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ABSTRACT

This paper offers a solution to the simulation model decom-
position problem discussed brlefly In Overstreet and Nance
[1] and elaborated in detall in Overstreet [2]. The solution
scheme Involves the use of principal components analysls.
‘We offer an example of the technlque on a simple directed
graph and then demonstrate the method on a small model
given In Overstreet [2].

INTRODUCTION

In moving toward a model development environment for
discrete event slmulation, Overstreet and Nance [1] have
advanced a model speclfication language to systematlcally
bridge the gap between a conceptual model and an execut-
able representation of that model. In dolng so, they Intro-
duce a formalism based on a condition specification. They
demonstrate contributions of thelr model specification
language to slmulation theory and polnt out the utllity of
the formalism In an Implementation enviroment.

One Important area of application Is the decomposltion of
models. Slmply put, given a model specification, how to
systematlically decompose this representation Into possible
submodels? If a large model speclfication can be decom-
posed Into submodels, thls would facllitate model Imple-
mentation because the task could be divided between pro-
grammlng groups. Overstreet [2] puts forth a framework
for model decomposition, using a Cluster Interaction
Graph. This directed graph represents a condltion
‘speclfication by nodes In a graph. The nodes represent
."actlon clusters” constructed with the primltives of the
specificatlon language. These action clusters are llnked
through attributes. Attributes characterize oblects In the
model, and a change of an attribute In one cluster can
trigger the actlons of another cluster. Say for example, In a
model speclfication of a machline shop, a machine falls In an
actlon cluster. The fallure Is reflected as an attribute
change and thls In turn triggers the activities of another
cluster. In this fashlon, Overstreet links model actlons to
model attributes. He reasons that a link exlsts between
actlon clusters when an output attribute for one cluster
serves as an Input/control attribute for another cluster.
Further, actlon clusters with a hlgh degree of interaction
ought to be In the same component of the model. Now,
within the Cluster Interaction Graph thls "flow” of Infor-
mation between the nodes Is represented by arcs. Over-
street suggests that the graph can be decomposed Into two
minimallv nteractive submodels b.y partitionlng the graph

into a palr of nonempty subgraphs with a minimal number
of arcs connectlng them. This problem has a complexity of
2N (where N Is the number of nodes). Another unfortunate
feature of thls cutset approach is that it offers no stopplng
rule.

‘We propose a solution to this problem which is not of high
order complexlty and has a bullt-ln stopplng rule. The
Cluster Interactlon Graph Is reformulated Into an assocla-
tlon matrix and a factor analytic method Is applied to the
matrix. Thls technlque 1s slmllar to that found In Garrison
and Marble (3]; thelr research dealt with transportatlon net-
works. Another applicatlon of this technique is found in

‘MecClaln [4].
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The assoclatlon matrlx entries represent the strength of
relatlonships between the nodes. It Is based on the number
and direction of attributes they share. The eigenvalues and
assoclated elgenvectors are extracted from the assoclation
matrix and then rotated to a solutlon best exhibitlng the
”slmple structure” (In the sense of Thurstone (Indirectly
referenced through McNichols [5]) the model may exhibit.

‘We show an example of the technique on a slmple directed
graph and then demonstrate the method on an example
from Overstreet [2)].

A SIMPLE EXAMPLE

Conslder the following slmple directed graph.

Flgure 1. Simple Graph
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Assume that the numbers assigned to the ares represent the
amount and dlrection of informatlon that Is shared between
nodes. Visually assessing this graph, one sees that there are
basically three subgraphs. Nodes 1,2, and 3 form a loglcal
subgraph, as do nodes 3,4, and 5, as well as nodes 8,7, and
8.

‘We may construct an edge-incldence matrix E as follows.
If node 1 communlcates with node j, then E can be con-
structed by

Edge (L)) =k

Node 1 ——1

1

Next construct the matrix A = E W WT ET, where W is a
welghting matrix. Varlous welghting schemes are possible.
For lnstance, 1t might be reasonable to welght the bldirec-
tional arcs more heavlly than unidirectional arcs.

Now A ls symmmetrlc and posltive semi-definite, hence it
can be converted to an assoclatlon (pseudo-correlation)
matrlx by multiplylng it by the matrix D, where

e

Now we have C=DT A D . The elgenvalues and assocl-
ated elgenvectors are extracted from this matrix. The
elgenvalues can be examined to see If a potential reduction
in dimenslonallty is feasible. Based on this examlnation
certaln factors (scaled and normalized elgenvectors) are
retalned and these are rotated to simple structure.

This procedure was accomplished for the graph In Figure 1.
Princlpal components analysls was performed -using SPSS.

Principal _components analysls Is equivalent to the
elgenvalue analysis descrlbed above.

Table 1 detalls the factors and assoclated elgenvalues as
extracted from the pseudo-correlatlon matrlx prepared for
the graph presented In Figure 1.

Table 1. Extracted Factors
Factor Elgenvalue Pct. of Var Cum. Pct
1 2.00000 22.2 22.2
2 1.83333 20.4 42.6
3 1.83333 20.4 83.0
4 .83333 9.3 72.2
5 .50000 5.6 77.8
8 .50000 5.6 83.3
7 .50000 5.6 88.9
8 50000 5.6 94.4
9 .50000 5.6 100.0
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Notlce that 63% of the varlance In this graph Is explalned
by 3 factors. Also notice that the fourth elgenvalue Is less
than 1. Retalning only those factors whose elgenvalues are
at least 1 1s a popular retentlon criterla attributed to Kalser
(6]. Some emplrical evidence for the use of this crlterla Is
offered by Bauer {7]. Table 2 Is a table of lnitial factor
loadings. This table relates the nodes to the factors, the
higher the loading the greater the linear correlation to the
factor.

Table 2. Inltial Factor Loadlngs
Node Factor 1  Pactor 2 Factor 3
Nodel .53452 -.51044 21215
Node2 430644 -.62516 25983
Node3 43644 -.62516 .25083
Node4 53452 43895 .33598
Nodes 43644 53760 41149
Nodes 43644 53760 41149
Node7 53452 .07149 -.54813
Node8 43644 08765 -.67132
Node9 43644 08785 -.67132

Since the first extracted ‘factor tends to be a general factor
(see Nile [8]), relating all the varlables to one another, not

much 1s gleaned from thls Initlal factor loadlngs matrix.
Appllcation of varimax rotation to this matrix ylelds much
more Interesting results. Table 3 is the new rotated factor
matrix.

Table 3. Rotated Factor Matrix
Node Factor 1  Factor 2 Factor 3
Nodel .08294 08294 75994
Node2 -.02441 -.02441 80475
Node3 -.02441 -.02441 .80475
Node4 75994 08294 .08204
Node5 80475 -.02441 -.02441
Nodeb 80475 -.02441 -.02441
Node7 .08294 75994 .08294
Node8 -.02441 80475 -.02441
Nodeg -.02441 80475 -.02441

Before addressing this matrix we refer back to Table 1.
Note that by Kalser's criterlon we retalned 3 factors. Now,
looking at Table 3, we note that 3 nodes load heavlly on
each Tlactor (clrcled). Hence, we summarize by saylng that
there seems to be 3 principal subgraphs here (3 retalned
factors) and each 1s composed of the 3 nodes Indicated.

DECOMPOSITION OF A CONDITION SPECIFI-
CATION

To demonstrate the method’s potentlal In model decompo-
sltlon, we apply It to a Cluster Interaction Graph of a har-
bor simulation model offered by Overstreet [2]. The harbor
model has ships arrlving at a harbor. These ships walt In
an area Just outside the harbor untll a tug is avallable to
move them to thelr assigned berth. Once the shlps are
unloaded and a tug s avallable, the ships are moved out of
the harbor. Overstreet presents a condition specification
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Table 4. Cluster Interaction Graph
(From Overstreet (2])
Clusters a e d e
r U n e n
r e n d b d
1 1 n 1 e m b m t t
n v t o u r d t a t a e
1 a e a n t e t a t a r
t 1 r d 1 h b ] D o) o m
Inltlalization 1 3 4 5 4
arrival 1 1 1 1 1
enter 2 1 2 3 3
unload 1 1 1 1
end unload 1 1
deberth 1 3 1 3 2
end deberth 1 1 1 1
move tug to pler 1 1 1 1
tug arr at pler 1 1 1
move tug to ocean 1 1 1 1
tug arr at ocean 1 1 1
termination
for the harbor model based on 12 actlon clusters. He glves SUMMARY

sell-explanatory names to each cluster (node) and presents
an arc-Incldence matrix which detalls the shared Informa-
tlon between the nodes. Table 4 Is from Overstreet. We
converted thls table to an assoclation matrix and factored
1t uslng SPSS. The final rotated factor loading matrix is
Table 5.

Table 5. Harbor Model: Rotated Factor Matrlx
Factor
Node 1 2 3 4 5
taao -.088 -.0241 .011
arriv -.014 .046 .001 -.005
enter 042  -.068 .228 593
unload .705 -.001 077 .061
endunid 791 -.044 .047 -.082 -.058
deber 412 250 -.148 .397 211
enddeb | -.045 074  -.028 -.215
mttp -.018 643 .226 197 .106
taap .009 868 -.042 -.106 -.051
mtto 272 226 [.e11]l .04 031

Referring to Table 5, first notlce that 5 factors are retalned.
Since we are factoring a 10 varlable set, we see that we
may have trouble finding separable submodels since the
overall model Is so Interrelated. However, a couple of
observations are warranted. Notlce that Unload and
Endunld load heavlly on the first factor and that MTTP
and TAAP score heavily on the second factor. Thls sug-
gests that “pler activitles” and "harbor actlvitles” might
represent reasonable submodeis. Note also that TAAO and
MTTO load heavily on the third factor, perhaps indlcating
a submodel of “ocean actlvitles”. It ls interestlng to note
that the arrival of ships to the system loads on the fifth,
independent factor.
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The use of factor analytic techniques, In partlcular the
method of princlpal components, offers a low complexlty
solutlon to model decomposition problem. Cluster Interac-
tlon Graphs can be converted Into assoclatlon matrices and
these matrices can be factored uslng standard factor
analysis routines such as those found In SPSS.
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