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ABSTRACT

The COMmunications Model for ANalysis and Design
(COMMAND) is a flexible and adaptable communications
simulation model capable of modeling virtually any
number of message source/destination and 1ink
combinations. COMMAND's flexibility is indicated by
its data driven nature; most applications require

database changes only. COMMAND is adaptable; if it
doesn't contain the Tlogic to support a unique
protocol, buffer wmanagement technique, or other

particular feature, one need only add or substitute
a simple subroutine. Data structures and simulation
control are hidden from and transparent to the user.
COMMAND models traffic where message parameters vary
widely, multimedia are employed, the user requires
the capability to dictate dynamic environmental
changes, and the content of the messages that reach
their destination is important to measures of system
performance.

INTROBUCTION

The COMmunications Model for ANalysis and Design
(COMMAND) 1is an outgrowth of the communications
portion of the end-to-end model of the nation's
attack warning -and attack assessment system.
COMMAND -is unique among its peers in that it
effectively blends the importance of message content

in a conventijonal traffic model with network
disruption induced by external environmental
stresses. In its original implementation, the

impact of nuclear induced events on communications
equipment and transmission media was the wmost
important form of stress. In more conventional
applications, any exogenous event, such as weather,
other forms of interference, sabotage, or equipment
reliability, can disrupt communications in
deterministic or random fashions. COMMAND 1is very
flexible and 1is entirely data driven for dits many
protocol, buffer management, routing, and media
options. COMMAND is also easily adaptable to unique
Togic requirements.

From its beginning, COMMAND was designed to be data
driven, modular, flexible, and adaptable. Those are
not distinctive goals, nor is claiming their
achievement. During the design, these attributes
were assumed to be requirements for COMMAND to save
the North American Aerospace Defense Command (NORAD)
and other government users the expense and delay of
procuring a new model every time they wish to
investigate a change to their existing, rather
inflexible communications system. The model either
incorporates all foreseeable real world
modifications, or it has established hooks for those
that were intentionally excluded.
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The data driven feature is implemented by having the
user supply data to completely describe the
communications network, message format and content,

external stress, and the run control (e.g., file
names and post processing reports) through a
friendly preprocessor. Logic modules within the

structure and
can be added
The model is

program are 1independent of the data

memory management.  Thus, new modules
or substituted easily, if necessary.

adaptable to a wide variety of traffic flow
analyses, not just traditional communications
modeling. Parallel processor computer designs and
automobile (or other commodity) traffic flow are
just two examples that come immediately to mind.
Finally, the flexibility of a virtually unlimited
network size, efficient memory use and run time for
a model of this complexity, and the option of
deterministic or Monte Carlo operation round out the
stated design features.

COMMAND, 1dke all simulation models, consists of
three fundamental parts: 1) an operational or real
world system upon which the model 1s based, 2) a
conceptual model which embodies the important
relationships of the operational system, and 3) the
computer model of the conceptual model.[1] If you
are developing a general purpose simulation Tike
COMMAND, there isn‘t a single operational system
upon which to base the design, but a designer must
appreciate the complexity and dynamic nature of any
system the user will wish to model. The model
designer must deal with the complex and changing
nature of this undefined system when the conceptual
model is formulated. The conceptual model is that
set of understandings or perceived relationships
which, to some degree of accuracy, represents an
actual system. These relationships are then
solidified into communications constructs, which
form the building block structure out of which
complex networks are built. The major constructs
used in COMMAND are paths and channels.

A path is a single physical flow of information
which contains only constant time delays and no
routing decision making capabilities. A path can

contain any number of communications nodes and links
so Tong as there is no dynamic nature to it. The
channel is a more abstract concept. A channel is a
logical connection between a source of information
(node) and a destination or set of destination
nodes. A channel may have one or more paths
emanating from it. Thus, a channel can be used to
establish and control Tlogical connections among
nodes by the selective enablement of its paths.
This selectivity process allows the channel to
implement either static or dynamic routing
algorithms.
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The combination of channels and paths creates a
communications system topology. The user must
understand this concept to be able to create a model
of his network. The user must also realize that a
topology can include the complex flow of information
inside computer systems that are integral to his
network as well as the flow information between the
more traditional types of communications equipment.

Associated with each channel
queues or buffers. Messages, not bits, are the
smallest units of information which are treated
collectively by COMMAND. Messages are stored in
buffers until moved by some process associated with
the channel or path. These associated processes may
be related to the actions and characteristics of
operational hardware, software or human activity.

and path are message

Thus, the conceptual building blocks of COMMAND are

the channel, path, associated buffers and related
processes. A rich menu of processes allows the
representation of an exceedingly complex system.

The challenge, then, is to recast the operational
system in terms of the basic building blocks of the
conceptual model.

The computer model 1is the set of software and
supporting databases which implement the conceptual
model. COMMAND may be viewed as a set of software
which forms the environment for the simulation and
as sets of data which, when used by the software
program, provide the specific character and
attributes of the operational system being modeled.
For example, the system topology, consisting of

nodes and links and their connectivity, is in a
database. Likewise, the processes used, such as
path routing, buffer constraints and data 1link

protocols, are identified in the database.

359

COMMAND Model General Structure

This report deals primarily with the computer
software aspects of COMMAND. This emphasis on the
software is not intended to diminish the importance
of the conceptual model or the modeling process of a
communications system.

DESIGN

COMMAND 1is an event driven simulation written in
ANSI Standard FORTRAN-77. VAX FORTRAN-77 extensions
are often used for data file manipulation to
increase the processing speed, but the code is
nominally machine independent. The diagram in

Figure 1 shows the major modules integrated with the
data structure and information base. This depiction
emphasizes the modules as a collection of related
subroutines rather than an actual flow of control.
For example, the executive/controller is transparent
to the user when he/she sets up a vrun with the

preprocessor. The user doesn't directly interact
with any other module. The assignment of a
particular subroutine to a given module can be

somewhat arbitrary.

Figure 1 shows seven major groups of software in
addition to the parts 1labeled User, Data Structure,
and Information Base. The following sentences
briefly state the purpose of each module. HMore
discussion will be presented 1in the paragraphs that
follow. The executive/controller provides run
control over the simulation by directly calling
subroutines to {initialize the simulation and
managing an event calendar to execute appropriate
Togic modules. Logic modules are simply groups of
related subroutines that are executed from start to

finish to simulate a specific function. The
preprocessor is that module with which the user
interactively sets up his run, creating new

databases or modifying existing files to achieve the
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required system description and run control. The
message formatting module locates message format and
content from input files and calculates message

parameters affecting simulated transmission. The
communications network module contains  the
subroutines to perform the actual movement of

messages through the simulated system. The protocol
handler module contains subroutines to execute and
enforce the data 1ink communications protocols over
a communications path. The post processor module
collects and analyzes the history of recorded events
to produce summary reports of system and subsystem
performance. The utilities module contains
subroutines which are used throughout the simulation
by other modules.

The executive/controller, unlike most of the modules
that follow, is much more closely related to run
control and execution than merely being a collection
of subroutines awaiting a call to duty. In addition
to run control, which is primarily the sequential
calling of the correct logic modules, the
executive/controller must manage an event calendar
to order the calling of Tlogic modules. The logic
modules are structured so that once execution
starts, the module can run to completion before
rechecking the event calendar for subsequent events.
logic modules can create new events, they can
terminate early due to events related to their own
processing, but they cannot be interrupted to
execute another Togic module.

The executive/controller executes logic modules by
first updating the system clock to the first or next
event on the calendar. It then reads that first or
next event, along with its logic module identifier
and a pointer to the location of the data set used
for this event. The identifier and pointer are both
stored with the event descriptor. This event is
removed from the calendar, and control is passed to
the identified logic module. Between the execution
of logic modules, the event calendar is reordered,
since each logic module is allowed to write new
events to the end of the calendar, regardless of the
time of simulated execution, during its own
execution. WHhen no more events exist on the
calendar or a predetermined end of simulation time
has been reached, the simulation will stop.

The preprocessor 1is the user's interface with
COMMAND.  The preprocessor has been designed to be
as user friendly as possibie, but one should not
imagine that an initial system description and run
setup is a simple task. The preprocessor has been
designed to use menus and other help functions, but
it s ‘the user's responsibility to be sure he
understands the model's nomenclature and other
idiosyncracies. In this area, the assistance of the
model designer is essential. The preprocessor makes
minor revisions to a simulated network very easy.
These revisions are minor for COMMAND; they may be
monumental for the operational system, like adding a

new satellite and several ground stations to an
existing land based network. As a final user
friendly gesture, the preprocessor performs a

network validity check to insure, within the bounds
of what can be programmed into this function, that
the network 1is indeed feasible and somewhat
connected.

information 1ike the number
and Tocation of message sources, the number of
outbound paths from these sources, the Togical
organization of the outbound paths, the location of

The user must provide
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intermediate nodes, and the type and performance
Tevels of the connecting Tinks. Other required
information includes data rates, buffer capacities,
protocol parameters, the effects of encryption or
other coding schemes, and internal time delays.
These types of information are commonly referred to
and available, but the collection of this
information into a single 7location may be a major
task. The user may also select from a variety of
post processing reports. Adding a new report to
present collected information in a novel manner is a
very simple task, i.e., a new subroutine.

The message formatting module reads the content of
messages from the proper input file. Using a
message index  number provided through the

preprocessor as a key, the format characteristics of
the message are found from a sequential data file.
This data file contains coded information describing
the message fields in the operational system. The

file also includes the Tength (in bits) of the
transmitted message. The message is then passed to
the communications network module for buffer

placement and scheduled for further action by other
modules. Lastly, the message formatting module
reads the next record from the same input source.
This record contains the time of the next formatting
action, which is placed on the event calendar.

The communications network moduie is responsible for
moving messages through the network. The
communications network module has three different
types of moving processes: movement from a starting
node to a channel buffer, movement from a channel
buffer to a path buffer, and movement over a path.
These functions are shown in Figure 2.

COMMUNICATIONS
NETWORK

MOYE MESSAGE MOYE MESSAGE

FROM START FROM CHAMNEL MOYE MESSAGE
MODE TO BUFFER TO OYER PATH
CHANNEL BUFFER PATH BUFFER
IMPLEMENY TRANSMIT
— cf;",f:gl -~  CHANNEL TO — ALONG
PATH PROTOCOL PATH
PLACE MESSAGE INTRODUCE
— inchanner [ SCReoTiey | ENYIRONMENTAL
BUFFER STRESS EFFECTS
PLACE MESSAGE
— 1K PATH
BUFFER
Figure 2: Communications Network Module
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Movement from a start node to a channel buffer
involves selecting the correct channel buffer and
then placing the message 1in the channel buffer.
There are many ways messages can be placed in the
channel buffer depending on whether it is circular,
non-circular, affected by message time-outs, hard
priority partitions, soft priority partitions,
internal channel multiple message blocking, or
loaded from the top or bottom of the queue. The
data set  "CHANNEL" contains all necessary
descriptions to control the proper placement of the
message in the channel buffer.

Movement of messages from the channel to the path
involves three processes: selecting the proper path,
adhering to the transfer protocol between the

channel and the path, and actually placing the
message in the path buffer. The path selection
process may be viewed as the dimplementation of
routing decisions. Broadcast, primary/alternate,

and trunked are static path selection subroutines.
Special filtering algorithms based on the message
index number are used in some applications.
Dynamic real time routing selection algorithms, Tike
those used in the ground wave emergency network
(GWEN), are incorporated. Adherence to the
protocols between a channel and a path involves
consideration of when messages may be transferred to
the path, the conditions under which messages can be
deleted from the channel buffer, and preservation of
required message blocking. Like the channel message

buffer placement, message placement in the path
buffer has similar options and constraints.
Parameters controlling the process selected are

contained in the "CHANNEL" and "PATHINFQ" data sets.

The movement of a message over a path is
conceptually simpler in operation than either of the
two  previous  movements. The message {or
acknowledgment) is progressively moved from node to
node along the defined path. The determination of
successful transmission is made at each 1ink by
choosing a random variable and comparing it to a
threshold value. The threshold value is determined
by subroutines containing the environmental effects
of the ambient or stress conditions. Subroutines
determining ambient error probabjlities have been
developed from empirical data. Unique stressed
environment routines are also available to account
for nonstandard conditions. The user has the choice
of statistically modifying the ambient environment
calculations or dimplementing a special environment
and probability calculation.

The protocol handler module implements the defined
communications protocols for the network. Protocols
define how the system works by providing the rules
and procedures the system employs. These protocols
describe what to do when a message is ready, where
to put a message that is received, how to respond to
an errored message, how 1long a message can be
retained before it 1is discarded and many other
details essential to the communications functions.

The protocol handler module performs two main tasks.
First, the protocol determines the appropriate
action to be taken. The collection of logic flow
for a particular protocol 1s frequently referred to
as the state diagram, since the current state of the
protocol wuniquely defines the exact actions with
which the system must comply. Examples of the types
of actions identified include scheduling a
retransmission, deleting a message from a buffer,
and updating the state of the protocol device.
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Second, the identified actions must be performed.
In COMMAND, this may be done in three ways: direct
and immediate simulation, scheduling an event on the
event calendar, or calling a utility wmodule to
perform the necessary action. Direct actions are
those which are totally internal to the protocol
itself, such as updating selected +timers or
counters.  Scheduling events on the common event
calendar includes such decisions as the protocol
scheduling 1itself for vrecall at a time-out or
scheduling transmission of a prepared
acknowledgment.  The implemented protocols include
broadcast, Autodin Mode 1, several variations of
ADCCP  (Advanced Data  Communications

Procedure), and the GWEN-unique protocol.
variety includes

Control
This
the Togical structure to describe

most common protocols. Other Togic submodules for
protocols will be written and permanently
incorporated as they are needed.

The post processing module is divided into two

sections. The first performs data collection during
the simulation. The second performs the analysis of
the collected information and prepares the reports
in a comprehensible form. In addition to standard
reports that focus on the network description and
summary statistics, other reports are available that
will concentrate on user directed areas of emphasis.
The prepared report formats concentrate on measures
of message throughput, either aggregated, by
specific source and destination pairs, or by
specific message type. Buffer capacity and
utilization reports are also available. If all else
fails, detailed event history Tlistings are
available.

The utilities module is a collection of subroutines
used by more than one of the other major modules.
These routines are collectively referred to as
utilities in a separate module, rather than
repetitively referring to them 1in more than one
module description. A schedule interfaces submodule
performs the event creation activity. A buffer
housekeeping submodule dincludes subroutines to
manage all actions associated with both channel and
path buffers, including message insertions, message
deletions and time-out monitoring. Single and
double Tinked list functions allow the functional

subroutines to manipulate and control information
within the data structure. The memory allocation
subroutines provide data set memory for the

functional subroutines. Because of the Targe number
of different data set types and the profound
consequence of memory location errors, the memory
allocation module provides exhaustive type checking
of all fields including memory location pointers.

The data structure 1is an internal
COMMAND.  Figure 3 depicts the data structure for
channel and path information and the particular
relationships among the myriad of information that
must be stored and manipulated in most simulations.
The data structure 1is based on variable length
record size with mixed variable types and pointers

strength of

between the records. Among other benefits is a
capability to use Pascal-like linked 1ists with
pointers to successor and predecessor records.

These features have been implemented with utility
subprograms written in FORTRAN. The data structure
provides the flexibility to describe all network
configurations efficiently in the available memory.
The user need know nothing about the data structure.
A systems analyst adding or modifying a subroutine
need only know and understand the data structure of
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the variables and their associated pointers with
which he/she is dealing; he/she need not modify the
program's memory management routines. In this
sense, COMMAND extensively employs both data hiding
and data abstraction.

The information base in Figure 1 refers +to the use
of memory within the particular machine on which
COMMAND  is running. Again, FORTRAN utility
subprograms dynamically allocate and manage memory
utilization. These routines periodically compress
the memory used after history events have been
written to post processing files and pockets of
random access memory have been freed.

PERFORMANCE

COMMAND has been designed to execute a scenario with
about 10 message sources, 5 destinations, 275 nodes
with connecting Tinks of several media types, severe
stress requiring constant recalculation of
environmental conditions, and 40,000 messages, with
minimal data recording (default post processing
reports) in 30 minutes on a VAX 11/780. This speed
is less than a factor of two times real time.
Exercising some or all of the post processing report
options will Tlengthen the run time. Less complex
scenarios will require much less processing time.

EXAMPLE

The first uses and analyses with COMMAND have
emphasized the message generation part of the
communications process. Message generation is part
of COMMAND, unlike other models which begin with
complete messages. Message generation begins with
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an external stimulus and data input, such as the
output calculations of a radar sensor Tlooking for
threatening objects in its field of view. The

assesses the threat and determines
which one of a prescribed set of message types
should be sent to headquarters. COMMAND acts on
this stimulus at the specified simulation time by
formatting a message, calculating parameters that
will affect transmission success, and attempting to
simulate the transmission of this message to the
next node. If a communications backup exists due to
heavy traffic or a down line, the new message must
be stored or otherwise disposed of as the real
system would. The process of generating the message
and moving it from a sensor computer to the
communications equipment is a microcosm of the whole
communications process from source to destination.
For simplicity and brevity, only the 1imited message
generation process will be described in the
paragraphs that follow.

sensor software

Message flow starts inside the sensor computer and
proceeds under both software and hardware controil
through an internal computer communications network
to the point where the message 1is ready to
physically Teave the sensor site on 1its way to a
command center. The simulated formatting and local
transmission’ (computer to communications equipment
at the site) of wessages are implemented in COMMAND
by designated Logic Modules (LMs). Each Tlogic
module describes a non-interruptible sequence of
events(Figure 4). LMs must be executed in a
relevant order to model the message generdation
function. The order of processing is .determined by
data in user supplied configuration files.

LM-A  reads message variables from a particular
sensor file and reformats the data values according
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Figure 4: Logic Modules Used for Message Generation

to the bit patterns in the specified message. LM-A
also places a message pointer reference to the
sensor computer buffer and attempts to move the
message into the communications computer using LM-B.
LM-C transmits the message in the broadcast mode
from the communications computer to the
communications equipment. If this transmission
requires ADCCP protocol with an acknowledgment of
message receipt, other logic modules are substituted
for LM-C.

Figure 5 shows both the top-level message formatting
actions contained in the LM-A and the fact that
Togic modules can use subroutines from different
modules of COMMAND. The message formatting module
reads the event time of the first message and places
a sensor message generation call on the event
calendar. Upon entry into the Togic module,
subroutine "AMSFMT" selects the field of control
codes from the message format file. A data set is
created to store the forthcoming message. Next, the
actual message data is read from the sensor message
file. Using previously read formatting codes, the
numerical message data are rounded to fit the
prescribed bit pattern and placed in the waiting
data set. A history event is recorded, documenting
the message creation.

Subroutine "ASTRPL" begins the simulated movement of
the message to the computer buffer and schedules
LM-B to move the message into the communications
computer buffer at the appropriate time. Each
computer has its own buffer size and management
scheme. Figure 6 summarizes the buffer transfer
logic of subroutine "ASTRPL".
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Figure 6: Subroutine "ASTRPL"

Buffer to buffer transfer is implemented by LM-B,
Figure 7. The path between the site computer and
the communications computer is checked to 1insure
that no other message is currently being transmitted
on the channel. If a message is being transmitted,
the completion time is noted and the logic module is
rescheduled; otherwise the transmission proceeds.
The path selection aspect of LM-B selects the
appropriate output port according to the prescribed
Togic for the site. Message flow is controlled by
the status of the buffer in the communications
computer. If the buffer is not full, the message is
accepted and transmission to the communications
equipment is scheduled.

The Tlogic of LM-C 1is shown in
execution, the message is sent from the
communications computer buffer by the subroutine
"AMGTRS". A timer is also available in "AMGTRS" for
applications involving accountability, 1ike ADCCP.
Possible 1loss of function of the sensor site is
checked through stress update events. The message
is finally sent to the communications equipment.
Subroutine "ASEND", which is the heart of "AMGTRS"
and 1is shown 1in Figure 9, controls the actual
sending process. Arrival of the message is recorded
as a history event from "AMGTRS" after the return
from "ASEND".

Figure 8. Upon

The message just received by the communications
equipment can now be deleted from the communications
computer buffer, leaving at least one available
buffer position. Subroutine "ASCDBF" queries the
site computer to didentify the next available
message. If a message 1is available, LM-B 1s
scheduled to transfer it to the communications
computer buffer.
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another similar protocol. Acknowledgments are
simulated. The communications equipment at the
source disposes of messages when acknowledgments are
received and resends the message after an
appropriate time if there is no acknowledgment or an
out of sequence acknowledgment is received.

The post processor develops reports in several
forms: tables, charts, matrices, and text. An
example 1is shown in Figure 10, which depicts the
time history of message generation events during a
completely fabricated test scenario from a radar
site. Reports such as this are useful for finding
system bottlenecks and understanding the demands on
the network's processing capability.

Figure 10. Message Generation Example Report

SUMMARY

FCTH RANDON

GET RANDOM
UARIABLE

SET FAILED

Command was originally designed for a very specific
purpose, but the resulting model has evolved to a
broad range of capabilities. The mixture of

performance based upon message content,
sophisticated protocol  handling and  buffer
management, dynamic path switching and circuit

establishment, and complex link reliability modeling
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| ThmnsHISSION AR (stress) appear to be 2 unique combination of
FLAG TO TRUE SUCCESSFUL? features when compared to similar models.
ved REFERENCE
m?g$s 1. Hoover, Stewart V., and Ronald F. Perry,
POINTER "Validation of Simulation Models: The
Weak/Missing Link," 1984 Winter Simulation Con-
ference  Proceedings, 1984, pages 293-295.
Figure 9: Subroutine "ASEND"
Long haul communications processes are very similar
to those described above. Some networks have a
dynamic routing scheme that invokes a special set of
logic modules. The most important task for COMMAND
is simulating the message accountability of ADCCP or
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Figure 10: Message Generation Example Report



