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This paper presents the basic concepts and motivation for standardized time
series analysis. Various applications to the analysis of simulation output are

mentioned.

BACKGROUND:

Standardized time series can be motivated by first
considering the role of standardization in scalar
statistical analysis. Standardization has long been
one of the central concepts in objective statistical
analysis. The basic idea is to transform a
statistic in such a manner that (under postulated
conditions) its probabilistiec behavior can be
accurately approximated with a known probability
law. This probability law is then used as a model
for making inferences about the population under
study. He will simply do an analogous transformation
of an entire time series rather than just a scalar
statistic

The utility of standardization comes from the fact
that the same probability model can be used to
analyze data from a variety of sources. A
statistician using the same mathematical methods, if
applied correctly, can draw valid inferences using
data from fields as diverse as economics,

psychology, manufacturing, military systems, and
medicine. Hhatever the source of the data
standardized statistics will be familiar to the
analyst with a knowledge of the appropriate
methodology. The technique of standardization thus
serves as a mathematical surrogate for experience
with the system under study. While standardization
is not a substitute for such experience, it
certainly augments it. The technique of
standardizing statistics makes it possible to use
the same statistical tables and computer packages in
many situations and to a large extent is why
statistics is so broadly applicable

STANDARDIZING A SCALAR STATISTIC

He break the process of standardizing a scalar
statistic into elementary steps and carefully
examine each step. This serves as our guide in howr
to standardize an entire time series

The steps of standardizing a scalar statistic can be
illustrated with the familiar example of the t-

statistic. Suppose one has observations, Y Y

1)
PR Yn’ that are independent and identically

2°

distributed and wishes to make inferences about the

unknodn mean U of the population from which the data
Ras taken. The statistic used is the average of the
data, §n‘ A major problem is that the variance, 02,

of the population is also unknown.

The following steps are followed.

(STEP 1)

CENTER THE STATISTIC: He consider the

random variable ?n - U which has an expected value

of zero.

(STEP 2) SCALE THE STATISTIC MAGNITUDE: Standardized

statistics are expressed in a common unit of

measurement called a standard deviation. Here we

scale the magnitude of our statistie by dividing by

o)

/4n.

Our statistic is now

n

z = (?n— U) /¢a /4 n)

Steps 1 and 2 result in the standardized statistic,
2.
n

All sample means standardized in this manner

Will have the same first tro moments; they all have a

zero mean and unit standard deviation.

The problem #e are faced with now is that the

scaling parameter, O,

is not known to us. At this

point Re have at least two choices;

He can

consistently estimate 0 or we can form a statistic

rhere it cancels out.

(In the reference by Glynn

and Iglehart several interesting aspects of this

choice in a simulation context are discussed. ) The

second choice

statistic,

choice here

{STEP 3) CANCEL THE SCALE PARAMETER:

cancelling 0 out of a ratio

is aggregated or batched into

groups of size

b

is usually followed and re make this

Here the data

exclusive adjacent

m (assume b = [n/m}). The average

of each group (often called a "batched mean") is

computed.

= 1,2,..

¥

i, m

i

.y b,

He denote these

b batched means as

The sample variance of these

batched means is computed as
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= (n-1) "

1

nMo
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He next form the random ratio,

n

T

poq = (Y- W 7€/ 1L (b-1) 85 70 b-1)))

(?n— w 7¢s/iny.

The important features of this ratio are that it not
depend on 0 and that its limiting distributions are

known.

(STEP 4) APPLY LIMIT THEOREMS: We know that as m = «
the distribution function of the random variable

(b-1)82/02 converges to that of a x2 random variable
with b-1 degrees of freedom. Also as n » o ?n will
converge to the constant U and the distribution

function of Zn will converge to that of a standard
Normal random variable. The distribution funection

of the random ratio, T {being a continuous

b-1?
mapping) will thus converge to that of a

Recall that a

t random
variable with b-1 degrees of freedom
t random variable is the ratio of a standard normal
random variable divided the root an independent xz

random variable scaled by its degrees of freedom.

(STEP 5) USE THE LIMITING PROBABILITY MODEL FOR

INFERENCE: The distribution of statistie, Tb—1’ is
approximated by/ghe t distribution with b-1

degrees of freedom. This probability model is then
used for hypothesis tests, confidence intervals on

i, comparison of two or more populations, ete. using

widely available statistical tables or computer

packages.

STANDARDIZING A TIME SERIES

He will apply the concept of standardization to an

entire time series of m observations generated by a

run of a simulation program. Denote this output

series as Y Y It might represent one of

g Yo ...,Ym
b "batches" from s single long run or one of b
Following the notation in

mb will denote the total

independent replications
the previous example n =
number of observations.

it is possible that b =

Unlike the scalar example,
1 making n = m. That is we
will transform the original observations into a
standardized sequence of observations. The
hypotheses analogous to assuming that the data is
identically distributed is to assume that the output
is a sequence of observations of a stationary
stochastic process. He wmill see in the next section
how this can be tested leading to tests for the

presence of initialization bias in the output, Re
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no longer need to assume that the data is

independent; however, we will assume that there is
some minimal amount of randomness in the process
The mathematical assumptions needed are given in
[ Schruben, 19831 where it is argued that simulations
on a computer will meet the imposed restrictions for

applicability.

The sequence of statistics we will standardize will

be the cumulative means up to and including the kth
observations, given by,

_ k

Yi,k= (1/1()121‘{i

He will follow steps in standardizing the sequence
of cumulative means analogous that are followed in

scalar standardization

(STEP 1) CENTER THE SERIES: Re will consider the

zerc mean sequence given by

Sm(k) = Y. - Y

i, m ik

(STEP 2) SCALE THE SERIES MAGNITUDE:

sequences the scaling constant 02 generalizes to,

For dependent

2 . =
6" = limm Var(Yi,m)

[i1ng: ]

which is equal to the previously defined population
variance in the special case of independent
identically distributed data. To scale the
standardized sequence to a unit standard deviation
we divide by ¥m(0)/k. Of course the scaling

constant is again unknown., As expected, this

/
unknown population parameter will cancel out of our

statistics as before,

Now there is one step required that was not
necessary in the scalar standardization case,
Different time series can be of different length so
we must also scale the index of the series. Thus we

have the additional step

(STEP 2') SCALE _THE SERIES INDEX:
t = k/m
thus given by k = [mtl.
0 so that O <t 1.

He will define the

continuous index, Our previous index is
He also add the starting
point S0 = The result is that
all standardized time series have indices on the

unit interval.



Overview of Standardized Time Series

He nor have what we will call a standardized time

series given by
T8 = (ImtDS (Imtd)/(¥mCa)).

(STEP_3) CANCEL THE SCALE PARAMETER: There are

several functions that might be considered for the
denominator of of a ratio that cancels ¢g. He rill
consider here only one such function, the sum (or

limiting area under the function Tm(tL

=
It
™M 3

T(k/m).
k

]}
-

(STEP 4) APPLY LIMIT THEOREMS: It is shown in

[ Schruben, 1983] that the standardized series,
Tm(t), Ail)l converge in probability distribution to
that of a Brownian Bridge stochastic process. Thus
the Brownian Bridge process plays the role in time
series standardization that the normal random
variable played in the scalar standardization. An
the important feature of the standardized series,
Tm(t), is that it is constructed to be

asymptotically independent of the sample mean,

i,m

There are several functions of Tm(t) that will also
be asymptotically x2 distributed. The area, A,
will have a limiting normal distribution with zero

mean and variance V = 1202/(m3

- m). Therefore
AZ/V will have a limiting x2 distribution with one

degree of freedom.

Nor consider where each of b independent
replications (or b batches of data) are standardized
in the manner above. He can then add the resulting
x2 random variables, AZ/V, for each replication or
batech to obtain a xz random variable with b degrees
of freedom, Also each of the replication of batch
means can be treated as a set of scalar random
variables and standardized giving another x2 random
variable (b-1)52/0% (given above). Due to the

2

m's, these tro x
k]

independence of Tm(t) and the 71
random variables can be added giving a x2 random

variable with 2b-1 degrees of freedom. This can be
considered as a "pooled" estimator of 02 which wre

Hill denote as Qa.

(STEP 5) USE THE LIMITING PROBABILITY MODEL FOR

INFERENCE: Exactly like for the scalar case, the
standardized (scalar) sample mean of all of the data
can be divided by the square root of Q2 over 2b~1 to

form a ratio (independent of the scale parameter

g). For large values of m the distribution of this
ratio can be accurately modeled as having a t
distribution with 2b-1 degrees of freedom. The same
types of inferences can be made for the dependent
time simulation output series as were applicable in
the independent data case. The resulting "t

variate" is given by
Tyoq = (Y= W /(Q/n).

Theoretical properties of confidence intervals
formed using standardized time series are presented
in [Goldsman and Schruben, 19841, This paper
compares the standardized time series approach to

conventional methods

APPLICATIONS OF STANDARDIZED TIME SERIES:

Standardized time series has been implemented in
several simulation analysis packages. Most notably
at IBM [Heidelberger and Helch, 19831, at Bell Labs
[Nozari, 1985), and at G.E. [ Schruben, 1986]. These
packages typically control initialization bias (see
also [ Schruben, Singh and Tierney, 1983) and

[ Schruben, 19821}, and run duration as well as
produce confidence intervals. Other applications of
standardized time series have been to selection and
ranking problems {Goldsman, 1983] and simulation
model validation ({Chen and Sargent, 19841,

CLOSING REMARKS

1) In the above derivations 02 {or 32) must be
asymptotically independent of ?n and have a limiting
x2 distribution with known degrees of freedom. This
is valid in the scalar case due to the asypmtotic

normality of the batched means, Yi,m' For
standardizing time series this is valid as shown in
the lemma in [ Schruben, 1983). Both these results
require that the batch size m become large as the
sample size, n, increases, The common method to
allow the batch size to grow as the sample size
increases 1s to fix the number of batches, b.

Fixing b at say 10 or 20 seems to be a reasonable
thing to do in most applications as long as the
sample size is large (see [ Schmeiser, 19833).
However, as pointed out in (Glynn and Iglehart
19851, fixing b leads to statistics that lack the
asymptotic efficiency of estimating ¢ directly
rather than cancelling it in a ratio statistic. The
x2 quantity 02 can of course be used as a basis for
consistently eséimating G. The theoretical
objection to having a fixed number of batches may be
essentially overcome by allowing both m and b to

groW as n increases. Say, as n gets very large, one
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might eventually set b approximately equal to n8

where 8§ is arbitrarily close to but less than 1.
The value of allowing the number of batches to

increase must be weighed against the validity of
having a relatively small number of batches. Rhen
the sample size is finite, the statistical validity
of the approach is improved by having the batch size

be as large as possible.

2) The limiting probability model of a t random
variable has as its highest (and perhaps only)
virtue the fact that it is widely tabled and has
been studied extensively. There certainly exist
other limiting models that might be used but none
have been developed to the extent of the t model.
The point is that there are alternative ways of
performing each step in any standardization
procedure., In this paper we wish to emphasize the
importance of the concept of standardization and not
the mechanics of any particular application, The
specific examples of standardization presented were
chosen as illustrations because they appear to work

Rell in practice.

Refarences:

Chen, B., and R. @. Sargent, 1984, "Confidence
Interval Estimation for the Difference Between Twro
Stochastic Processes Using Standardized Time Series”
Horking paper 84-004, Dept. of IE and OR, Syracuse
University.

Glynn, P., and D. Iglehart, 1985, "The Theory of
Standardized Time Series®™ (forthcoming).

Goldsman, D., 1983 "Ranking and Selection in
Simulation®, Proceedings of the 1983 Hinter

Simulation Conference, pp. 387-393.

Goldsman, D., and L. Schruben, 1984, "4symptotic
Properties of Some Confidence Interval Estimators

for Simulation Output", Management Science, Vol. 30,
pp. 1217-1225
Heidelberger, P., and P, Weleh, 1983, "Simulation

Run Length Control in the Presence of an Initial
Transient", Operations Research, Vol. 31, pp. 1109-
1144,

"Confidence Intervals Based on
Bell Labs

Nozari, A., 1985,
Steady-State Continuocus-Time Statistics®

Tech. Rpt. (forthcoming)

“Batch Size Effects in the
Operations Research

Schmeiger, B, H., 1983,
analysis of Simulation Output®”,

Vol. 30, pp.565-568.

118

Schruben, L., 1982, "Detecting Initialization Bias
in Simulation Output®, Operations Research Vol. 30,
pp. 569-590,

Schruben, L., 1983, "Confidence Interval Estimation
Using Standardized Time Series®, Operations
Research, Vol. 31, pp. 1090-1107

Schruben, L., H. Singh, and L. Tierney, 1983,

"Optimal Tests for Initialization Bias in Simulation
Output", Operations Research, Vol, 31, pp. 1167-1177.

L.,

Schruben, 1986, "A Procedure for Simulation Run

‘Control and Analysis" (forthcoming).

LEE SCHRUBEN

Prof, Schruben received his undergraduate degree in
engineering from Cornell University and a Masters
degree from the University of North Carclina, His
Ph.D. is from Yale University. He has been on the
Cornell faculty in Operations Research and
Industrial Engineering for the past nine years,
Prior to coming to Cornell he was the Associate
Director of the Health Systems Research Division of
the Medical School at the University of Florida.

His research interests are in the statistical design
and analysis of large scale simulation experiments,
His consulting activities have been primarily in the
area of manufacturing systems simulation



