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ABSTRACT

A stochastic computer model was developed to analyze
a direct ascent, deep space intercept system. There
are two error sources within the system: the deep
space tracking system and the launch vehicle guidance
system. The errors are modeled based on equipment
performance data and analytical results. To compen-
sate for the system errors, the requirements for a
maneuverable intercept vehicle are developed. The
requirements are described in terms of sensor acqui-
sition distance and vehicle velocity change. Analyses
of error sources and tradeoffs amongst maneuver fac-
tors are discussed,

INTRODUCTION

A stochastic computer model was developed to analyze

a direct ascent, deep space intercept system. When
launched, the direct ascent system goes through two
phases of flight. The first phase involves boosting
the intercept vehicle to a given altitude on board a
launch vehicle. At burnout, the point when the launch
vehicle propellant is depleted, the first phase ends,
and the second phase begins with the intercept vehi-
cle continuing in free flight. As the intercept vehi-
cle approaches the deep space object, it detects the
object with its sensor subsystem and maneuvers to
intercept the object. The overall performance of the
direct ascent, deep space intercept system is depen-
dent upon how well the intercept vehicle can account
for the errors in the overall system. There are two
error sources in the system, and they both produce
uncertainty in the intercept position.

The first error source is the deep space tracking sys-
tem. One of the objectives of the tracking system is
to locate objects and predict their future positions.
For this paper, we consider only objects in deep space
whose orbital period is greater than 225 minutes. At
these distances, current deep space tracking systems
can determine the position of these objects within
1-10 km on the average. However, the position uncer-
tainty of the deep space object could be as large as
200 km.

The second error source in the system is the launch
vehicle guidance subsystem. The launch vehicle
boosts the intercept vehicle to a planned position.
This serves as the initial position and velocity for
the free flight of the intercept vehicle. Because
of inaccuracies in the launch vehicle guidance sub-
system, the actual position of the intercept vehicle
at burnout will differ from the planned position.
Additionally, the initial velocity of the intercept
vehicle will likely differ from the planned velocity.,
These errors in initial conditions are propagated
throughout the entire free flight of the intercept
vehicle. The result is an error in the final posi-
tion of the vehicle causing the vehicle to miss the
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intercept position.

For a successful intercept to occur, the tracking and
guidance errors must be reduced. This can be achieved
by improving tracking and guidance systems. However,
another means to compensate for these errors is to
allow the intercept vehicle to maneuver. The inter-
cept vehicle would detect the deep space object as it
approached it and would execute appropriate maneuvers
to correct for position error. In this paper, a ma-
neuvering intercept vehicle is considered.

The direct ascent, deep space intercept model incor-
porates the significant performance factors and simu-—
lates operational scenarios. The resulting data en-
ables tradeoff analyses amongst improvements in track-
ing errors, guidance errors and intercept vehicle per-
formance requirements.

ANALYTICAL MODEL

The astrodynamics applied in this model uses a two-
body model. To determine the nominal trajectory for
the intercept vehicle from the launch vehicle burnout
to the intercept position, the "Gauss problem" algo-
rithm is used. Given the initial and final position
vectors, Rl and R2, the desired time of flight and the
direction of flight, the Gauss algorithm computes the
velocity vectors at Rl and R2. To obtain the velocity
vectors, the eccentric anomaly is estimated and the
time of flight is calculated. The computed time of
flight is compared with the desired time of flight.

If the difference is not within an acceptable toler—
ance, the eccentric anomaly value is modified until
the flight time difference is acceptable. Based on
the eccentric anomaly that yields an acceptable com-
puted time of flight, the velocity vectors are com-
puted. The velocity vectors are used to define a
unique trajectory. Details of the algorithm are de-
scribed in reference (1).

The first position vector, the point where the inter-
cept vehicle begins free flight is in reality uncer-
tain. This results in the intercept vehicle trajec-
tory deviating from the planned or nominal trajectory.
To determine the error in the final position and ve-
locity vectors, a Kepler problem algorithm is used.
Given the initial position and velocity vectors and
time of flight, the Kepler algorithm predicts the
final position and velocity vectors. The Kepler algo-
rithm uses estimated values of universal variables to
compute the time of flight. When the computed time of
flight and desired time of flight difference is ac-
ceptable, the final position and velocity vectors are
calculated. The details of the Kepler algorithm are
described in reference (1). The error problem is
compounded when the second position vector, the point
where the space object was projected to be, is also
uncertain.
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The uncertainties are modeled as trivariate normal
distributions based on performance data from launch
vehicle guidance subsystem tests and on tracking data
analysis. The actual development of these errors is
accomplished by generating three random numbers from

a standard normal distribution for the radial-tangen-
tial~normal components (6). The values are scaled by
multiplying each by its respective input error charac-
teristic. The space object errors are represented by
the standard deviation predominantly "along the tra-
jectory" (3). Finally the errors are transformed from
the radial-tangential-normal coordinate system to the
geocentric~equatorial coordinate system. The concep-
tual model is illustrated in Figure 1.
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Figure 1. Conceptual Model

The difference between the planned or nominal trajec-—
tory and the error induced trajectory is called the
missed distance. The magnitude of the missed dis-
tance which can be compensated by the intexcept ve-
hicle is dependant on the distance the vehicle sensor
subsystem can acquire the space object and the maneu-
ver capability of the vehicle. To determine the
acquisition range, the space object is assumed to be
a 300° K black body, Lambertian source, with a one
square meter emitting area. Using a nominal infrared
detector subsystem, acquisition distances as great as
2000 km are possible before the signal to noise ratio
falls below a conservative value of 10 db. The flight
path of the intercept vehicle is altered by changing
the vehicle velocity AV. The amount of velocity
change, AV, required is a function of the miss dis-
tance and the distance between the vehicle and the
object. To determine the required AV, the vehicle
trajectories are approximated as straight lines and
similar triangle calculations are used. Figure 2
illustrates the similar triangle application. Based
on the analytical models described in this section,
the computer model is developed.
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‘COMPUTER MODEL

iThe direct ascent, deep space intercept computer model
'was written in FORTRAN 5 and was developed on a CDC
Cyber. Tigure 3 shows the structure of the program.
The user inputs are: burnout position (R1), intercept
position (R2), time of flight (TOF), error character-
istics for the launch vehicle position (SCALR) and
'velocity (SCALV), and error characteristics for the

' space object position (S8CALT) and velocity (V2T).
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Figure 3. Computer Program Model
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There are three major subroutines. INTCPT computes
the nominal intercept trajectory. RNDMGN generates
errors in the burnout position (Rl), the burnout ve~
locity (V1), and the space object position (R2) at the
intercept point. KEPLER computes the interceptor
position (R2) and velocity (V2). As part of the pro-
gram, miss distance between the space object position
and intercept vehicle position is calculated.

Subroutine INTCPT implements the Gauss problem algo-
rithm. It uses R1l, R2 and TOF to compute a nominal
intercept trajectory and determines the velocity vec-
tors, V1 and V2, associated with the two positions.
Because of the transcendental nature of the equations
in this algorithm, numerical iteration is required.
Within, INTCPT, a disection technique is used to iter-
ate to the proper universal variable, z. Bisection
simply involves defining a specific interval for the
variable value and checking the function value at the
midpoint. The appropriate half is selected and a new
midpoint value is used until a convergence interval
is achieved (5:241).

The bisection method was Eelected because a well de-
fined interval, 0 to (2m)”, for the universal vari-
able is known for the trajectory assumptions used in
this paper. Additionally, convergence to within a
specified interval is guaranteed when the initial
interval is known and the number of iterations speci-
fied (4:95). INTCPT has thirty iterations and an
initial interval of 39,478418 which assures conver-~
gence within 3.7 X 10™ .

Following INTCPT, RNDMGN generates errors in R1, V1
and R2. Since the Cyber generates random numbers
from a uniform distribution, RNDMGN applies the Cen-
tral Limit Theorem to obtain a standard normal dis-
tribution. Three numbers are generated, one for each
radial-tangential-normal component. Each number is
scaled by the input error parameter, 1-g. The re-
sultant errors are converted to the geocentric-equa-
torial system and added to the appropriate vectors,
Rl, Vvl, and R2, to simulate errors.

KEPLER implements the Kepler problem algorithm. It
uses the new Rl, V1 and the original TOF to compute
the error induced R2 and V2 for the interceptor.
Numerical iteration is required in KEPLER to obtain
the value of the universal variable, x. In this case,
a Newton jteration scheme was chosen since there is
not a well defined interval on the TOF vs. x curve,
The Newton iteration scheme uses the slope of the
curve at point x and the deviation from the desired
TOF to determine the next x value (4:87, 1:198).

The miss distance is determined by the magnitude of
the vector difference between the error induced space
object position and the error induced interceptor
position. Given the mean miss distance, the AV vs.
acquisition distance is determined for distances of
250, 500, 1000, 1500 and 2000 km.

To assure that steady state conditions were achieved,
2500 iterations of the error generation segment of
the model were executed. Steady state conditions
were considered achieved when the miss distance
changed less than five percent with additional iter-
ations. It was determined that 500 iterations were
sufficient to reach steady state. Therefore, the
error generations are repeated 500 times to compute
a mean miss distance. To determine the statistical
consistency of the results, the variance for the mean
miss distance was computed.

MODEL APPLICATIONS

Four hypothetical space objects were considered. Three
of the objects were in equatorial geosynchronous or-
bits. Object A was stationed over 100 degrees West
Longitude, Object B was stationed over 30 degrees East
Longitude and Object C was stationed over 120 degrees
East Longitude. The fourth object was in a semisyn-
chronous orbit inclined 64 degrees with an eccentric-
ity of 0.7 and perigee located in the Southern Hemis-
phere at 64 degrees. Burnout for launches for the
geosynchronous objects occurred at 100 mmi. altitude
and 34.5 degrees North Latitude, 120 degrees West
Longitude, when the 120 degree meridian was aligned
with the vernal equinox direction.

Error characteristics for the inertial guidance system
(IGS) were derived from some of the most widely used
systems. Table 1 depicts the error components in a
radial-tangential-normal (R~T-N) coordinate system.
Because of the apparent lack of correlation between
the error terms, the guidance errors were modeled as
spherically symmetric and represent a generic IGS.
Figure 4 compares the performance of the generic TGS
with actual IGS's for a four hour time of flight for
Object A.

Table 1.
Injection Errors (1 sigma)
with Burnout Velocity 35,000 fps.

Radial
Tangential Carousel Centaur Agena

Normal v Platform AGS Units
R 2664 4460 2493 ft
T 7206 5412 4430 ft
N 6841 6313 4426 fr
R 8.024 4.960 9.49 £ps
T 4.270 5.204 3.31 £ps
& 3.117 8.130 7.21 fps

The space tracking errors were also modeled in the
radial-tangential-normal coordinate system. While
tracking accuracy estimates vary for different objects
due to location and sensor coverage, most of the object
position error is along the trajectory Based on space
tracking experts the space object position errors are
modeled as a normal distribution in the tangential
component and an order of magnitude less in the normal
and radial components. TFinally, the space object's
velocity vector was obtained from the target's orbital
perameters. !

AMALYSIS

A performance baseline was established by comparing
the miss distance as a function of IGS accuracy for a
four hour time of flight for Object A. Figure 5 illu~
strates the baseline performance. TFrom this baseline,
four generic classes of IGS errors were selected:
165-1 (baseline of 2.4 X_ 0 ' for each of six compo-
nents), IGS-2 (1532 X 10 ), IGS-3 (5 X 10 7) and
IGS~4 (2.4 X 1077). The space tracking error classes
for the analyses are 1, 5, 10, 20, 50 and 100 km, 1-
sigma tangential.
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Using these error classes, miss distance as a function
of IGS accuracy and as a function of tracking accuracy
o e were determined. Figure 6-9 graph the results for the
o5 mSEL v four space objects and a three hour time of flight.

20060 + ® SEMERIC 10341 The following inferences are made from these results:
% = AGENR i
1. 1If the IGS_Z.S limited by other factors to no
better than 10 (1-0 across all components of
. teo.coy position and velocity), there is no payoff for
" dmproving tracking from LOKM to 1KM, and very
little payoff from 20X to 1XM. That conclusion
s0.20] can be drawn due to the closeness of the 1, 5,
10, and 20K¥ lines in Figure 6a and the leveling
| off of the top two curves of Pigure 6b.
z
Z L] ' 2. If the space objects have tracking errors
g in excess of 50KM (1~0 tangential), relatively
= , limited payoffs are possible with an improved IGS.
= ' This can be seen in the closeness of the IGS
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The time of flight to Object A was changed from three
hours to four hours. Figure 10 is a graph of the
results. This variation shows that miss distance has
a greater sensitivity to a ome hour time of flight
change than to large differences in space object posi-
tion errors.

Another insight into the system can be gained from
analyzing the intercept vehicle velocity change, AV,
as a function of sensor acquisition distance for dif-
ferent IGS accuracies. Figure 10 is a graph of these
relationships. From the graph, one can conclude that

limited payoffs are achieved with an improved IGS when

the tracking errors are in excess of 50KM (1-u, tan-~
gential).

TRADEQFF SCENARIOS

System tradeoff studies can be accomplished by using

the intercept vehicle velocity change, AV, as a metric.

The AV is used in the rocket equation to solve for the
mass of the propellant needed to achieve the required
velocity increment.

Scenario 1. IGS~1 and IGS-2 were considered with a
100 km sensor. Using an intercept vehicle with an
initial mass of 500 kg and a nozzle exit velocity of
3km/sec, the required AV for the four space objects
are shown in Table 2. The rocket equation was used to
determine the propellant mass:

M
AV
=X - ip 2
Ve Mf

where AV is the velocity increment change

V_ is the exit velocity of exhaust gases

from the nozzle

M. is the initial vehicle mass

Mf is the final vehicle mass
Considering the largest AV requirements, IGS-1 will
require 30 kg of propellant and IGS-2 will require
19 kg. Since the difference is probably inconsequen-
tial, other factors such as reliability, cost and
risk might be considered in the tradeoff between
IGS-1 and IGS-2.
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System Performance for Space Object A and 4 Hour TOF

Table 2, Scenario 1
AV (KM/Sec) for
Space Error (KM) 1000 KM Acq. Dist.
Object 1-0 tang IGS 1 IGS 2
A 10 .10604 .06053
B 20 *.17676 .10692
c 50 L14777 | %.10951
D 20 .14188 .08789

Scenario 2. A 250 km acquisition sensor was used with
IGS-1 and IGS-2. Table 3 shows the results. In this
scenario, the largest AV requirements demand 133 kg of
propellant and 79 kg of propellant for IGS-1 and IGS-
2, respectively. In this case, the difference of 54
kg might impact the mission and influence the trade-
off.

!

Table 3. Scenario 2

AV (KM/Sec) for

Space Error (KM) 250 KM Acq. Dist.
Object 1-¢ tang IG5 1 IGS 2

i A 10 .42417 .24213
t B 20 %*_70704 .42769
i C 50 .59108 %*,43805
D 20 .56752 .35157

'

égenario 3. A 250 km acquisition sensor and IGS-4
were used. Additionally, the effect of improving the
space object trading accuracy to 1 km (1-0, tangen-
tial) was assessed. Table 4 shows the results. Using
the largest AV requirements, a reduction of 50 kg of
propellant is achieved by improving the space object

(.

f
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tracking accuracy.

Table 4. Scenario 3

AV (KM/Sec) for
Space 250 KM acq. Dist.
Object Previous Errors 1 KM (1-0 tang)
A .07837 .04243
B .19443 *,06793
c *,33252 ,04548
D 17565 .05385
VALIDATION

There is to date no actual direct ascent, deep space
intercept system. Because there are no real world
performance results, model validation was achieved
with the "towards-validation" approach suggested by
Ghelber and Haley (2). Ghelber and Haley define the
"towards validation" approach as, "the documented evi-
dence that a computerized model can provide users
verifiable insight, within the model's domain of appli-
cation, for the purpose of formulating analytical or
decision-making inferences" (2:13). This process
involves a four phased approach: (1) conceptual,

(2) verification, (3) credibility and (4) confidence.
All phases were successfully accomplished. For this
paper, the confidence phase is specifically described.

Ghelber and Haley contend that confidence building be-
gins with the first steps in the conceptual phase and
continues through all the previously mentioned model
building and use (2:29). One of the recommended steps
in this phase is a statistical comparison of modified
simulation runms with related data.

In all runs of various target scenarios and guidance
and target error combinations, statistical consistency
of the model was achieved. The following equation was
used to compute the interval about the sample mean
(miss distance) within which the true mean is located
to a confidence of 95%:

* - 1.980'5 <u< P 1.9(6)0'5
(n)™" (m)~*
where x is the sample mean
U is the true mean
¢ is sample standard deviation
n is the sample size

The runs conducted in this analysis consistently showed
the true mean to be within 0.1% of the sample mean.
Table 5 shows a sample of results.

CONCLUSTIONS

A model has been developed for evaluating error contri-
butions within a direct ascent, deep space intercept
system. It is a model which can be used as an aid in
assessing the overall system performance.

751

Table 5.
Sample Results for Test of Sample
Means (95% Confidence)

Space Target Error
Object iGs# (1o tang) % Deviation
A 1 1 KM .07
A 3 20 KM .06
B 2 50 KM .05
[ 4 100 KM .07
D 1 100 KM .06
s
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