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ABSTRACT

This paper develops a three-stage procedure for valldating
the use of the Schruben-Margolin correlatlon Induction stra-
tegy together with the follow-up analysls of Nozarl, Arnold,
and Pegden In a slmulation experiment designed to estl-
mate a general linear model for the simulation response.
Each stage of the procedure tests a key assumptlon about
the behavlor of the response across all polnts In the design.
The first stage tests for multlvariate normallty, the second
stage tests for the Induced covariance structure postulated
by Schruben and Margolin, and the third stage tests for the
adequacy of the proposed llnear model. Because the test In
each stage presupposes the propertles tested In previous
stages, these diagnostlec checks on the experimental deslgn
and analysls must be performed In the Indlcated order.

1. INTRODUCTION

The Schruben-Margolin correlation Inductlon strategy (1]
for the design of simulation experiments utilizes the varl-
ance reductlon technlques of common random numbers and
antithetlc varlates In a scheme based on the concept of
blocking. Thls strategy has been shown to satisfy a varlety
of optimality criterla for a broad class of experlmental
designs [2]. Conslder the situation In which each simulation
run ylelds a unlvarlate response, y. A particular run, called
a design point, 1s ldentlfled by the settlngs of d factors or
declslon varlables, denoted by 7, that are used as Inputs to
the simulation model. In general, the relation of the
response to the level of the d factors has the form:

y=u(n) + € , (1.1)

‘where ¢ represents the lnabllity of u to determine y. Schru-
ben and Margolin assume g Is llnear in the unknown
parameters that relate the response to the factor settings.
If m deslgn polnts constitute the simulation experiment,
then the llnear model has the form:

p-1
¥i=bo + 32 Bx(n) + ¢ fori=1,2,..,m , (1.2)
k=1

where y; Is the response for the I'th deslgn polnt, 7; 1s the
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settlng of the d factors for the I'th deslgn polnt, the
{%x : k=1, 2, ..., D} represent known functions of the factor
settings, and the {fy : k=0, 1, ..., p~1} are model parame-
ters. Let  Y=(y,¥o s ¥m)s  O==(By Bys +s Bp1)s
€==(€, €5, e, €p)'; and define X to be the (mxp) matrix
whose flrst column 1Is all ones and whose (1,k+1) element Is

X(n) (for 1=1,2,..,m and k=1,2,..,p-1). Thus the
model in (1.2) can be written:
Y=XF+¢ . (1.8)

The varlance of ¢ (for 1=1, 2, ..., m) Is denoted by ;2 and
the varlance-covariance matrix of Y 1s denoted by .
Schruben and Margolin [1] also assume that

m
Sxp(n)=0 for k=1, 2, ..., p-1 .

f==1

A. convenlent notation Is to wrlte the design matrix X as
(1, T), where 1, 1s an (mx1) column vector of ones.

The Schruben-Margolin correlation Induction strategy is
deslgned for the speclal case where X 1s orthogonally block-
able Into two blocks. The number of design polnts In each
block 1s the block size. Suppose that the deslgn matrix
X=(1y T) satlsfles T'1,=0,_,, a (p-1)-dimenslonal column
vector of zeros. This design is orthogonally blockable Into
two blocks If there exlsts an (mx2) matrix W of zeros and
ones such that T"W=0 and 1,'"W=[m,, m,], where m,
and m, are the respectlve block sizes. For thls sltuation,
Schruben and Margolin proposed the followlng asslgnment
rule {1]:

If the m-point experlmental deslgn admits orthogo-
nal blocking Into two blocks of slzes m; and m,,
preferably chosen to be as nearly equal ln slze as
posslble, then for all m, deslgn polnts In the frst

block, use a set of pseudorandom numbers
R=(r, 15, **-), chosen randomly, and for all m,
d_eslgn polnts In  the second Dblock, use

Re=(1-1y, 1-15, * -

).

To analyze the properties of this asslgnment rule, Schruben
and Margolin made the following assumptlons:
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1. The response varlance Is constant across all polnts in the
design, that is,

of=Var(y;)=Varly;(R)]=0? fori1=1,2,...,m .

2. The responses y; and y; are uncorrelated if they are
obtalned with different random number streams:

R, R* independent =¥ Corr(y;, yj)=Corr[y;(R), y;(R*)=0 .

3. I y; and y; (for 154]) are obtalned with the same random
number stream, then

corr[yi(R)r y](R)]=p11 0<,01<1 .

4. If y; and y; (for 174)) are obtalned from antithetic (com-
plementary) random number streams, then

R, R antlthetic =+ Corrfy;(R), yj(I_l)]=p2, 0<-po< py

Let X (for 1=1, 2) represent the deslgn matrix for the I'th
Xl
X
then these assumptlons lead to the followlng structure for
the varlance-covarlance matrlx, I:

2 E11 212
=0
)321 E22

where I,; is an (m,xm,) matrix with ones on the maln
dlagonal and p; off the maln dlagonal, 3, Is an (m,xm,)
matrix with all elements equal to py, Ty,= Iy, and Sy, Is
like ©,, except that 1t is (myxm,). Nozarl, Arnold, and
Pegden [3] derlved appropriate methods for statistical
analysls under the Schruben-Margolln correlation Inductlon
strategy when the block sizes are equal:
Q=m,=m, = m==2q .

They consldered separate and slmultaneous Inferences on
Bo and (B, Byy ooy Pp-1)- In addltion to the assumptions
already mentloned, Nozarl, Arnold, and Pegden assumed
that r independent replications are made at each of the m
deslgn polnts. Let y==(¥i;, Yigs «-» ¥im) TeDresent the m
responses for the I'th replication. Then
Y=, ¥,s . ¥') Is an (('m)x1) dimenslonal vector of
responses for the overall experlment. Nozarti, A}'nold and
Pegden also assumed that the responses on each replication
are Jolntly normal:

block. If the design polnts are so arranged that X—

(1.4)

¥i~Np(Xg, £) forl=1,2,..,r . (1.5)

2. THE VALIDATION PROCEDURE

In order to valldate the use of the Schruben-Margolln corre-
lation Induction strategy and the follow-up analyslis of
Nozarl, Arnold and Pegden, a prellminary (or pilot) experl-
ment should be performed so that the followlng dlagnostic
checks can be made:

1. Test for multivariate normality:
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Hy: yi~Np(py, £,) with
Ly=E(y;), Zy=Cov(y,) unspeclfied;

versus (2.1)

H;: y; has any m—dlmenslional distribution.

2. Test for the Induced Covariance Structure:

Hy: Cov(y)=2 as In (1.4)
with o2, p,, p, unspeclfled;

versus (2.2)

H,: Cov(y;) Is positlve definlte.

8. Test for Lack of Fit in the Linear Model:

Hy: Ely]=Xf vs H;: E[y]##£X8 . (2.3)

If all three null hypotheses are accepted, then we have some
basls for deslgnlng the maln experlment with the
Schruben-Margolln correlation Induction strategy and for
using the follow-up analysls of Nozar!, Arnold and Pegden.
If one or more of the tests leads to relectlon of the
corresponding null hypothesis, then this information can be
used to take sultable corrective actlon. For example,
departures from normallty and/or the assumed covarlance
structure may Indlicate the need for an appropriate
transformation of the original observatlons [4]. Moreover,
lack of it In the postulated linear model may call for the
Incluslon of higher-order terms In the model. We now dis-
cuss each of these tests In detall.

2.1 Test for Multivariate Normality

Because the Shaplro-WIllk test has proved to be a superior
omnlbus test for unlvarlate normallty [5], we sought an
appropriate multlvarlate extenslon of this procedure. Our
computatlonal experience -with versions of the multlvarlate
Shaplro-Wilk test due to Malkovich and Afifi (8, 7] and
Royston [8] led us to adopt the former procedure as
descrlbed below.

In terms of the sample statistics

=Sy, A=DOTET) . @4

=1 =1

we 1dentlfy the observation yle{y,
which

: 1=1,2,..,r} for

-y Ay -y)= max{ Ay F): 1=1,2, .., r}

(2.5)
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‘We then compute the varlates

z2,=-FA Ny F) 1=1,2,.,T (2.8)
and let
Z(l) < Z(2) < .ne < Z(l‘)
denote the corresponding order statistles. Let {a;:

1=1, 2, ..., r} denote the coeficlents of the univarlate
Shaplro-Wllk test for & random sample of size r. The {2}
can be obtained by calling subroutine WCOEF descrlbed In
[5]. The statlstic for the multlvariate Shapiro-Wilk test Is

then given by
r 2
>3 2%
. i=1

= e——— 2.7
t-FyA- iyt &1

The computed W* Is referred to a table of critlcal values
glven in [8].
2.2 Test for the Induced Covariance Structure
Conslder the hypotheses

H,: Cov(y;)=X vs H;: Cov(y,;) Is posltive definlte .

Let T denote the following (mxm) matrix:

[ !
m 1q m 1q
-1 [y
2y ! 24 1
m °*1y -m 1q
D= c/ o , (2.8)
O (o)

where Cg is a (gx(g-1)) matrix such that the (gxq) matrix
1

fq Elq Cq Is orthogonal (3]. Also, let y*=Ty; (for
1=1, 2, ..., ). If the null hypotheses (2.1) and (2.2) are
both true, then

Vi ~Np(p*, %) for1=1,2,..,r ,

2.9
where p*=TE(y;) Is unspecified but T*=I'SIV. (2.9)

Nozarl, Arnold, and Pegden [3] note that, since the
transformation from y to y* Is Invertlble and does not
Involve any unknown parameters, any hypothesls-testing
procedure based on y* which Is optlmal among procedures
based on y* Is also optimal among hypothesis-testing pro-
cedures based on y.

Under the null hypotheses (2.1) and (2.2), 1t can be shown
(3] that
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N O 0
=0 X, O ) (2.10)
0 0 NI,

where
A=t + (a-1)p; + apy] ,
=01 -+ (a-1)p, - ap,] ,
Ag==0%(1 - py) .

In view of (2.9), the maxlmum likelthood estimators of X,
Ag, and Xg are

X=rA} (2.11)
Rg=1"A% (2-12)
fe=I[r(m-2)] Hr(Ad) (2.13)
where
Al Ap A
Al=|Af, Ajp A%
Agi Agy Ags
and
A*=TAT'=T l:.il(Yi_y)(}'i_yy] . (2.14)
=

Thus the llkellhood ratlo statistic for testing H, versus H;
In (2.2) Is:

I
—1 A * 5
L= dMEA) )2 (2.15)
ARAg
If H, s true and r1s large, then
-2In(L)~X%m(m+1)/2 — 3] (2.16)

(see [9]). Thus, we relect Hy In (2.2) at the significance
level o if -2in(L) exceeds the (1-a)** quantlle of the chi-
square distributlon with m(m+1)/2 - 8 degrees of freedom.

Thls test can be wrltten In terms of the orlginal responses,
Vijk» Where yjp Is' the K'th response In the J'th block of the

Vth replication (for i=1,2, ..., r;}=1, 2; k=1, 2, ..., q).
Deflne
= ! = e - Loz
yij.=q E yﬁk ? yl..=2 Ey”. » Y,..T 3 Eyllo
k=1 j=1 =1
(2.17)

The MLE of A;, Xg and X In terms of the orlginal
responses, are:

(2.18)

joo Voo

N T
MN=r'mF . F.° .,
=1

j=
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x2=(2r)—1qi§ (0, T T TP, (@10)
=]
¢ Im@E-1)® - r(845,)
Ag= o) — (2.20)
‘where
T 2
=m0 5 N T, - (221)
=1 j=1 k=1

Equatlons (2.18) and (2.19) follow directly from results
given In [3]. Equation (2.20) defines a pure error sum of
Squares that ls analogous to0 2 quantity derlved In [8] but
that Is free of any blas due to Inadequacy of the postulated
linear model (1.5). Thus, we have removed any effects due
to lack of fit from the test for the Induced covarlance struc-
ture.

2.3 Test for Lack of Fit in the Linear Model

Conslder the test Hy: Ely]=Xp vs H;: E[y)#Xf , where
X has rank p (<m). Thls 1s equlvalent to testing for

Hyp: Bly*|=I'Xf vs H;: Bly*}#4I'X0 . (2.22)
If we write
Vit
¥i*=|v3 |, where y% s (m—2)x1), 1=1, .., r (2.23)
¥

and f=(f,, B,") where f, Is ((p-1)x1), then testing (2.22) is
in turn equlvalent to performing the followlng two tests
independently:

Hy: Elygl=0 vs H;: Blygl540 (2.24)
C{ o

Ho: Efyigl= 0o ¢ TS,

versus (2.25)
c o

H;: Efyls 0o ¢ Th,

To achleve an overall level of signlficance o Iln testing for
(2.22), we perform the tests (2.24) and (2.25) each at the
slgnificance level

ol

d=1-(0-a) . (2.268)

In terms of the original data, we reJect Hy In (2.24) It
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T > t’1—6(1'_1)

- .1.—v.2.)12}”

{re-vr S50
i==1
(2.27)

where t;_s{(r-1) is the (1-6)® quantile of the student-t distri-
bution with r-1 degrees of freedom. To test for lack of fit
in (2.25), we take

r
sso= 31 Iy XA | (2.28)
=1
. T 2
SSg=SSp-a}; NG,7F..)° . (2.29)
1=1 j=1
dfg=mr-p-2r+1 , (2.30)
SSgg=r(m-2)%; , and (2.31)
dfgp==2(a-1)}(r-1) ; (2.32)

then we reject Hy in (2.25) If

(SSE-SSgg)/(Afg-dfgE)
SSpg/digy

> F_s(dfg—dfgg, digy) (2.33)

where F,_s(dfg—dfgs, dfgg) 1s the (1-6)% quantlle of the F-
distributlon with dfg—-dfgy and dfgy degrees of freedom.

3. EXAMPLE
Conslder the job shop example glven by Nozarl, Arnold,

and Pegden (3] consisting of elght deslgn polnts and ten
replications. The (8x8) deslgn matrix Is:

11 -1 1 1 -1 -1]
1-1 1 -1-1 1 -1
1 1 -1-1-1-1 1
11 1 1 1 1 1
X=|; 11 -1 11 1 (8.1)
1-1 1 1 -1-1 1
1 1 -1 1 ~1 1 -1
|1 1 -1 1 -1 —1]

This design matrix has rank 7 and Is orthogonally blockable
Into two blocks of slze 4. Therefore, In obtalning the data,
Nozarl, Arnold and Pegden employed the Schruben-
Margolin correlation Induction strategy. The responses are
given in the followlng table:
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Table 1: Observed Values of the Response

Replication (i)
Block() I%; | X [ X3 {1 ] 2|3 | 4|5 |6 ]|7]8] 910
1 -1 -1 1 17 8 23 34 30 43 12 11 17 28
1 -1 1 |--1 6 9 16 20 21 44 7 13 18 19
1 -1 -1 15 5 19 32 28 41 8 11 17 25
1 1 1 1 0 0 12 27 17 27 0 8 15
2 -1 -1 -1 27 27 19 16 14 11 17 23 25 27
2 -1 1 1 15 20 10 6l 5 2 12 13 14 15
2 1 -1 1 19 25 16 13 7 9 15 21 21 23
2 1 1 -1 24 18 10 9 9 0 8 8 10 19

‘We note that, for thls example, r=10, m=S8, and p=7.
The least squares estimate of 3 Is:

ﬁ:“(ﬁor ,Bl, ey ﬁs)’=

==(28.125, -3.150, -1.250, 1.550, -.700, .800, -3.200)" .
‘We now apply the valldatlon tests to this example.
3.1 Test for Multivariate Normality
Because Malkovlch's tabulatlon [8] of critlcal values for the
multlvariate Shaplro-Wilk test statistle (2.7) Is limited to

dlmenslonallties from 2 to 5, we performed thls test using
only 2 deslgn polnts from each block as shown in Table 2.

Table 2: Deslgn Points Used in the Test
for Multlvarlate Normallty

Block ||X3 X, X3
1 -1 1 -1
1 1 1 1
2 -1 -1 -1
2 1 -1 1
The computed value
W* = 0.8945

15 not significant even at the «=0.25 level. Thus, we
concluded that there is no signlficant departure from mul-
tivarlate normallty In the simulation response and that 1t is
reasonable to proceed with the subsequent steps of the vall-
datlon procedure.

3.2 Test for the Induced Covariance Structure
Since the test for normallty was accepted, we then per-
formed the test for the Induced covarlance structure as

given In section 2.2. Equatlon (2.21) ylelded

5°=81.783 .
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Then, from equations (2.18), (2.19), and (2.20), we obtained:
X,=113.330, \,=437.200, %,=6.385 .

From the sample covarlance matrix given In [3] we calcu-
lated that

det(rtA*)=det(r ' A)=122,769.248 .

Substitutlon of these values Into (2.15) gave
1.=—6.5388x1072%, which, in turn, resulted in the following
value for the test statlstic

-2In(L)=102.1834 .

Now the quantlle of order 0.9995 for a chl-square distribu-
tlon with 33 degrees of freedom Is

Xcws(33) = 668.4 ;

thus we conclude that the assumptlons regarding the
induced covarlance structure are not satlsfled. DBefore
further analysls can be performed, an appropriate
variance-stabilizing transformation [4] should be applled to
the origlnal data.

4, CONCLUSIONS

The valldatlon procedure developed In thls paper provldes
practitioners with standard statlstical measures of the
extent to which a proposed simulatlon experiment 1s amen-
able to the applicatlon of the Schruben-Margolin correlation
induction strategy together wlth the follow-up analysis of

Nozarl, Arnold and Pegden. Fallure of any of the proposed
dlagnostic checks may indicate the need for an appropriate
corrective actlon before further development of the experl-

mental design.
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