Proceedings of the 1985 Winter Simulation Conference
D. Gantz, G. Blais, S. Solomon (eds.)

AN INTRODUCTION TO THE RESEARCH QUEUEING PACKAGE

Edward A, MacNair
IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

Abstract: The Research Queueing Package (RESQ) is a general purpose modeling tool for
constructing and solving extended queueing network models of computer systems, commu-
nication networks, automated manufacturing systems and other types of contention systems.
This paper is an introduction to RESQ which describes the basic model elements, submodels,
statistical output analysis and graphical results.

1. INTRODUCTION

The Research Queueing Package (RESQ) [5,6,9-16] is a
collection of programs for constructing and solving
extended queueing networks models. Queueing network
models [2,4,8] have been used to solve models of
computer systems, communication networks and manu-
facturing systems for many years. Extensions to
queueing network models permit more realistic repre-
sentations of complex contention systems. RESQ
contains a set of extensions in the form of several
high level modeling elements. RESQ models can be
solved analytically if they satisfy product form
restrictions., If these restrictions are violated,
simulation can be used to produce the performance
measures.

The solution techniques employ state-of-the-art
methods for solving the models. The analytic tech-
nique is the Mean Value Analysis algorithm [7]. The
discrete event simulation program employs several
methods to produce confidence intervals. Sequential
stopping rules and run length determination [3] are
also used.

Computer systems contain many complex resources and
algorithms. RESQ can be used to model many of these
complexities. Modeling elements are available for
representing memory constraints and allocation,
parallel operations, channel, control unit, head of
string and I/0 device contention, various scheduling
algorithms including priorities, buffered devices,
multiple workloads, synchronization of independent
tasks, multiple processors, buses and much more.

Communication networks are just as complicated.

RESQ can be used to study transmission lines, long
haul networks, local area networks, polling, pacing,
flow control, finite buffer space, store and forward

257

networks, transmission control units, remote
terminals, acknowledgements, time outs, packetizing
of messages, adaptive routing, CSMA/CD and token
protocols and many more features of these systems.

Automated manufacturing systems are also very
complicated systems. Modeling elements available
with RESQ can depict tools, machines, robots, bulk
arrival of jobs, machine failures, rework, work in
progress, buffers, merging and splitting of tasks,
storage areas, orientation procedures, batching of
jobs, transfer units, conveyor units and other
items.

Section 2 discusses the basic model elements of
RESQ. Submodels, which simplify model construction,
are presented in Section 3. The statistical output
analysis performed by RESQ is described in Section
4, Section 5 is a brief explanation of the types
of graphical results which are available with the
package. Section 6 illustrates a simple RESQ
example. The last section is a short conclusion.

2, BASIC MODEL ELEMENTS

Contention systems are collections of interconnected
resources through which basic entities (jobs) flow
and demand service. RESQ provides extensive facil-
ities for representing both the resource network

and the behavior of jobs within that netwokk. Models
can be solved by simulation, or where the model
structure, parameters, and assumptions permit, by an
analytical method.

In RESQ, system resources are represented by
"queues." Queues are grouped into two general
categories, "active" and "passive." Jobs in active

Edward A. MacNair

queues cannot interact with other model elements
while remaining in the queue. Those which visit
passive queues can simultaneously occupy other
system resources and perform other activities.
Active queues are further subdivided into types
based upon their service disciplines: first come
first served (FCFS), last come first served (LCFS),
priority (PRTY), preemptive priority (PRTYPR), infi-
nite server (IS), processor shared (PS), and a
generic queue type called ACTIVE. This last type
permits representation of active queues (such as
multiple server, shortest or longest remaining time
first, SRTF or LRTF) for which there is no pre-
defined RESQ queue entity. Associated with active
queues are one or more '"classes" (waiting lines)
which may be used to distinguish jobs with different
service time distributions and, where appropriate,
priorities.

Passive queues are used to model concurrency of
events. Each passive queue has an associated “token
pool." When jobs arrive at a passive queue, the
RESQ simulation program attempts to allocate a
user-specified number of tokens from the associated
token pool. TIf the pool does not contain the
required tokens, the job is delayed until they
become available. Passive.queues are often used for
modeling contention for shared resources such as
computer memory, input/output chanpels, controllers,
etc. Response time measurements and the representa-
tion of communication protocols are two additional
typical uses for passive queues.

The structure of a model is defined by linking
resources together by means of "chains." Chains
designate the permissible paths over which jobs can
be routed. Chains are either '"closed”™ or "open,"
and also either "external" or "internal." Closed
chains have a fixed "population" of jobs which circu-
late in the chain for the entire model execution
time. In general, open chanins contain a variable
number of jobs that are generated at input "sources"
to the chain and terminated at "sinks." External
and internal chains are used with "submodels," which
are parameterized templates of user defined subsys-
tems. External chains are connected to chains
within the exterior model (or submodel) that invokes
the submodel. Internal chains on the other hand .are
contained entirely within a submodel. Both external
and internal chains can be either open or closed;
however, an external chain is open (closed) if the
chain to which it is connected is open (closed).

Several RESQ entities are provided to add flexibility
in modeling alternative timings, configurations, job
routing, etc. 'Numeric' and "distribution para-~
meters" can be modified before each solution of a
model to test the effect of variations in arrival

and service rates and distributions, number of users,
memory size, etec. "Job variables' are associated
with each job to define its behavioral characteris-
tics, such as its "type", memory and service require-
ments, and routing decisions. 'Chain variables" can
be identified with each chain and are accessible

only to jobs within that chain. '"Global variables"
may be accessed from anywhere within their defined
(model or submodel) scopes to allow for communica-
tion between jobs and other RESQ entities. Job,
chain, and global variables are assigned values at
"set" nodes by "expressions' with rules closely
resembling those found in most programming languages.
In RESQ simulation models, expressions containing

258

job, chain, and global variables, can be used to
model status dependent assignments and decisions.

Some other RESQ entities are "split", "fission",
and "fusion" nodes which permit the splitting of
jobs into copies, another method for modeling
simultaneity as well as signaling between, and syn-
chronization of, processes. The split and fission
nodes create additional copies of a job passing
through the node; a fusion node joins those jobs
that have previously separated at a fission node.

A variety of measures are available for evaluating
system performance. Some of these include resource
utilization and throughput, mean queue length, queue
length distribution, mean queueing time, and queueing
time distribution. Similar output is also available
for the usage of passive queue tokens.

3. SUBMODELS

A submodel is a portion of a model containing
parameters which can be assigned values. A submodel
may contain any subset of resources present in the
model, and we may make one or more copies of the
submodel. One restriction is that a queue defini-
tion must be entirely contained within of a submodel.
Therefore, a queue may not be partially defined in
one submodel and the remainder defined in another
submodel or the outer model. Submodels can be used
to clarify the structure of a model, to avoid dupli-~
cation of effort within a model, to permit sharing
of parts of models, to introduce variability in the
model structure and, with decomposition, to solve
the submodel separately and replace the submodel
with a flow equivalent server.

The structure of the model can be clarified by
constructing submodels for the major subsystems to
be represented. The submodels can be used to repre-
sent high level abstractions of the subsystems
which can be easily connected to form the overall
system. If we have a model of a system which has a
CPU and an I/0 subsystem, we could comstruct a
submodel representing the CPU and another submodel
representing the I/0 subsystem. The I/0 could also
be decomposed into submodels nested within it
representing each 1/0 device.

If a model contains subsystems which are similar, we
could construct a submodel representing one copy of
the subsystem with parameters which will capture the
differences. Then the submodel can be duplicated
for each subsystem with different values supplied
for each copy of the submodel. In a communication
network with several similar host computers, a
submodel representing one host could be constructed
and easily duplicated for each host needed in the
model.

Many models contain subsystems which are similar to
those used in other models. Submodels faciliate the
use of portions of models. If a submodel of a CPU
with round-robin scheduling has been constructed,
this submodel can be used in many different models.

Hierarchical decomposition is a widely used technique
for simplifying the solution of certain types of
models. The model is decomposed into one or more
submodels which are solved separately without the
remainder of the model. Results from the submodel
solution are used to characterize a flow equivalent

An Introduction to the Research Queueing Package

server which is used in place of the submodel in an
aggregate model. The flow equivalent server is
usually a queue dependent server with the service
rates a function of the queue size. This decompo-
sition and substitution can be accomplished by
using any solution technique for solving the sub-
models and the aggregate model.

Very frequently models have a requirement for having
a variable number of resources. The number of
resources can be specified as a model parameter,

and a submodel can be built to represent one of the
resources. RESQ permits an arbitrary number of
copies of the submodel to be created based on the
value of a model parameter. A simple example of
this is a model of an I/0 subsystem which we want to
evaluate for a variable number of I/0 devices. This
can be easily represented by using a submodel of one
device and making a variable number of copies of it
using an invocation array. Node and chain arrays
are also useful for introducing variability in the
model structure.

4. STATISTICAL OUTPUT ANALYSIS

Since simulation is equivalent to a statistical
sampling experiment, RESQ makes available three
methods for generating confidence intervals for
performance measurements. Under the "independent
replications” method, the simulation is executed
several (user specified) times with different
sequences of random numbers. An "initialization"
period may be specified for each replication; data
collected during this period will be discarded when
calculating output statistics. The effect of
transient results may thus be minimized, permitting
model equilibrium to be better approximated. A
confidence interval with a (user) specified confi-
dence level is then calculated after all replica-
tions have been completed. The “spectral" confi-~
dence interval method [1] uses the correlation
properties of sequential values of the measured
parameter instead of relying solely upon the
assumption of independence. It too provides options
for specifying a confidence level, run limits, and
initialization period, as well as a sequential
stopping rule whereby the user designates a confi-
dence interval width criterion for terminating the
simulation. The "regenerative" method [4,8] has
some very special requirements for its use. A state
in the model must be identified at which the system
"regenerates." That is, the future behavior of the
system is independent of all states prior to
entrance into the regeneration state. The regen-—
erative method provides all the options of the
spectral method except for intialization period
specification.

5. PARAMETRIC SOLUTIONS AND GRAPHICAL RESULTS

RESQ can be used to perform multiple solutions of a
model, possibly over a large parameter space. The
solutions can be accomplished using an analytic
method or by simulation. The data extracted from
these solutions will normally be passed to the next
phase which plots the data. Part of the interactive
dialogue associated with performing the parametric
solutions is related to the grouping of the data

for subsequent plots. The data can be grouped into
multiple plots, and each plot may contain multiple
curves on it.

259

The points on the x-axis of each curve represent
information from different model solutions.
Corresponding points from different curves can
contain results from the same model solutions or
from different model solutions. Model solutions
with different parameter values are specified with
the parametric solution command by using a numeric
parameter as a variable for the X-axis values of the
plots. The values of the numeric parameters
associated with the axes can be specified as a list
of values or in a type of loop notation. The loop
notation provides a starting value, an ending value
and an optional increment. Other model parameters
which are not associated with either axes are also
given values. Their values will remain fixed for
all of the solutions.

Each point to be plotted can be specified by an
arithmetic expression involving RESQ performance
measures and constants. An expression can simply
refer directly to a standard RESQ performance
measure, like the utilization, throughput, gqueue
length or queueing time. It can also combine
performance measures, numeric parameters and
constants with arithmetic operations to calculate
results which are not normally available.

The command for performing the parametrie solutions
is interactive and prompts the user for the required
information for solving a specified model. The
usual RESQ results from each solution may be
examined. The command produces a file containing
the interactive dialogue seen at the terminal and

a file of data to be plotted. The plotting file is
provided as a link to the next phase, but this file
can also be used by other plotting packages. In
addition to answering the prompts interactively, the
user can supply a file containing some or all of the
responses. Thils can reduce the necessity of answer-
ing the questions interactively and provides for
ease of repeatability and future changes.

The graphical display of the results is produced in
the second phase., There are several reasons for
separating the two phases. The main reasons are for
ease of revising the plots without having to solve
the model again and to provide a means of using
other plotting routines. The RESQ plotting command
provides an interactive dialogue mode for specifying
the format of each plot.

The user can specify the number of plots to display
on the same screen. For each plot, minimum and
maximum coordinate values can be specified. If any
of these are not given, they are determined from the
data. Plot labels can be given. These include a
plot heading, a legend for each curve, a color for
each curve, coordinate labels and the use of linear
or logarithmic plotting scales. Since the plotting
is independent of the solution phase, the plots can
be reviewed and easily modified at little computa-
tional expense.

Just as with the evaluation phase, the plotting
phase produces a file as input containing the inter-
active dialogue of the plots produced and a file
containing the plots themselves. The plotting
command can also use a file as input which contains
some or all of the responses for the prompts. There
are default values for most of these prompts, so a
null response can be given when the default is
desired. :

Edward A. MacNair

6. EXAMPLE

In this section we present a simple example to
illustrate some of the features of RESQ. It is a
model of an interactive computer system. The SETUP

command, which is used for constructing the model,
can be used in an interactive fashion. The charac-
ters to the left of a colon are a prompt, and the
information on the right of a colon is the user's
response.

The program first prompts for the solution method and
then the queue definitions. Active queues are used
for the CPU, I/0 devices and the terminals. A
passive queue is used to represent memory contention.

setup csmtm
METHOD: simulation
QUEUE: cpug
TYPE: active
DSPL: ps /**processor sharing */
CLASS LIST: cpu
WORK DEMANDS: .004
SERVER-
RATES: 0.2
QUEUE: disklq
TYPE: fcfs
CLASS LIST; diskl
SERVICE TIMES: .044
QUEUE: disk2q
TYPE: fefs
CLASS LIST: disk2
SERVICE TIMES: .008
QUEUE: terminalsq
TYPE: is
CLASS LIST: terminals
SERVICE TIMES: 5
QUEUE: memoryq
TYPE: passive
TOKENS: 4 /% memory partitions */
DSPL: fefs
ALLOCATE NODE LIST: allocmem
NUMBER OF TOKENS TO ALLOCATE: 1
RELEASE NODE LIST: relsemem

Next comes the chain definition. We are using a
closed chain with the number of customers equal to
the number of terminals. The routing information
specifies how the jobs move. The two characters ->
are used to represent an arrow for transtions from
one node to another. Notice that arithmetic
expressions can be used where a number is expected.

CHAIN: chainl
TYPE: closed
POPULATION: 15
: terminals->allocmem—>cpu
: cpu->diskl disk2;.2 .8
: diskl-Dcpu relsemem;19/20 1/20
: disk2->cpu relsemem;19/20 1/20
: relsemem-Dterminals

The end of a simulation model contains some informa-
tion about performance measure distributions, confi-
dence interval method and run length.
QUEUES FOR QUEUEING TIME DIST: memoryq
VALUES: 3.5
CONFIDENCE INTERVAL METHOD: regenerative
REGENERATION STATE DEFINITION-
CHAIN: chainl
NODE LIST: terminals

260

REGEN POP: 15
INIT POP: 15
CONFIDENCE LEVEL: 90
SEQUENTIAL STOPPING RULE: yes
QUEUES TO BE CHECKED: memoryq
MEASURES: qt
ALLOWED WIDTHS: 10 /* percent */
SAMPLING PERIOD GUIDELINES-
SIMULATED TIME: 7200
QUEUES FOR DEPARTURE COUNTS: memoryq
DEPARTURES: 1000
LIMIT-CP SECONDS: 12
TRACE: no
END

The following results were obtained for this model.
After the simulation stops, some summary statistics
are produced. This is a very short rumn, and some
of the confidence intervals are not very accurate.

eval csmtm

RESQ2 VERSION DATE: MARCH 11, 1985 -
TIME: 19:30:50 DATE: 03/19/85

SAMPLING PERIOD END:
MEMORYQ DEPARTURE GUIDELINE

RUN END: CPU LIMIT

NO ERRORS DETECTED DURING SIMULATION.
303 DISCARDED EVENTS

SIMULATED TIME: 480.37329
CPU TIME: 12.03

NUMBER OF EVENTS: 41553
NUMBER OF CYCLES: 68

Following the summary statistics, any or all of the
performance measures may be examined. Here we
display most of the interesting results.

WHAT: allbo

ELEMENT UTILIZATION

MEMORYQ 0.78078(0.73426,0.82730) 9.3%
CPUQ 0.84243(0.81367,0.87118) 5.8%
DISK1Q 0.37477(0.35695,0.39258) 3.6%
DISK2Q 0.27064(0.26084,0.28044) 2.0%
TERMINALSQ 0.00000(0.00000,0.00000)
ELEMENT THROUGHPUT

MEMORYQ 2.18372(2.10055,2.26688) 7.6%
CPUQ 42.1588(40.7757,43.5419) 6.6%
DISK1Q 8.44135(8.05874,8.82396) 9.1%
DISK2Q 33.7175(32.5968,34.8381) 6.6%
TERMINALSQ 2.18372(2.10055,2.26688) 7.6%
RELSEMEM 2.18372

ELEMENT MEAN QUEUE LENGTH

MEMORYQ 4.47174(4.00841,4.93508) 20.7%
CPUQ 2.20322(2.05684,2.34960) 13.3%
DISK1Q 0.56167(0.52065,0.60268) 14.6%
DISK2Q 0.35824(0.34142,0.37507) 9.4%
TERMINALSQ 10.5282(10.0649,10.9915) 8.8%
ELEMENT STAND. DEV. OF QUEUE LENGTH
MEMORYQ 2.65582

CPUQ 1.38729

DISKIQ 0.86496

DISK2Q 0.67021

TERMINALSQ 2.65582

An Introduction to the Research Queueing Package

ELEMENT MEAN QUEUEING TIME 3.
MEMORYQ 2.04777(1.82202,2.27351) 22.0%
CPUQ 0.05226(0.04998,0.05454) 8.7%
DISK1Q 0.06654(0.06345,0.06962) 9.3%
DISK2Q 0.01062(0.01042,0.01083) 3.9%
TERMINALSQ 4.82125(4.54008,5.10242) 11.7% 4.
ELEMENT STAND. DEV. OF QUEUEING TIME
MEMORYQ 1.76652
CPUQ 0.05813 5.
DISK1Q 0.06730
DISK2Q 0.01063
TERMINALSQ 4.69089
6.
ELEMENT MEAN TOKENS IN USE
MEMORYQ 3.12313(2.93705,3.30921) 11.9%
ELEMENT MEAN TOTAL TOKENS IN POOL 7.
MEMORYQ 4.00000
ELEMENT QUEUEING TIME DISTRIBUTION
MEMORYQ 3:0.76454(0.72093,0.80815) 8.7% 8.
5:0.93804(0.92105,0.95502) 3.4%
ELEMENT MAXIMUM QUEUE LENGTH
MEMORYQ 12 9.
CPUQ 4
DISKI1Q 4
DISK2Q 4
TERMINALSQ 15
10.
ELEMENT MAXTMUM QUEUEING TIME
MEMORYQ 11.11583
CPUQ 0.56125
DISK1Q 0.50105 11.
DISK2Q 0.09635
TERMINALSQ 38.15923
WHAT:
CONTINUE RUN: no 12.

7. CONCLUSION

RESQ provides efficient and accurate model solutions

with very useful simulation output analysis. It 13.
facilitates the accurate representation of systems

with extended queueing network model elements. The

user interfaces increase productivity through inter-

active and file modes of model definitions, submodels

and interactive simulation. 14,

ACKNOWLEDGEMENT

We are particularly appreciative of the contributions

of Charles Sauer to this work. Most of the concepts 15.
and some of the examples in this report are his, and

the reader can assume in most cases they were origi-

nated by Sauer, with some assistance from us. We

are grateful to the many colleagues and RESQ users

who have helped us in this work and contributed to

RESQ in general. 16.

REFERENCES

1. P. Heidelberger and P.D. Welch, "A Spectral
Method for Confidence Interval Generation and
Run Length Control in Simulations," CACM 24,4,
April 1981, pp. 233-245.

2. H. Kobayashi, Modeling and Analysis: An Introduc-

tion to System Performance Evaluation Meth-
odology, Addison-Wesley, 1978.

261

S.8. Lavenberg and C. H. Sauer, "Sequential
Stopping Rules for the Regenerative Method of
Simulation,™ IBM J. of Research and Development
21,6, November 1977, pp. 545-556.

S.S. Lavenberg, Editor, Computer Performance
Modeling Handbook, Academic Press, New York,
1983.

E.A, MacNair and C. H. Sauer, '"The Research
Queueing Package: A Primer." Proceedings of
SHARE60, February 1983, pp. 29-37.

E.A. MacNair and C. H. Sauer, Elements of
Practical Performance Modeling, to be published
by Prentice-~Hall, Englewood Cliffs, N.J., 1985.

M. Reiser and S.8. Lavenberg, '"Mean Value
Analysis of Closed Multichain Queueing Networks,"
JACM 27, 2, April 1980, pp. 313-322.

C.H. Sauer and K.M. Chandy, Computer Systems
Performance Modeling, Prentice-Hall, Englewcod
Cliffs, N.J., 1981.

C.H. Sauver and E.A. MacNair, "The Research
Queueing Package Version 2: Availability Notice,”
IBM Research Report RA-144, Yorktown Heights,

New York, August 1982. :

C. H. Sauer and E.A. MacNair, Simulation of
Computer Communication Systems, Prentice-Hall,
Englewood Cliffs, N.J., 1983.

C.H. Sauer, E.A. MacNair and J.F. Kurose, "The
Research Queueing Package Version2: Introduction
and Examples;" IBM Research Report RA-138,
Yorktown Heights, New York, April 1982.

C.H. Sauer, E.A. MacNair and J.F. Kurose, '"The
Research Queueing Package Version 2: CMS Users
Guide," IBM Research Report RA-139, Yorktown
Heights, New York, April 1982.

C.H. Sauer, E.A. MacNair and J.F. Kurose, "The
Research Queueing Package Version 2: TSO Users
Guide," IBM Research Report RA-140, Yorktown
Heights, New York, April 1982.

C.H. Sauer, E.A. MacNair and J.F. Kurose, "The
Research Queueing Package: Past, Present and
Future," Proceedings of the National Computer
Conference, June 1982, pp. 273-280.

C.H. Sauver, E.A. MacNair and J.F. Kurose,
"Queueing Network Simulations of Computer
Communication," IEEE Journal on Selected Areas
in Communications, Vol. SAC-2, 1, January
1984, pp. 203-219.

C.H. Sauer, E.A. MacNair and S. Salza, "A
Language for Extended Queueing Network Models,"
IBM J. of Research and Development 24,

6, November 1980, pp. 747-755.

Edward A. MacNair

262

EDWARD A, MACNAIR joined IBM in 1965. He has been

on the research staff in the Computer Science
Department at the IBM Thomas J. Watson Research
Center since 1973. He is currently in the Modeling
and Analysis Software Systems project developing
modeling programs to solve extended queueing networks.
In addition, he is an adjunct staff member at the

IBM Systems Research Institute, where he teaches a
course related to performance modeling. He is one

of the developers of the Research Queueing Package
(RESQ), a tool for the solution of generalized
queueing networks. He is a coauthor with Charles H.
Sauer of Simulation of Computer Communication Systems,
Prentice~Hall, 1983 and Elements of Practical
Performance Modeling, to be published by Prentice-Hall,
1985. He holds an M.S. degree in Operations Research
from New York University and is a member of ACM and
ORSA.

Dept. 541, Loc. 81-S03

Thomas J. Watson Research Center
P. 0. Box 218

Yorktown Heights, NY 10598
(914) 945-1447

