to the
component with the minimum t,,. This component is called
the Imminent component. The coordinator then waits for
done signal from the imminent component. Afterwhich the
coordinator proceeds to determine the new imminent com-
ponent.

When a simulator receives an (x,r) message: it checks the
mmulatan time first and then it computes its new state, s. A
new tN is determined which is sent to the coordinator. At

termination, the simulator sends done signal to the coordina-
tor.

When a coordinator receives an (x,7) message: it performs a
check on the simulation time and then it sends the reformat-
ted (x,7) message to the affected subordinate by a table
look-up of EXT IF TABLE. The coordinator waits for all
affected components to send done signals. Afterwhich the
coordinator proceeds to determine the new imminent com-
ponent.

‘When a coordinator receives a (y,7) message from its subordi-
nate, it determines whether this message is used within its
enclosure or not. If the message is used within, then the
coordinator sends the (y,7) message as an (x,7) message to the
affected subordinate by a table look-up of the INT_IF
TABLE otherwise, by a table look-up of OUT_IF TABLE,
the coordinator sends the message (y,r) to the next higher
level coordinator.

3. Implementation on the HEP

The architecture of the Heterogeneous Element Processor
(HEP) has been described in [6,7]. As shown in Figure 3, the
main components are the Data Memory Module, the Packet
Switch Network and the Process Execution Module. A pro-
gram consists of one or more tasks while each task consists

of one or more processes. Bach process is composed of a |

sequence of instructions. Both the tasks and processes are
executed in parallel in the HEP while the instructions of each
process are executed in sequential pipeline fashion. Each
PEM has a program memory where active tasks and
processes instruction streams are selected for execution. Up
to 50 instruction streams can be active at any given time.
Notice that each PEM has a number of functional units
which allow pipeline execution of multiple instruction
streams for multiple data streams. This makes the HEP com-
puter an MIMD machine.

For software support, HEP has the DENELCOR’s FOR-
TRAN 77 [5]. It provides the parallel programming environ-
ment for the HEP computer. It generates fully reentrant
{sharable) code and provides synchronization among these
codes. As shown in Figure 4, CREATE commands initiate
processes A, B and C which execute in parallel with the
MAIN. Synchronization among these processes is done via
F/E (full/empty) bit that is tagged on special shared vari-
ables called asynchronous variables. These variables are
prefixed with a ”$” character. The following are some of the
functions of the asynchronous variables:

J == $I, wait for full and set empty (integer).
X = $A, wait for full and set empty (real).

$Y = B, wait for empty and set full.

.{X =1) WAITF($B), wait for full, but do not set empty
real).

L = EMPTY($Q), test for empty access state

A = VALUE($Q), read regardless of state and leave
unchanged (returns logical result).

430

Data
Memory . o o
Hodule DHM Diitt
‘ Packet Switching Netwark l
Process memOry access
Execut jon queue

PEM
Module > [,,_l] !

functionai unit

tasks & process
queue

HHHHHHHI
memory

Flgure 3: The HEP Functional Organization

PEM

For process initiation,

CREATE MYSUB(X,Y,Z), causes referenced subroutine
MYSUB to execute in parallel with the creating routine
with parameters X, Y and Z.

RETURN, terminates the parallel process executing a
subroutine that was CREATEd.

MAIN
CREATE A A
CREATE B B
CREATE C c
RETURN
RETURN
END

Figure 4: Process Initiation and Termination

Shown below is an example of parallel program in
DENELCOR’s FORTRAN 77 which creates four paral-
lerocesses and performs all four executions of the subroutine
S concurrently.

The Implementation of the Hierarchical Abstract Simulator on the HEP Computer

C MAIN PROGRAM
COMMON $NP
PURGE $NP
$NP =4
CREATE PS(1
CREATE PS(2
CREATE PS(3
CALL PS(4

20 IF (VALUE($NP).NE.0) GOTO 20
END

SUBROUTINE PS(N)
COMMON $NP
CALL S%N)
$NP NP - 1
RETURN

END

The subroutine S is reentrant and the $NP is an asynchro-
nous variable which is used to record the number of
processes still executing. When S is finished, $NP is decre-
mented. The MAIN PROGRAM waits until the value of
$NP is zero. This means that all processes have finished exe-
cuting S.

The implementation of the hierarchical abstract simulator on
the HEP computer consists of translating the algorithms for
a coordinator and for a simulator (see Figures 1 and 2) into
the DENELCOR'’s FORTRAN 77, As seen from these algo-
rithms, there are five types of messages, excluding 0,7) mes-
sage, being transmitted: (x,7), (*,7), (y,7), t,, and done mes-
sages. The implementation is currently restricted to a binary
structure with a maximum of 3 levels. The implementation
can be easily expanded to more than 3 levels and applicable
to general tree structure. At 3 levels, the hierarchical
abstract simulator consists of three coordinators, see Figure
5:

. Co’ C1 and 02

and four simulators:
e S .S ,S andS
2.1 2.2

11 T2’ Yo

Also there is a process called GEN which generates the mes-
sages (x,7) and (*,7).

GEN

c ~Tevel 1

(:1 c ~level 2

1.1 $1.2 5.1 $2.2 ~level 3

Figure 5: The Hierarchical Abstract Simulator
Implemented on the HEP Computer

The main program does the following functions:

1. Obtain from the user the desired assignment of proces-
sors and other initialization inputs.

2. CREATE or CALL the processes for the appropriate
coordinators and simulators.

3. Initialize the state and control variables of each process
CREATEQ or CALLed.

4. Perform the function of GEN and test for the termina-
tion of the execution.

The following are the inputs to the hierarchical abstract
simulator at initialization:

e Specify whether the trace for debugging will be turned
off or on.

e Specify the assignment of processors to the 3 leveled
hierarchical abstract simulator. This is done by an input
string of 7 bits. A 1 in this string means a processor is
assigned, 2 0 means no processor is assigned. The posi-
tions of the bit string corresponds to the list
COC CS S8 S S .

172711712721 2.2
e Enter the desired percentage of (*,7) messages of the

total messages generated by GEN, e.g., entering a 40
means that an average of 40% of the generated mes-
sages will be of (*,7) type.

e Dnter the total number of messages to be generated by
GEN. The execution terminates when there are no more
messages to be processed.

All the CREATEd processes at initialization are passive
except the process assigned to GEN. When GEN produces
the first message, the execution of the distributed simulation
begins.

The following are the variables used for message passing and
synchronization:

1. $MESS(process id), this is an array of asynchronous
variables indexed by the process id. Each element in
this array contains either an (x,7) or (*,7) message. The
receipt of this message signals the process (either coordi-
nator or simulator) to begin executing the appropriate
subrotine. For each process, the following statement

MYMESS = $MESS(process id)

will force the process to wait if the right hand side is
}zmpty or to continue executing if the right hand side is
ull,

2. $DONE(process id), this is an array of asynchronous
variables indexed by the process id. An element in this
array contains the signal to a coordinator that a subor-
dinate with the index process id has completed its exe-
cution. If process « is busy computing then $DONE(«)
is full, otherwise it is empty.

3. TL(process id), this is an array that contains each pro-
cess’ time of last event, t. .

4. TN(process td), this is an array that contains each pro-
cess' time to the next event, t’N'

For a coordinator, the statement
MYMESS = $MESS(process id)

is used to determine whether a message was sent either by
another coordinator or a subordinate.

The statement
$MESS(process id) = MYMESS

is used to send a message to a process (a coordinator or a
simulator).

Arturo 1. Concepcion

The statement
$DONE(subordinate process id) = 1

is used to flag the subordinate process to be in busy state.
This means that the subordinate is busy computing by set-
ting the asynchronous variable $DONE full.

Then the statement
20 I(EMPTY($DONE(subordinate process id)) EQ.FALSE)GOTO 20

causes the coordinator to wait until the subordinate process
is finished computing.

For a simulator, the statements

MYMESS = $MESS(process id)
$MESS(coordinator process id) = MYMESS

are used to receive and send messages respectively.
The statement

FINISH = $DONE(process 1d)

sets the asynchronous variable empty, thus signaling the
appropriate coordinator that a subordinate has finished com-
puting.

The computations of the following functions are simulated
by holding the process for a randomly selected duration of
time:

. 5int’ internal transition function.
. 6ext’ external transition function.
¢ ta, time advance function.

¢), output function.

Thus we have a system of concurrent processes where there
is no assumption made on the order of processes finshing
their computations of state variables.

4. Experimental Runs and Results

As mentioned in section 3, the implementation of the
hierarchical abstract simulator consists of 3 levels with 3
coordinators and 4 simulators. The advantage offered by the
hierarchical abstract simulator is the exploitation of the
parallelism inherent in the model, i.e., the external events
sent by a model component to its influencees can all be pro-
cessed concurrently. The parallelism is facilibated by the
hierarchical model decomposition and such parallelism may
thus grow exponentially with the number of levels of a
hierarchical DEVS model.

Unfortunately, such gains from parallelism cannot be fully
realized. Experimental runs were made and three factors
were found to affect the execution time of the implementa-
tion on the HEP computer:

{(2) Constraints of the hardware architecture (number of
processors).

(b) Frequency of synchronization and intercommunication.

(¢) Workload (number of messages to be processed).

This section presents the effects of the above factors on the
execution time of the implemented hierarchical abstract
simulator. With regards to the constraints of the hardware
(number of processors), we run the following assignments of
Processors:

® 3 processors, with each coordinator being assigned a
processor and no simulators being assigned a processor.
e 4 processors, each coordinator is assigned a processor

and one of the simulators is assigned to a processor.

432

5 processors, each coordinator is assigned a processor
and two of the simulators are assigned each with a pro-
Cessor.

6 processors, each coordinator is assigned a processor
and three of the simulators are assigned each with a
Processor.

e 7 processors, the full assignment.

When there are not enough processors assigned, the processes
share processors which forces them to execute in a sequential
manner. Only the last configuration has a one-to-one assign-
ment.

The frequency of synchronization and intercommunication is
simulated by varying the percentage of (*,7) to (x,7) messages
that is generated by GEN. Also runs were made for process-
ing 500 messages compared to 1000 messages.

Several runs were made of the hierarchical abstract simulator
implementation and the results are summarized in Figures 6
and 7. Shown in Figure 6 is the effect on execution time by
varying the percentage of (*,r) messages. The more (#,r) mes-
sages in the system, the more intercommunication occurs.
This is due to the generation of (y,7) messages by the simula-
tor when it receives a (*,r) message, see Figure 1(b). The
(y,7) message is routed to its destination by the coordinator
either within or outside of its enclosure, see Figure 2(&)) An
increase in the number of (*,7) message processed by the
hierarchical abstract simulator, the longer is the execution
time. A decrease in execution time is noted when there are

time

processors
3 A 5 6 7
Figure 6: Runs Made for Changing Percent
of (*,¥)
time
1000
—messages
500
messages
5 ' 60 80 100 ..
2 40 % (%)

Figure 7: Runs Made for Changing the Number of
Messages (using 7 processors)

The Implementation of the Hierarchical Abstract Simulator on the HEP Computer

more processors assigned to the hierarchical abstract simula-
tor bub this decrease is not so significant from 6 to 7 proces-
sors. Because of the under utilization of some of the proces-
sors, the gain by using one more processor (from 6 to 7) is
not fully realized.

To get some insight on the effect of increasing the number of
messages to be processed, runs were made and the results are
shown in Figure 7. This result was obtained by using the
full assignment of processors, which is 7. As expected, there
is an increase of execution time when the hierarchical
abstract simulator is processing more messages. But it was
also observed that at 500 messages, the execution time did
not increase beyond 80% (*,t) and at 1000 messages, the
peak is reached at around 70% (*,t). This shows a satura-
tion point where the increase of overhead due to intercom-
munication did not affect the execution time. This is due to
the parallelism inherent in the hierarchical abstract simula-
tor, the increase of intercommunication is absorbed by the
concurrent execution of the processors.

Runs were also made to determine the effect of the following
routing characteristics of messages:

o Having more (x,7) messages routed to both subordinates
of a coordinator.

e Having more (y,7) messages routed to a subordinate and
to the next higher level coordinator.

The first characteristic simulates the occurrence of having
more simulators affected by an external message, (x,7). This
results in more concurrency in the execution of simulation.
The second characteristic simulates the sending of output
messages to the most remote simulator. This occurs when the
(v,7) message has to be sent by a coordinator to the next
higher level coordinator. The results did not show any
significant difference of execution times for both characteris-
tics. This is due to the fact that the coordinator has no
delays in doing the following activities:

e table look-up, to determine the destination of the mes-
sage via the interface tables.

e determining the minimum the function MINTN was

bags
performed in O processing tinke.

But significant difference in execution times were observed
when using different assignments of processors. The full
assignment sometimes shows half the execution time com-
pared to the execution time for 3 processors.

5. Conclusion

This paper has shown an alternative implementation of the
mapping of the hierarchical abstract simulator to a
hardware/software architecture. The HEP computer with its
MIMD architecture and the support of a high level parallel
language, DENELCOR’s FORTRAN 77, the combination
produces a very viable implementation for distributed simu-
lation. Although there is a great need for more disgnostics
and debugging tools to trace and debug parallel programs.

Performance in terms of execution times were measured on
different runs of the implementation. It was observed that
the number of processors, frequency of synchronization and
intercommunication, and number of messages affect the exe-
cution time.

The following gives a summary of the results obtained:

e that an assignment of processors close to the full assign-
ment gives almost the same execution time as a full
assignment.

433

e that the execution time increases when there are more
(*,7) messages than (x,7) messages to be processed.

e that for an assignment of processors, there is a satura-
tion point where increasing the (*,7) messages did not
increase the execution time.

e that the execution time increases when there are more
messages, (*,7) and (x,7), to be processed.

Some research have been done on performance of distributed
simulation. Livny [8], discusses a measurement called the

- Optimal Execution Time which gives a relationship between

the inherent parallelism and the number of concurrent simu-
lators. Davidson and Reynolds [4] found out in their experi-
ments of using 3 microcomputers for distributed simulation
that the degree of communication degrades the performance
of the simulators. The processes communicate with each
other at the end of a certain time interval. If this time inter-
val is less than 10 units of time, then degradation of perfor-
mance was observed. In Baik and Zeigler [1], a methodology
is presented for the performance evaluation of hierarchical
distributed simulators. Their methodology measures the
minimum average run time per task and the maximum
throughput per unit of hardware complexity.

The difference of the above research from this work is that,
an implementation of the distributed simulator is done on an
actual multiprocessor architecture and that actwal CPU
real-time are measured. The results of this work also shows a
saturation point for the hierarchical abstract simulator and
that the full assignment of processors does not always pro-
duce the optimal performance.

Future work on the hierarchical abstract simulator imple-
mentation on the HEP computer will consists of the follow-
ing:

(a) Inclusion of the (o,7) message type and introducing

delays in each coordinator for table look-up and MINTN
activities.

(b) Expanding the current implementation to a general tree
structure.

(¢) Running a real-time simulation of a distributed com-
puter system.

Acknowledgement

The author would like to thank Ann Hayes, Computing
Research and Application Group, Los Alamos National
Laboratory, for allowing us computing access to the HEP
computer on site of the Los Alamos National Laboratory.
The work would not have been possible also without the sup-
port of DENELCOR'’s consultants on site, Olaf Lubeck and
Dale Carstensen. They have been very patient in answering
our questions.

Arturo I. Concepcion

References

[1] Baik, D-K and Zeigler, B.P., "Performance Evaluation of
Hierarchical Simulators”, In Proc. of 1985 Winter Simu-
lation Conference, San Francisco, CA, Dec 1985.

[2] Concepcion, A.L, *Distributed Simulation on Multiproces-
sors: Specification, Design and Architecture”, Ph. D.
Dissertation, Tech. Rep. CSC85-001, Dept. of Computer
Science, Wayne State University, Jan 1985.

[3] Concepeion, A.L, "Mapping Distributed Simulators Onto
the Hierarchical Multi-Bus Multiprocessor Architecture”,
In Proc. of the 1985 MultiConference: Distributed Simu-
lation, San Diego, CA, Jan 1985, pp. 8-13.

[4] Davidson, D.L. and Reynolds, P.F., ”Performance
Analysis of a Distributed Simulation Algorithm Based
on Active Logical Processes”, In Proc. of 1983 Winter
Simulation Conference, Arlington, VA, Dec 1983, pp.
266-268.

[s] DENELCOR, "FORTRAN 77 Reference Manual, Release
1.0”, Publication No. 9008020-000, DENELCOR INC,,

17000 E. Ohio Place, Aurora, Colorado, Jun 1984.
[6] Gajski, D.D. and Peir, J-K, "Essential Issues in Multipro-

cessor Systems”, Computer, Vol. 18, No. 6, Jun 1985,
pp. 9-27.

[7] Hwang, K. and Briggs, F.A., ”Computer Architecture and
Parallel Processing”, McGraw Hill Book Company, New
York, 1984.

[8] Livay, M., ”A Study of Parallelism in Distributed Simula-
tion”, In Proc. of 1985 MultiConference: Distributed
Simulation, San Diego, CA, Jan 1985, pp. 94-98.

[9] Zeigler, B.P., *Multifacetted Modelling and Diserete
Event Simulation”, Academic Press, London, 1984.

Zeigler, B.P., ”"Discrete Event Formalism for
Specification of Hierarchical Models”, In Proc. of the
1985 MultiConference: Distributed Simulation, San
Diego, CA, Jan 1985, pp. 3-7.

[10]

434

ARTURO I CONCEPCION received the B.S. degree in
Mechanical Engineering from the University of Santo
Tomas, Manila, Philippines, in 1969, the M.S. degree in
Computer Science from Washington State University, in
Pullman, in 1981, and the Ph. D. degree in Computer
Science from Wayne State University, Detroit, Michi-
gan, in 1984. Since 1982, he has been involved with
research, funded by the National Science Foundation,
on the theory, design and implementation of distributed
simulation. He is currently an Assistant Professor in the
Department of Computer Sciemce, Michigan State
University. He is now involved in 2 research group
which studies the distributed control, efficiency and reli-
ability of distributed computer systems. His principal
interests are in distributed operating systems, networks,
distributed databases, and modelling and simulation. He
is a member of the ACM, IEEE-Computer Society and
Sigma Xi.

Department of Computer Science
Michigan State University

E. Lansing, MI 48824

(517) 355-2359

