Proceedings of the 1985 Winter Simulation Conference
D. Gantz, G. Blais, S. Solomon (eds.)

An Experiment in Multi-level Modelling

Michael Whelan

Siemens Corporate Research & Support In¢
Princeton, New Jersey

Abstract

The primary goal of this experiment was to determine the
advantages which multi-level modelling would provide to
the designer of a digital system. It is, however, readily
apparent that providing multi-level modelling facilities
will complicate the tool builders task, since tools may be
required to cooperate with other tools in order to ‘gain’
information concerning the behavior of the system which
is modelled. Hence, a secondary goal was to examine the
problems presented to the design system implementor, by
multi-level modelling.

1. Introduction

Multi-level modelling is the process of constructing, and
gaining information from, a mode! of a system, wherein
subparts of that system are modelled at different levels of
abstraction. Multi-level modelling has proven to be
useful at the logic/circuit abstraction interface[5], and it
has been hypothesized that multi-level modelling offers
advantages to the designers of complex systems. This
paper concerns itself only with the design of digital
hardware, and in this context, ‘system’ will be used to
describe digital hardware systems only.

More specifically, the goals of this experiment were to
construct a multi-level model (mlm for short) which used
two levels of abstraction, and to provide an environment
wherein tools appropriate to each level could cooperate
in such a way that the behavior of the composite system
could be observed. The levels of abstraction to be
supported were the logic and register transfer (RT) levels.
The task of building the aforementioned environment
would yield a measure of the difficulties which providing
multi-level modelling facilities imposes on the tool
builder. Using the multi-level model to study the
behavior of the composite system would provide an
indication of the advantages to the designer of such a
capability.

This report presents details of the experiment and a
discussion of what was learned. Section 2 details the
s%stem which was modelled, and how the submodels at
the different levels of abstraction were intended to
interact. Section 3 discusses the manner in which the
multi-level modelling environment was provided. Section
4 discusses the user’s interactions with the multi-level
model. Section 5 discusses the results of the experimentin
the context of the goals, and Section 6 concludes with a
disctIJ(ssion of what was learned, and directions of future
work.

2. Models

For the purposes of the experiment, we chose to model a
Fibonacci number generator. This was constructed from a
16-bit microprocessor, a memory subsystem, and an
assembly language program which computed Fibonacci
numbers. The microprocessor used was the Texas
Instruments T19900. This was chosen because we already
had a register transfer level model for this machine, and
we also had an assembler. This microprocessor was to be
broken into two sections; an ALU for the implementation
of arithmetic and logical operations (which would be the

284

subject of a detailed logic level implementation), and a
control portion which modelled instruction fetch and
decode, and the execution of program flow (e.g.
jumps/branches) instructions. This is shown in Figure 2.1.

P T T T s e e e e i ————— T
1 Fibonacci Number Generator |
1 e ———————— T s 1
: MEMORY MICROPROCESSOR :
I) |
I |
! fibonacci Control Unit !
! ; number Register set !
I i | generating flags |
: ¢ | “program etc. :
! 1
R : |
" ALU I
| 1
1 1
L e e e e —— _:.-;..;u..-...;.-..;--;..;.-:.;.-:.i —— J.

Fig 2.1 Fibonacci number generating system.

The ALU was modelled at a boolean expression level of
abstraction. The two models were to interact via a 24-bit
bidirectional bus. In operation, the muiti-level model
would work as follows. When the register transfer level
model for the control portion of the microprocessor
encountered an instruction which required ALU action
(e.g. an ADD instruction), it would pass the appropriate
operands and control signals over the 24-bit bus. The
boolean level model would get this information and
would then proceed to do whatever it was instructed,
returning a result to the control section over the bus. The
conversion of data between the two models and the
synchronization of the operations in the models was to be
handled by two interface processes, one for mapping
from the lower to the higher level of abstraction, and the
other for mapping from the higher level to the lower level
of abstraction. The operation of all these tools was to be
orchestrated by a kernel communications processor, with
the user interface being provided by a multi-window
interface system. This isshown in Figure 2.2.

The models for the control and ALU portions of the
microprocessor were respectively in the N.mPc register
transfer level simulation system [3,4], and the STUSIM
boolean level simulation system[2]. The mapping from
the lower to the higher level process (identified as
‘upmap’ in Figure 2.2) was provided by the TT theorem
testing system [2]. The mapping from the higher to lower
level model (identified as ‘"downmap’ in Figure 2.2) was a
specially written piece of software. The communications
kernel (‘cproc’) and the user interface processes were
provided by the vti system [1].

An Experiment in Multi-Level Modelling

MEMORY { MICROPROCESSOR
fibonacci Control Unit E
number i | Registerset

generating i ¥ flagsetc.
program :

T
i
i
i
i
i
i

downmap

upmap

gate level
ALU

User
interface
system

Fig. 2.2 Organization of the multi level model.

Let us first examine the single level model for the Ti9900
at the Register Transfer (RT) level of abstraction. The
following sections of ISP’ (the register transfer level
language used by the N.mPc system) illustrate the
manner in which instructions are implemented in the
single level register transfer model. The text in bold face
is drawn from the ISP’ model, while the italics are added
here for the purpose of explanation.

The code excerpts shown in Figure 2.3 illustrate the
algorithmic nature of the instruction decoding phase.
The functionality of the ALU for this microprocessor is
implemented by a combination of algorithmic control
flow, and predefined (by the N.mPc system) arithmetic
and logical operators which are applicable to arbitrarily
sized operands. Such issues as variable data size
arithmetic (e.g. byte versus word operations), and flags
(e.g. overflow and carry) are handied by appropriate
algorithmic control flow. For this reason, the code for
AQP extends 16 bit fields to 17 bits, performs 17 bit
arithmetic, explicitly tests the 17 bit result for overflow,
and truncates the result to a 16 bit entity.

The intent of this experiment was to extract the
functionality of the ALU from the ISP’ model for the
TI19900, to model this at the boolean level, and to have
the two models communicate with each other in a
simulation. The code for AOP which was discussed above
illustrates several differences between the ISP’ model for
the TI9900 and the manner in which such a
microprocessor would actually be built. First, 8 and 16 bit
addition / subtraction are handled by different branches
in the AOP code. In a hardware implementation, these
different branches would share some hardware, i.e. there
would only be one 'adder.” Another difference arises in
the manner in which the potential for overflow is
handled. The philosophy used in the AOP code is
essentially that all fields are expanded so that no overflow
can occur, then the result is checked to see if it can fit into
the result field. This differs from a real implementation
wherein one would not have a 17 bit adder and after the
fact flag setting, rather, the logic which detected
overflow would be part of a 16 bit adder.

285

main:= the main fetch - execute loop

fetch-1. execute.

)
depending on op-code branch to appropriate code

delay(1)

The AOP code handles addition and subtraction

of word and byte objects
AOP(op1<word>,op2<word>,op<bit>,size<bit>)
<word> : =

(cade to handle 8 vs 16 bit data

First sign extend operands

OP1<0:16> = 0p1<0:15> ext 17.

Then perform addition on larger entities
RESULT<0:16> = OP1<0:16> + OP2<0:16 >
AOP = RESULT<1:16> . the result
C = RESULT<0> a carry bit
)

Fig 2.3 Excerpts from the ISP’ code for the ALU.

In extracting the functionality of the ALU from the single
level register transfer model for the T19900, it was first
necessary to define a logical interface between the ISP’
model and the proposed logic level model. It was decided
that the ALU would be connected to the remainder of the
microprocessor by a 16 bit bidirectional data bus, an 8 bit
unidirectional control bus, and ancilliary control signals as
shown in Figure 2.4. Furthermore, it was necessary to
decide on the internal storage capacity of the ALU (i.e.
temporary registers). Once this had been completed, the
connection of the two models could begin.

16-bitdata bus

RT < t Gate Level
model of
8-bit control bus model of
the the
control service request line ALU
unit — >

service complete line
Fig. 2.4 Logical communication between the models.

The ISP’ description of the TI9900 was altered so that
whenever an arithmetic operation was required, the
operands and control for this operation were placed onto
a bus, and the result read from the bus. This was effected
by replacing the original AOP code with the code as
shown in Figure 2.5.

The ‘xtoalu’ routine wrote one 16 bit operand, and one 8
bit control byte to the ‘external ALU’ . This routine
returns a 16 bit argument which is the data returned from
the ALU over the bidirectional data bus. The AOP code
works by transferring the operands of the operation to
the external ALU, with instructions to load them into
temporary registers {i.e. LRA means load register A with
the contents of the data bus). Once both operands have
been stored in temporary registers in the external ALU,
an instruction to add (or subtract) the contents of the
registers is issued and the result is passed back over the
data bus. The xtoalu routine will handle the handshaking
with the external simulator, and ISP’ semantics are such
that the AOP routine will be forced to wait until the
xtoalu routine returns.

Michael Whelan

AOP(op1<word>,op2<word >,0p<bit>,sz<hit>) <word> : =

RES<1:16> = xtoalu(OP1<1:16>,LRA); putop! intemp reg A
RES<1:16> = xtoalu{(OP2<1:16>>,LRB); putop2intempreg 8
next;
case op
sub :(
RES<1:16> = xtoalu{(OP1<1:16>,SUB); issue subtract instruction

)
add :
(

RES<1:16> = xtoalu{OP1<1:16 > ,ADD); issue add instruction
)

esac;
next;

AQOP = RES<1:16>
)

return the result of the operation

Fig. 2.5 Moditied ISP’ code for the ALU.

The ‘xtoalu’ code actually converts the output data into a
sequence of bytes which it writes to a memory. In the
topology file for the N.mPc model, this memory is
declared to be a raw memory, connected to a file name,
and so becomes a serial link. The semantics of the ‘raw
memory’ components in N.mPc are such that they must be
8 bits wide, and hence the data must be explicitly
converted into byte streams for reading and writing.

The STUSIM model for the ALU has a 16 bit input bus, an 8
bit control bus, a 16 bit output bus and various status and
handshaking signals. The model has three temporary
registers , namely the A, B, and O registers. The A and B
registers are used to contain operands, while the O
register is used to latch the results of instructions. A state
machine is used to latch data into the various registers
and to interact with the outside world via a ‘request’ and
‘ready’ pair of handshaking lines. A state transition
diagram, showing the interpretation of the state machine
in the ALU isshown in Figure 2.6 . For the purposes of this
paper internal details of the ALU model are unimportant.

this transition is picked up by
upmap, as the completion event

busy
perform
ALU op

request/load temporary
registers from the input
bus

fload output register

Fig. 2.6 State transition diagram forthe ALU.

2.1Tieing the models together

Given that we now have a boolean level model for the
ALU, and an ISP’ model for everything else in the TI9900
microprocessor, we must consider the problem of
running simulations of these models in concert in such a
way that the boolean level ALU model actually performs

286

the arithmetic operations which are required by the ISP’
model. The components of the multi-level model are ;

downmap
obtains the data which is to be passed over the data
and control bus from the RT model to the logic model.
The format of this data must be converted into
commands to the STUSIM simulation of the ALU which
achieve the desired setting of logic values in the
boolean [evel model.

upmap
observes the boolean level simulation and at the
appropriate time, must gather together the logic
signals which define the entities of interest to the ISP’
model, convert them back into a form which is
meaningful to the ISP’ model and pass them to it. In
addition, this process collects data on the internal
state of the boolean level model, and presents it to the
user as indicated in Figure 4.1 . The upmap process is
implemented as a TT [2] specification.

vti
provides a multi window interface to the different
processes with which a user may interact during the
course of asimulation[1].

cproc
P Each of the tools involved in the multi-level model is to
be as ignorant as possible of the fact that it is not
acting in isolation. This meant that an environment
had to be created which allowed the individual tools
to operate as if they were working independently, but
which coordinated the tools so that the multi-level
model could be simulated. The creation and
management of this environment was the task of
cproc[1].

3. System Implementation

In a single level simulation, each simulator will usually
have as input a source of stimuli and, as output, will
produce the response of the system being simulated to
that stimuli. These input and output data streams are
normally files. In a multi-level simulation however the
input and output data streams will come from and go to
other tools. Thus, gart of the response of the boolean
level simulator will be fed into the register transfer level
simulator as stimulus, and visa versa. Each of the tools
used in the multi-level simulation is set up so that its
interactions to other tools is via single input and output
data streams.

The inter-mode! timing is handled in the following way.
When downmap sends a set of signal line stimuli to the
stusim model, it adds commands to that model so that it
will simulate for 6 time units (nominal gate delays). The
upmap process observes the stusim simulation; and at the
end of every simulation cycle, it sends one of two
messages to the cproc process. |f upmap has observed the
completion of the requested operation (by observing the
state of the state machine in the stusim model), then it
sends a message to that effect, along with the value of
the output bus, back to cproc. Cproc will then send that
information on to the ISP" model. Otherwise, if at least 6
time cycles have been simulated, upmap will send a
message to ¢proc which will cause a command to simulate
for an additional time cycle to be sent to the stusim
model. In addition a count of these signals is kept, and
every tenth one causes an incomplete signal to be sent to
the ISP’ model. The effect of the incomplete signal at the
ISP* model is to cause a 'delay(1)’ to be executed. The
combined effect is to enforce a 10 - 1 time ratio between
the two models, when the ALU is running,

An Experiment in Multi-Level Modelling

On the other hand, when the ISP* model is running, time
stands still for the ALU. The latter situation is not very
satisfactory but was forced on us due to practical
considerations of run time and the fact that STUSIM is not
an event driven simulator. Provided one can guarantee
that there is no possibility of ‘clock skew’ being
introduced into the ALU, (i.e. that the clock for the ALU is
in the same phase every time a request is received from
the ISP’ model) then the multi-level model will operate
correctly. This latter restriction seems reasonable for
synchronous systems.

4. Results

The display of a users terminal during the course of a
simulation run is shown in Figure 4.1. The top left
window, which has the label “11:A’ is associated with the
boolean level model. The top right window, which has
the label ‘1:Y’ is used to indicate the communications
which are taking place between the portions of the
model. The "10:C" window is associated with the upmap
process, and the ‘12:B’ window with the RT level
simulation. The number portion of the window labels are
used in giving vti commands to interact with various
windows. The letter parts are used by the '1:Y’, window
to indicate the interprocess communication traffic.

When the register transfer model decodes either an ADD
or a SUB instruction, data is passed to the boolean level
model where the operation is performed. Figure 4.1
ittustrates the window contents just after the boolean
level model had finished processing an 'INC x’ instruction
when x was zero. This indicates that the value returned
was 1. The N.mPc model has been halted by a breakpoint,
and is again awaiting user instructions. This breakpoint is
at the head of the loop which computes the Fibonacci
numbers.

ThA —o T T e HER7 ABC 0
il]] 1
' STUSIM 2.X 468 states 87 delays LA !
' proceeding at iteration no 50 R !
| proceeding at iteration no 100 Vo C !
! proceeding at iteration no 150 . !
L o e o e e e e e e — - ————— - s S, -

—_
e
(2]
t
]
]
1
1
1
1
1
)
1
1
1
1
1
1
]
]
]
1
]
I
]
]
1
1
1
1
]
]
I
]
t
[}
1
1
1
1
1
1
1
]
]
]
]
]
]
J

1

|READY ** A= 0 TIME = 161 i
IBUSY - B= 1 i
VALRET = 1(1) !

—_
N
w
1
1
t
]
]
1
1
i
i
1
1
1
]
1
]
]
1
H
1
1
1
1
]
)
I
1
1
1
]
t
1
i
1
1
I
1
1
1
t
|
H
!
]
t
I
1
J

imulation halted by bkpt 2

:
E 1display ti99:PC = 22
is
E (repeat bkpt ti99:PC eql 22)

1

Fig. 4.1 User terminal during the course of simulation.

Figure 4.2 shows the result of instructing the N.mPc
system to execute the ‘exr’ command file, when the multi-
level model is in the state illustrated in Figure 4.1. This
command file causes the contents of the in memory
registers for the TI9900 to be displayed. The memory is
byte organized, and the workspace pointer was set to
0100g. This means that memory bytes 64 and 65 are
respectively the high and low order bytes of register 0.
Figure 4.2 indicates that the contents of this register are
89, which can be verified as correct by examining the
code for the Fibonacci generator.

287

L U T LY ABC 1
] 1)]
1 STUSIM 2.X 468 states 87 delays LA !
| proceeding at iteration no 50 1 1B !
| proceeding at iteration no 100 Vi c !
| proceeding at iteration no 150 J: ! J:
L e e e o o - o - | S

10:C —— e e e e e :
'READY ** A= 0 TIME = 161 |
(BUSY - B= 1 :
{DONE - VALRET = 1(1) !
V12iB oo mmc e LT
i\ 1
1]
) !
I 1]
V# Texr” i
| # ex ti99:m[64] 0 i
3# ex ti99:m[65] 89 E
t [}

Fig 4.2 After giving the ‘exr’ command to N.mPc.
5. Discussion simulator.

The intent of this experiment was to gain information on
the utility of multi-level modelling to the designer and on
the difficulty of providing the requisite features to the
CAD system implementer. Let us first consider the
difficulties which providing a multi-level modelling
system poses to the CAD system implementers.

5.1 Tool Modifications

The multi-level modelling system which was constructed
during the course of the work reported here attempted to
change the tools which were used (namely N.mPc,
STUSIM, TT) as little as possible from their normal stand
alone versions. An additional complication arose in terms
of the N.mPc system: since we did not have the source
code available, we were not in a position to change this
system even if we wanted to. The alterations which were
made to the tools for the purposes of multi-level
modelling were ;

TOOL CHANGES for multi-level modelling

N.mPc none

STUSIM a) provision of an auto initialization
facility
¢) provision for creating auto
initialization specifications
d) flags processing for invocation of the
above features

T none

In retrospect, one might argue that the changes made to
the STUSIM system were in providing facilities which were
lacking in the initial version. While this may to a certain
extent be true, it had managed to serve a useful purpose
when used in stand alone fashion without these features;
whereas, these features were prerequisites for the multi-
level modelling system.

Thus changes to the individual tools did not pose a serious
barrier to the provision of the multi-level modelling
facility. It is worth pointing out, however, that the tools
were used in such a way that each had essentially one
data input/output to the system which was used for
interacting with the models at other levels. While one
could imagine scenarios where this might be
unappropriate, we do not feel that it is a real restriction
under some assumptions about how such a multi-level
modelling system would be used.

Michael Whelan

5.2 The utility of multi-level modelling to a designer

In order to discuss the advantages to the designer of a
multi-level modelling system, it is first necessary to
describe a design methodology wherein the use of the
modelling facilities can be discussed. It should be borne in
mind, however, that the tools discussed in this paper can
be-used in other design methodologies, and the potential
advantages to the designer would%ave to be gauged in
that light.

The design methodology which we shall assume is set
forth in Figure 5.1 . As indicated, it is assumed that the
design is being performed in a top down fashion starting
with the design of a register transfer level model for the
system. This mode! of the system is verified by running
test programs on a simulation model and examining the
results. This set of tests should be such that the
functionality as described in the register transfer model is
thoroughly tested.

RT level design,
and verification

!

break up of the RT
design into subsections
forlogiclevel design

Replace subsection
of the RT
description, with
an interface.

v

functional
spec.

interface
Mapping

spec. \
l process
/ construction

Y

Logic level design
and verification.

P gate lovel s (R KT ol
; Mmapping portion

I _ i I
I i portion i processes | i i
| : O | E |
I 1
| |

Multi-Level Maodel
e e e — = .|

Fig 5.1 Design methodology spanning the register
transfer to gate levels.

When the design at the register transfer level has been
completed, and confidence gained that it meets its
requirements, the next step is to partition the
functionality of the register transfer model into pieces
which will then be designed at the logic level. This
partitioning results in a set of submodule specifications,
where the specifications can be broken into two parts, the
functional specification and the interface specification.
Fi%ure 5.1 illustrates the continued design of one of these
submodules, however, in practice, several would be
designed simultaneously. The procedure as shown in
Figure 5.1 would then apply to each submodule design
.independently.

The functional specification is used by the logic designer
to design the submodule and to verify that it meets its
functional specification. Parenthetically, the designer
verifies that an ‘adder adds’ but does not yet consider the
manner in which the adder must communicate with the

288

rest of the system. Once confidence has been gained in
the functional correctness of the design, the interface
sgecifications are used to create mapping processes; and
the submodule is verified ‘in context’ by constructing a
multi-level model with the remainder of the system being
modelled using the already verified register transfer level
design and running the register transfer test cases.

An interesting point that comes up here is the ‘start up’
phase of simulation for the logic level system in the multi-
level model. In the register transfer level of abstraction,
the state of the model is automatically initialized as
specified in the mode! (or by default). This means that
there is no reason for an initialization process to get the
model into a known state. Quite the opposite is true of a
logic level design. In this case the state of the system is
initially unknown, and it must be somehow ‘set’ into a
known state. This is normally accomplished by a
combination of control signal inputs which are applied at
power on to get the system into a known state.

in the multi-level model then, the logic portion is initially
in an unknown state and needs some control signal
sequence to get it into a known state; whereas, the
register transfer model is devoid of any notion of
initialization sequences. How then is the logic level
subsystem to be initialized properly so that it can take
part in the multi-level model simulation. The
initialization procedure is the logic level designer's
responsibility (it is part of the design); whereas, the initial
state of the fogic system should be part of the submodule
specification.

The way this problem was tackled in this experiment was
to allow the logic level model to be ‘auto initialized’ to a
known state upon invocation. Thus, when invoked in a
multi-level modelling environment, the logic model
would be initialized to a known state. This initialization
state, however, had to specify the state of every node in
the logic network, i.e. it was not simply a specification of
somet?ﬂng like ‘areg = 10'. In order to construct this state
description, the STUSIM simulator was provided with the
capability to write the final state of a simulation to a file
in the appropriate format. The logic level designer then
simulated the logic level design with the initialization
sequence to construct the auto initialization file which
would later be used in multi-level modelling.

The latter issue illustrates that the design methology
outlined in Figure 5.1, and supported by the multi-level
modelling facilities as outlined here allocates
responsibility for meeting specifications to the designers
who are responsible, and ensures that a design (including
initialization sequences) meets all of its specifications
(including initialization, function , and interface) before
the design can pass the multi-level modeliing tests.

There are ‘fall out’ advantages to using the design
methodology illustrated in Figure 5.1. As pointed out in
[2], using formal, function specifications for design
validation has the desirable side effect that the
submodules being specified tend to be such that they
have a functionality which can be neatly described at a
level of abstraction above the level in which they are
being designed, i.e. the design tends to be highly
modular. The same effect is apparent in the case of
interface specifications. Thus, alternative designs for a
submodule may be examined simply by plugging them
into the multi-level module. This ability is particularly
desirable when examining the cost/performance effect of
a submodule on a complex system.

As a final verification step, after each submodule, at the
logic level, has passed its multi-level modelling tests, the
entire system may then be simulated at the logiclevel as a

An Experiment in Multi-Level Modelling

single level model. The hope would be that by this stage
almost all errors would have been detected, and so the
simulation task would not have to be re-run frequently as
errors were detected and corrected. Finding errors at this
stage would also indicate the quality of the functional
and interface specifications. This information would be
valuable since interface specifications (and possibly
functional specifications) will tend to be reused across
many designs (e.g. an S-100 bus interface) and so
improving them would yield bonuses in future designs.

6. Conclusion

The results of this experiment indicate that providing
multi-level modelling facilities does not pose
insurmountable problems to the CAD system designer,
while the capability made available to the designer is very
valuable. There are, however, several caveats. The points
made in the conclusion of [2] in connection with drawing
assumptions from a 'dummy’ design example also apply
here. Namely, the experiment which was performed did
differ from a real design in several important respects.

1. The TI9900 model was not designed by us, we made
use of one that was available.

2. The logic level model was not completed, i.e. it did
not implement all the instructions which would be
required in the real microprocessor.

These points are not independent. Indeed, it was our
intent on starting this experiment to implement all of the
functionality of the ALU in the boolean level model. We
initially implemented the ADD and SUB instructions (and
indirectly then the INC and DEC instructions). This did not
cause any difficulty, since by coincidence, these
instructions all used the AOP code in the ISP’ description
for their implementation. This gave us a ‘handle’ to
extract their functionality neatly. The same, however,
could not be said of other classes of instruction such as the
logical instructions (AND, OR, etc), which were
implemented directly by ISP’ operators as they were
decoded.

When we attempted to implement the flags in the ALU
we ran up against a similar problem. The setting of flags
was also spread out throughout the ISP’ code, and to
make matters even worse, it was context dependent. For
example, in determining whether to set the overflow flag
after an INCinstruction, advantage would be taken of the
knowledge that one of the operands was '1’, whereas
after an ADD, a more powerful test had to be carried out.
This caused great difficulty in trying to move the flag
functionality to the ALU.

In retrospect many of the problems recounted above
arose because of point 1. That is, we used a register
transfer model which was constructed solely for the
purposes of ‘emulating’ the behavior of an existing
microprocessor. Consequently, the description in no way
attempted to impose a design structure of the model’s
components. Thus, flag setting was done wherever
convenient. Had the TI9900 model been restructured to
impose a modular partitioning of functionality (or had it
been written that way to begin with), the design
methodology would have fared much better. One would
assume that in an actual design (as opposed to a model
written to emulate an existing component), the register
transfer description would reflect the modularization of
functionality.

We view the results of this experiment as encouraging
both in terms of the utility of multi-level modelling in the
design process, and in terms of the ease with which tools
can be modified so that they can provide multi-level
modelling facilities. Our future work will be moving the

289

multi-level modelling facilities to higher levels of
abstraction.

References

‘A Design Environment that Integrates Tools,
Database, and User Interface’,

A Hsu, L-H. Hsu , P Ulrich, ICCD Port Chester, NY
1984

‘Theorem Specification &Testing as an aid to Design
Verification’,
Michael Whelan, ICCD, Port Chester, NY 1984

‘An Introduction to the N.mPc
Environment’,

Frederic . Parke, 16th Design Automation
Conference, San Diego , June 1979

'ISP’ User’s Manual’,
Ralph Straubs, Computer Engineering and Science,
Case Western Reserve University, 1978

'The INMOS Hardware Description Language and
Interactive Simulator’,

B Collins & A Gray, VLSI 81, Academic Press, London
1981, Editor John P. Gray

[l

[2]

(3] Design

(4]

(5]

MICHAEL WHELAN

Michael Whelan received his Ph.D. in Electrical
Engineering from the state University of New York at
Stony Brook in 1982. Since then he has'been empioyed by
Slemens Corp. Research and Support in their Princeton
New Jersey research laboratory. He is an adjunct faculty
member in the computer science department at Stevens
Instutite of Technology. His professional affiliations
include the IEEE, the ACM and the New York Academy of
Sciences.

Siemens Corp.
105 College Road East,
Princeton, NJ 08540

(609) 734 6561

