Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

753

OPERATIONAL EVALUATION MODELING OF AUTOMATIC SPEAKER VERIFICATION SYSTEMS

David E. Crabbs
Interstate Voice Products
1849 West Sequoia Avenue

Orange, CA 92668

ABSTRACT

This study uses operational evaluation
techniques to model a system which processes
human speech to verify the identity of
persons seeking access to a facility or
resource. The system consists of hardware
and software for accepting analog speech;
extracting time, frequency, and amplitude
characteristics; producing compact digital
templates containing the features for speaker
identification; and cross-referencing the
templates with reference patterns to
establish the degree of similarity between an
utterence and a set of utterences for the
person whose identity is being claimed. A
decision algorithm is implemented to
determine whether the speaker is valid or an
imposter based on the degree of similarity
observed.

A conceptual model has been tested and used

to simulate variations in system attributes
in order to optimize system performance.
Performance 1is evaluated in terms of the
number of imposters who can defeat the
system, and the number of rejected valid
speakers.

BACKGROUND

The purpose
study the

of this study is to model and
behavior of a system which
processes human speech inputs to verify the
identity of persons seeking access to a
priviledged remote computer database over a
telephone modem 1link. The system has been
prototyped from preexisting speech
recognition equipment originally intended to

recognize words rather than individuals. A
mathematical model of this system has been
constructed, tested and verified, and then

used to vary system attributes in an effort
to optimize performance 1in terms of the
number of rejected valid users, or Type I
errors, and the number of accepted imposters,
or Type II errors.

An extensive series of physical tests of the
system has been performed, with a signiticant

population of both male and female speakers
acting both as valid speakers and as
imposters deliberately misrepresenting

themselves in an effort to defeat the system.

It 1is desired to reduce both of these error
rates to a minimum by modifying system
parameters to improve performance. Since

physical data collection is a costly and time
consuming process, a simulation model is seen
as an appropriate design tool.
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Department of Electrical Engineering
California State University, Fullerton
Fullerton, CA 92634

Two FORTRAN computer models have been written
which will perform the simulation described
above., One uses a discrete event simulation
approach, and the other uses a flowgraph
reduction technique.

OPERATIONAL SCENARIO

The speaker verification system is to be used
to screen people seeking telephone access to
a remote computer database. The wuser is
required to claim his identity by keying in
ID information from a touch tone telephone
keypad. The system then verifies this
identity claim by means of a voice
verification process which involves requiring
the user to speak a series of prompted words
into the telephone. The voice signal passes

through a computer interface where it is
digitized and encoded, and the resulting
voice template is passed along to the

computer for pattern analysis. The template
is evaluated against a catalog of reference
patterns for the claimed identity. A score 1is

assigned based on the degree of similarity.
If the score falls at or below a certain
rejection threshold (RTHL), the template is

considered not similar enough, and is labeled
a miss. Likewise, 1if the score is above the
threshold, it is considered a hit.
access the

In order to gain speaker 1is

required to speak a randomly prompted
sequence of words, and accumulate a certain
number of hits before acquiring a certain

number of misses. If he gets too many misses,
he is 'conditionally rejected!'. When this
occurs both the total accumulated number of
hits and the total accumulated number of
misses are decremented by a fixed amount, and
the criteria for positive identification are
made more stringent. If the speaker still
acquires the maximum number of misses bafore
getting the required number of hits, he is
identified as an imposter. Otherwise, he is
considered to be a valid wuser and is
accordingly granted access.

This scenerio requires that there be
reference patterns available for all
authorized speakers. These reference patterns
are gathered during an enrollment procedure
which 1is similar to the access approval
procedure, except that reference voice inputs
must be gathered for the entire list of words
or phrases that may be later prompted, and
each word or phrase is subject to a multiple
number of "training passes". The requirement
for multiple samples of esach word guarantees
that normal fluctuations in the enrollee's
speech will be acounted for in subsequent
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access attempts. The reference patterns are
formed by extracting only the information
consistant for all of the passes.

System performance was tested under many
conditions using a physical prototype. Many
factors were considered, such as the choice
of the test vocabulary, the associated

similiarity measures for proper verification,

and the basic decision algorithm. The
prototype system had the required number of
hits set to 5, the allowed number of misses
set to 3, and, for the 'conditional reject'

case, the number of hits and number of misses
were both -decremented by 2 while the word
acceptence threshold score was simultaneously
incremented by 2. Word scores were assigned
between 0O and 128, with 128 being a perfect
match. A given speaker had to accumulate at
least 5 hits to get in, and was allowed 5
misses in the worst case before being
rejected.

STUDY OBJECTIVES

Extensive testing was performed on the system
prototype with a population of speakers
acting as valid speakers and as imposters in
order to gather data on the true reject and
imposter accept error rates. The collected
word score statistics were used in simulation
studies to produce sensitivity analyses of
the access attempt trial parameters. Among
the parameters to be studied were the
vocabulary, the required number of hits and
allowed number of misses for conclusion of a
trial, the conditional reject parameters, and
the word rejection thresholds. The goal was
to determine a set of parameters which would
minimize both the number of valid speakers
rejected and the number of imposters
accepted. The error mix sought was one in
which the errors were equally apportioned
between the two error types.

A second
relative
implemented in
accuracy and

obJjective was to evaluate the
usefulness of the two models being

terms of .their prediction
in terms of their respective
assumptions and limitations. It was also
desired to determine the effectiveness of
these models when benchmarked against more
straightforward statistical approaches.

MODEL DEVELOPMENT

The system operation is represented visually
with the directed graph model shown in
figures 1 and 2. This visual representation
lends itself to model implementation using
discrete event simulation techniques which
use random number generators to predict
probable event sequences. Flowgraph reduction
methods can also be implemented.

The various states represented in the figures
are defined as follows:

B - Begin State
SPK - Selection of Next Speaker
T/I ~ True/Imposter Status Determination

TTR - In-Trial State for True User
ITR - In-Trial State for Imposter
TAC -~ True Speaker Accepted State

DmddE.QmMB,JmnR.Cwmy

TRJ - True Speaker Rejected State
(Type I Error)

IRJ -~ Imposter Rejected State

TAC - Imposter Accepted State

(Type II Error)
TST - End of Trial Set for Selected Speaker
B - End State

Internal Trial States:

SW - Word Prompt State

SCR -~ Word Scored State

WM - Word Missed

WH - Word Hit

CR - Conditional Reject State
RJ - Unconditional Reject State
AC - Trial Successful State

TOV - Trial Completed State

The input for the two simulation models was a
database of true speaker and imposter word
scores obtained from physical experiments
with a prototype version of the system and a
group of adult male and female speakers. A
baseline performance was thus obtained during
prototype testing. Since the object of
studying the behavior of the speaker
verification system was to predict its error
rate performance, the analysis needs to be
concerned with extreme events in the various
considered statistical distributions. On
account of this, the prediction of error rate
performance requires 1) a large amount of
data in order to accurately characterize
eXtreme events, and 2) that any assumption
regarding the form of any distribution being
considered be avoided wherever possible,
since the distribution tails will +tend to
exaggerate these assumptions and perhaps
invalidate subsequent predictions.

DISCRETE EVENT SIMULATION MODEL

The discrete event simulation was implemented

as a virtually direct translation into
FORTRAN code of the directed graph model
given in <figures 1 and 2. Each event and
state represented in the directed graph is
also represented in the computer program, and
where necessary, branches in the directed
graph are determined in the program by means

of an integer random number generator. The
simulation program performs a specified
number of trials for each of the speakers in
the database, with each speaker acting both
as a true speaker and as an imposter. Each
speaker 1is handled in the order in which he
appears in the database. The speaker sequence
is fixed since it has no bearing on the
accumulated statistics at the end of the
simulation. The 50 speakers being used have
been Jjudged to be a representative random
sampling of adult male and female speakers.

The program begins each utterence by randomly
sélecting one of the available words, and
then it randomly selects a score for that
word from the speaker's database of true or
imposter scores generated by the prototype.
The score 1is evaluated to determine if it
qualifies for acceptance, and then the trial
hit and miss counters are evaluated to
determine if +the trial has arrived at the
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trial acceptance state, the trial conditional
reject state, or the unconditional reject
state. In the conditional reject state, the
trial parameters are changed to the
conditional reject parameters, and the trial
resumes. If one of the end states, either
acceptance or rejection, is reached, the
appropriate state variable counter is
incremented. It should be noted that the
method of scoring does not involve selection
of a score from a ‘theoretical probality
distribution. Rather, only scores that were
actually obtained during testing are used.
Thus, the approach uses histograms of real
data instead of a fitted distribution.

introduced was that the word scores in a
given access attempt were not highly
correlated with time (i.e. high or 1low
scores did not cluster together within access
attempts).

REDUCTION OF TRIALS BY FLOW GRAPH TECHNIQUE

It 1is possible to obtain a closed form
rélationship between the probability ' of a
single wutterence being accepted and the
probability of a trial belng successful, if
the sequence of utterences is assumed to be a
Markov chain. It must be assumed that each
word prompt is independent of all preceeding
ones (i.e., the word chosen is not a function

This used a discrete random number
generator select the sequence of events
given word scores available in the
database.

drawn from an essentially infinite universe
of possible event sequences, thereby allowing
assessment of the performance variance In order to obtain a closed form,

necessary to expand the directed flow

the
and convergence properties of the physical
data. only modelling assumption

of previous selections),

the trial sequence (i.e.,

in figure 3.

DIRECTED FLOW GRAPH FOR TRIAL

WITH (NxM) = (5x3) AND (Ncr x Mecr) = (7x5)
P P P P P
[0 0]---[1, O]———[Z 0]-——[3 0]---14, O]———[S 0]
i1 i 11 11 ! 1 SUCCESS
Q Q Q Q Q
i P P 4 P | P | P
(0,11---01,1)---12,11---[3,11---[4,11---[5,1]
b b2 13 i 4 | '5 SUCCESS
Q Q Q Q Q
VP P t P | P
(0,2]---{1, 2]——-[2,2]—-—[3,2]-——[4, ]—-—[5 2]
I 3 i 6 i 10 ! '15 SUCCESS
Q Q Q Q Q
l I I l I Pcr Pcr Per
[o 3]———{1 5]——-[2 3]———[3 3]———[4 3]———[5 3]-~-[6,31---[7,3]
| 4 35 i 35 } 35 SUCCESS
ch ch ch ch ch ch ch
Pc Pcr Pcr Pcr Pcr Pcr Pcr
[o 4]—-—[1 4]———[2 4]———[3 4]———[4 4]———[5 4]-——[6 41---[7,4]
1 15 | 35 l 70 1105 1140 SUCCESS
Q?r ch Q?r Q?r Q?v Q?r Q?r

| 1 i I ! 1
(0,51 [1,5] [2,5] (5,51 [4,5] [5,5] I[6,5]
FAILURE FAILURE FAILURE FAILURE FAILURE FAILURE FAILURE

probability of word acceptance
1.-P

where P

Q

non

Pcr= probability of word acceptance after conditional reject

Qcr= 1.-Pcr

Begin State = [0,0]

Success End States = [5:0]7 [5,1], [512]1 [7,3], [7,4]
Failure End States = [015]s [1’5]) E2’5]1 [3)5]; [495]!
[5,5], [6,5]
Begin Conditional Reject States = [0,3], [1,3], [2,3],
\ [§,3], [4,3]
1
KEY: —w-[A,B]a~-
I n A = Number of Hits
B = Number of Misses
n = Number of Paths Leading to [A,B]

Figure 3: Directed Flow Graph

obtained are not correlated with location in
the trial
This allowed the results to be is unaffected if the speaker perceives

he is likely or unlikely to be accepted).
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The probability of being in any state 1is
equal to the probability of having been in
the state to the 1left times the path
transmittance (P or Pcr) plus the probability
of having been in the state above times the
path transmittance (Q or Qcr).

For the (NxM)=(5x3) case shown, the
probability of trial success is equal to the
sum of the probabilities of the states [5,0],
(5,11, [5,2], (7,31, and [7,4]. The
probabilities of the first three states can
be obtained by multiplying the number of
paths to the state by the appropriate number
of P's and Q's.

5 2
P([5,01+(5,11+[5,2])=P *(1.+5Q+15Q )
The probablllty of state [7 3] is
7 5
P([7,3]1)=Q *(Pcr +3*P*Pcr +6*P *pcr
3 4 4 3
+10%P *Pcr +15%P *Pcr )
and,
3 7 6 2 5
P({7,4]1)=Q *Qcr*(7¥Pcr +18%P*Pcr +30¥%¥P *Pcr
3 4 4 3
+40%P *Pcr +45%P *Pcr )

The probability of trial success is

Psucc=P([5,0]+[5,1]+[5,2])+P([7,3]+[7,4])

Similar methods apply for other [N¥M] and
conditional reject configurations. A program
was written to obtain simulation results from
the utterence success probabilities using the
method outlined below. The utterence success
probabilities were obtained by histogramming
the scores in the database. This method
required the assumption that the
probabitility densities for true speaker word

scores and imposter word scores were each
homogeneous across the individual words in
the vocabulary, in addition to the Markovian
requirement of the other method above. Note
also that no variance or convergence

information was directly available.

PROTOTYPE TEST RESULTS

Physical data collection consisted of tests
with a population of 50 adult speakers, with
25 male and 25 female. All of the templates
were saved, and the voice input was taken
over a telephone 1line. Post experimental
analysis was performed to obtain error rates
and optimum RTHL's for each word in the
vocabulary. The vocabulary included twenty
five words which were selected to give an
indication of performance as a result of
various hypothesized word characteristics,
such as nasalization, numbers of syllables,
and selections of vowels represented.
Templates were collected for two types of
spectrum encoding, a spectral slope coding
and a binary sonogram. During subsequent
simulation studies the templates were
rescored using various techniques to try to
enhance the speaker-discriminating
information contained in the templates and

reference patterns. The effectiveness of the

binary sonogram was studied by scoring the
templates both with and without (ie, using
only slope encoding) it. The results are

shown for these cases in Table 1.
TABLE 1
BEST RTHL'S FOR PROTOTYPE SYSTEM DATA SETS

NO SONOGRAMS WITH SONOGRAMS

WORD WORD BEST B(7x5) BEST PB(7%5)
# RTHL % RANK RTHL % RANK
1 BIGHT 112 2.57 10 100 4.08 21
2 NINE 111 0.79 2 94 0.65 8
3 FOUR 116 2.56 9 110 1.98 14
4 ZERO 113 1.27 3 102 0.56 3
5 SIX 108 5.47 18 91 3.31 19
6 MANUAL 108 1.91 6 92 0.59 5
7 POINT 109 6.12 24 94 7.33 24
8 MEGA 112 2.83 11 100 0.57 4
9 HUNDRED 111 4.37 16 98 0.61 7
10 TWO 110 1.80 5 96 0.59 6
11 HIGH 116 4.60 17 106 1.05 13
12 HAMMER 111 1.57 4 94 0.06 1
13 CALIFORNIA 111 5.66 19 96 4.53 22
14 ALABAMA 113 0.78 1 100 0.39 2
15 NUMBER 113 5.73 20 101 2.62 16
16 NOVEMBER 15 2.97 12 100 0.66 9
17 MANY 108 2.56 8 83 0.80 12
18 ZEBRA 112 5.90 21 100 2.30 15
19 XYLOPHONE 114 3.43 15 104 0.68 11
20 TOMATO 110 3.35 14 94 0.67 10
21 INCLUDE 109 13.18 25 97 7.49 25
22 HUMAN 109 3.04 13 95 2.82 18
23 INFORMATION 108 5.99 23 90 4.91 23
24 PEPPERMINT 111 5.94 22 96 3.69 20
25 COLONIAL 112 2.53 7 100 2.69 17
MEANS 111.3 3.877 97.7 2.224
The test results indicated a number of
factors significantly affected system
performance. As anticipated, system
performance was strongly influenced by word
and word specific RTHL selection. The
vocabulary wused included a number of words
that yielded very 1little discrimination.
However, the range of word error rates

obtained across the vocabulary indicated that
very good performance is possible given the

right choice of words. For the speaker
population tested, projected trial error
rates were calculated for each word at the
optimum threshold based on a binomial

expansion of a 7 by 5 trial decision matrix.

The vocabulary was rank ordered in terms of
its estimated error rate performance based
upon the physical tests. The rank ordering
was done by histogramming the word scores for
all speakers, and finding the RTHL which
would have produced the smallest degree of
overlap between the true speaker distribution
and the imposter distribution. The estimated
error rate for this RTHL for each word was
determined on the assumption that the
vocabulary consisted of only the chosen word,
and that the decision matrix was 5 misses by
7 hits with no conditional reject allowance.
Note that is assumption relates the
probability of trial success to the
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probability of word score above RTHL by a
simple binomial expansion. Specifically,

7 2 3 4

P([7,5]1)=P *(1.+7Q+28Q +84Q +210Q ).

The range of word error rate statistics
indicated in the tables suggests that removal
of the worst half of the vocabulary would
yield substantial improvement. Access error
rates of less than 3% should be attained in
this manner for the combined frequency coding
and binary sonogram scoring technique after
editing out noise corrupted data.

BASELINE SIMULATION RESULTS

was defined to be the
which the physical tests
were carried out, except that the optimum
RTHL's were used instead of the nominal
thresholds, and the decision matrix was
expanded to (7x5) with no conditional reject
(the reason for this is given in the section
below on decision matrix sensitivity). The
nominal thresholds were discarded once the
optimum thresholds were obtained from the
tests. The baseline conditions, then, were as
follows:

The baseline case
conditions under

1) all 25 words of the test vocabulary
used with their optimum RTHL's

2) all 50 test speakers were used

3) scoring was based upon the slope-encoding
only

4) the decision matrix was 5 misses by 7
hits, with no allowance for conditional
rejects.

were

The purpese of these runs was two-fold.
First, it was necessary to find the degree of
correspondence between each of the two models

and the physical tests. Second, it was
necessary to determine the degree of
convergence that could be provided by the
discrete event simulation model, and, in
addition, the amount of variance in the
performance error rates obtained during the

physical data collection.

A series of runs were performed for the

discrete event simulation. This series
consisted of a set of runs with the trial
multiplication factor set to one (i.e., each

run corresponded to the equivalent of one
complete set of prototype tests), and another
set with +the trial multiplication factor
varied over a range. The purpose of the first
set of runs was to determine the amount of
variance in the performance results predicted
by a run involving the same number of events
that were recorded during the physical tests.
The second set was intended to provide an
indication of the convergence properties of
the simulation. The results are tabulated
below.

True Imposter
Rejects Accepts
(%) (%)
Physical Tests: 13:2 1.4
Flow Graph Model: 10.24 S.45
Discrete Event Simulation:
Variance Run # 1: 10.70 10.29
Variance Run # 2: 10.14 9.14
Variance Run # 3: 9.30 8.86
+ Variance Run # 4: 10.14 9.71
Variance Run # 5: 12.39 11.14
Variance Run # 6: 10.42 8.86
Variance Run # 7: 11.27 8.57
Variance Run # 8: 12.96 9.71
Variance Run # 9: 10.42 9.14
Variance Run # 10: 10.14 11.71
Average Variance Run: 10.79 9.71
Standard Deviation: 1.058 1.021
Convergence Runs:
(TMF=10): 10.51 9.46
(TMF=30) : 10.48 9.46
From the tabulated results it can be seen
that the flow graph model and the discrete
event simulation give almost identical
results. This is a useful observation since
the discrete event simulation is very time
consuming when the trial multiplication
factor is much greater than ten. However, it
should also be noted that the two models
differ from the physical test results by a

statistically significant amount. Both models
underpredict both error rates by an amount
that is within the 99% confidence band (plus
or minus three standard deviations), but is
outside of the 95% (two standard deviations)
confidence region. This difference can not be
ighored, but is not too large to permit
sensitivity analyses using the models.

The reason for the difference between the
tests and the models must lie in the
aspumptions common to both, since the two
models agree so well. The major common
assumption is that there is no correlation
process occurring between trials, and this
assumption is hypothesized to be the culprit.
Clearly, if a group of low (or high) word
scores are found clustered together within a
sihngle trial, the outcome of that trial is
much more likely to be a reject decision (or,
in the converse case, an accept). Neither
model considers this possibility.
Furthermore, this correlation process has in
fact been observed under real conditions.
|

Selveral reasons may exist for such a
correlation, but two are of special note. The
first has to do with the nature of noise on
the telephone line. This 1is clearly a
condition that is established at the outset
of the telephone call, and will remain in
effect for +the duration. If the 1line is
disconnected and a new call is put in, then
it. is very reasonable to expect a different
noise environment for the next access
attempt.

of the

The second reason is in the nature

|
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human voice. The voice will exhibit
variations in pitch and formant structure for
the same word if it is spoken by the same
speaker on different days. This is obvious if
the speaker has a cold, or is anxious or
upset. Clearly, emotional state and health
are variables that are sustained across a
verification attempt, but not from day to
day.

A correlation process based on either of the
above phenomena would have the effect of
increasing both true reject and imposter
accept error types for an RTHL balanced
vocabulary (balanced on the assumption that
there is no correlation). This is in
agreement with results in the tabulation.

Regarding the convergence runs, it can be
seen that the average variance run error
rates approach the TMF=10 convergence run
quite closely. This is to be expected since
the 10 trial average is essentially another
TMF=10 convergence run. It is also to be
expected that the ten trial case will be
reasonably converged, since the variance
should be approximately inversely
proportional to the number of trials. Thus,
if the standard deviation for a single run is
about 1.0, then the standard deviation for
ten trials should be about 0.3, and about 0.2
for 30 trials.

SENSITIVITY RESULTS

The first set of sensitivity runs was aimed
at determining the effect of the vocabulary.
Physical test results suggested a strong
relationship between system performance and
the selected vocabulary. This also makes
intuitive sense since one would expect some
spoken sounds to convey a good deal more
speaker dependent information than others.
Another reason why a strong relationship
should be expected is that the conversion of
the analog input to a digital template is
imperfect at preserving the information in
the original signal, and it is reasonable to
expect that the degree of information 1loss
will be highly dependent upon the type of
information in the original speech. It would
be difficult to sort out these two effects as

they relate to speaker verification, but it
should at least be possible to empirically
select a set of verification words that

perform generally well.

A sensitivity run was performed wusing the
flow graph model with the best 15 words
(RTHLs optimal, slope encoding only) for all
speakers from Table 1. In addition, a run was
made using only those of the best 15 which
were also among the best 15 for male speakers

alone and female speakers alone.
Consequently, this run used only nine of the
original 25 words. The results are shown
below:

True Imposter
Rejects Accepts
(%) (%)
A Baseline Run: 10.54 9.45

B Best 15: 8.95 7.75
C Best 15 M&F: 8.72 9.01

Both of these results are disappointing in
terms of the results suggested by the
physical data. The top 15 words in Table 1

all had projected error
method described above, of under 4% for both
error types. This is not only disappointing,
but also apparently inconsistent.

rates, wusing the

The resolution of this inconsistency must lay
with the modelling assumptions. The first
suspect assumption is probably the one wused
to predict individual word performance in the
rank ordering described above. It is obvious
that considering each word separately is not
equivalent to predicting performance based on
an aggregate probability distribution for all
15. Nonetheless, if all of the words were to
perform individually with error rates below
4%, the aggregate would also be expected to
be in this range. Consequently, the
inconsistancy must lay elsewhere.

The most likely suspect was deemed to be the
assumption that the word scores were not
correlated with the trial. If this assumption
was in fact invalid, then there should be
evidence in the distribution of trial errors
among the different speakers in the
population, since clustering of scores within
a particular trial would probably result in
visible score clustering within speakers as
well. Speakers contributing much more than
their statistical share of the true <trial
errors across the population, whom we shall
refer to as 'goats', could be responsible for
much of +the apparent performance loss.
Clustered imposter errors could also be a
factor, but as these are due to an unexpected
success instead of an unexpected failure, it
seems logical that the true errors could more
easily be traced to some specific problem
with the system or the speaker (i.e.,
telephone noise or speaker health and
emotional state changes).

of runs using the discrete event
simulation were performed with intermediate
results printed out for each speaker in an
effort to identify the goats 1if any were
present. The runs used the conditions of the
nine word case for which results were
obtained above. In these runs three goats
were found among the 50 speaker population
who were responsible for more than 60% of the
true reject errors. The results for one run,
using a trial multiplication factor of 100,
are shown below: ’

A series
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Total TR Total IA

Speaker (% of) (% of)
Louise A. 26 0.3
Norman B. 14 o]
Lilia S. 24 0
Total Errors 64 0.3
Removing these three speakers from the test
data would thus yield a substantial true
speaker performance improvement. In fact,
this would put the true speaker performance
within the 4% wmaximum suggested by the
binomial expansion of the 1individual word

distributions.

Although some speakers were also found who
contributed more than their share of imposter
errors, that is, there were also wolves and
eels in the population, these speakers were a
larger subset of the imposter population and

had the imposter errors more evenly
distributed among them. No one had more than
15% of the total imposter errors. Also, as

these errors could not be pinned on noise or

other abnormal variations from the test
conditions, there appearad to be no
justification for separating them from the
other speakers (except if the reference

patterns were polluted, which would lead to a
reduction of information available for
decision making and might cause all the
scores to become artifically inflated).

With the three goats removed (i.e., using 94%
of the test population), the flow graph model

gave the following results for +the RTHLs
adjusted around the values shown:
True Imposter
Rejects Accepts
(%) (%)
RTHL=115 4.28 g.54
RTHL=116 8.45 6.20

EFFECT OF THE BINARY SONOGRAM

A program was used to create scores for the
same test data both with and without the
binary sonogram. The flowgraph model was used
to evaluate the baseline case and cases B and

C with the three goats removed. The results
are shown below:
True Imposter
Rejects Accepts
(%) (%)
Baseline run 100 6.56 6.34

B, Goats Out 101 4.41 4.57

C, Goats Out 101 3.44 4.62

These | error rates represent substantial
improvements over the equivalent slope
encoding only cases. The improvements are
supported by the physical test results

discussed above (see particularly Table 1).

DECISION MATRIX SENSITIVITY

Two sets of decision matrix sensitivity runs
were performed wusing the discrete event
simulation. The first set of runs was
intended to examine the trend when (NxM) is
varied by adding a constant to each term
(ii.e., (N+K x M+K)). The second set was to
explore the trend when N was fixed at 7 and M

varied. It appeared that both the imposter
and true reject errors could be reduced
almost indefinitely by simultaneously

increasing both N and M. However, there also
appeared to be a point of diminishing returns
beyond about (7x5). In any case, going much
beyond (7x5) would have been impractical
because it would have made the verification
procedure too long. Using a (7x5) matrix
instead of a (5x3) matrix would evidently
hdve yielded about the same imposter error
rate, but a substantially reduced true reject
error rate (imposter rate goes up as M goes
up, and true errors increase with decreasing

M). Hence, (7x5) was selected as the best
available configuration, and this was used
throughout instead of the original (5x3)
matrix.

The ©baseline case of the previous section is

compared for the (7x5) without conditional
reject and (5x3) with conditional reject
cases below.
True Imposter
Rejects Accepts
(%) (%)
(7x5) Baseline run (no CR) 6.56 - 6.34
(5x3) Baseline run (w/ CR) 7.10 7.12
Id both cases the optimum RTHL was around
100. Both <cases allow a maximum of five
misses before an wunconditional reject is
determined. However, the (5x3) case allows

the wuser to be accepted in only five hits if
they are acquired before three misses. It can
be seen that dropping the conditional reject
allowance and requiring seven hits regardless
yields slightly reduced error rates.

used with
could have

The (7x5) matrix was not
conditional reject because this
resulted in as many as

(7x5) + (2x2) = (9x7)

hits and misses, and this was felt to be too

large.

CONCLUSIONS AND RECOMMENDATIONS

Comparison runs with the two models show very
gdod agreement with each other. However, both
tend +to underestimate overall error rate
performance because they both fail to
consider the effects of word score
correlations within access attempts. However,
they underestimate by amounts that are
considered tractable for the purposes of
sensitivity analyses and general system
performance assessment.
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The following 1is a tentative algorithm
specification for the speaker verification
system based upon results from prototype
testing of the lab system and simulation
results.

1) The decision matrix is 5 word rejections
by 7 required word acceptances with no
allowance for conditional rejects.

2) The scoring algorithm includes both the

frequency spectral coding and the binary
sonogram.
3) The following is the recommended
vocabulary:
WORD RTHL P(7x5)
1 HAMMER 94 .06
2 ALABAMA 100 -39
3 ZERO 102 .56
4 MEGA 100 <57
5 MANUAL 92 .59
6 TWO 96 .59
7 HUNDRED a8 .61
8 NINE 94 .65
9 NOVEMBER 100 .66
10 TOMATO 94 .67
11 XYLOPHONE 104 .68
12 MANY 93 .80
13 HIGH 106 1.03
14 FOUR 110 1.98
15 ZEBRA 100 2.30

The system performance obtained for this set
of specifications using the models described
earlier is on the order of 3.5% to 4.5% for
both Type I and Type II errors.
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