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In recent papers by Kirkpatrick et al.

( 1982,1983 ), an analogy between the

statistical mechanics of large multivariate physical systems and combinatorial optimization
is presented and used to develop a general strategy for solving discrete optimization

problems.

The method relies on probabilistically accepting intermediate increases in the

objective function through a set of user-controlled parameters. It is argued that by taking
such controlled uphill steps, from time to time, a high quality solution can be found in a
moderate amount of computer time. This paper applies an implementation of the proposed
algorithm to the TSP for various size networks. The results show the algorithm to be inferior
to several well-known heuristics in terms of both solution quality and computer time
expended. In addition, set-up time for parameter selection constitutes a major burden for
the user. Sensitivity of the algorithm to changes in stopping rules and parameter selection is
demonstrated through extensive computational experiments.

1. INTRODUCTION

Combinatorial optimization entails a large class of
mathematical programming problems whose underlying
structure is inherently discrete in nature. Problems in
graph theory and integer programming, such as the
traveling salesman problem,the network design problem,
and the knapsack problem, fall into this class. This class
of problems has received a great deal of attention in the
literature due to the large number of practical problems
that it includes. However, many of these problems have
been shown to be NP-hard (see Garey and Johnson

1979 ) ) with the consequence that it is highly unlikely
that an exact algorithm, whose running time is
polynomially bounded in the size of the problem, exists.
Accordingly, a great deal of research has been devoted to
finding efficient, approximate solution methods that
exploit some special structure of the particular problem:.

Recently, Kirkpatrick et al. [1982,1983) have
argued that all combinatorial problems possess a common
structure, namely, that they are large multivariate
diserete systems with many degrees of freedom. An
analogy is made between the behavior of large physiecal
systems and combinatorial problems with the result that
one could apply results from classical statistieal
mechanics fo combinatorial optimization.

Statistical mechanies concerns itself with analyzing
aggregate properties of large numbers of atoms in liquids
or solids. The behavior is characterized by random
fluetuations about a most probable behavior, namely the
average behavior of the system at that temperature. An
important question is obviously: What happens to the

system at extremely low temperatures? The low
temperature state may be referred to as the ground state
of the system and is the lowest energy state. In physical
systems, the probability of & certain configuration
oceurring is calculated from a Boltzmann distribution.
The potential energy of the system, the measure of
interest, is determined by considering the potentials
between a given element and its next nearest element in
a given configuration. Since low temperature states are
very rare, experiments that reveal the low temperature
state of a material are performed by a process referred
to as annealing. The material under study is first melted
and then the temperature is slowly lowered with a long
time spent at temperatures near the freezing point. The
period of time at each temperature must be sufficiently
long to allow a thermal equilibrium to be realized.
Otherwise, certain random fluctuations will be frozen
into the material and the true low energy state will not
be realized. The proeess can be likened to growing a
erystal from a melt. If the temperature is lowered too
quickly, the result may be glass or a crystal with many
defects.

The annealing proecess is usually simulated using a
Monte Carlo procedure like the one developed by
Metropolis et al. ( 1953 }. In this procedure, the
thermal motion of atoms in contact with a heat bath at a
given temperature is simulated. The proeedure is simply
stated:

Given a configuration of the elements of the system,
randomly displace the elements, one at a time, by a
small amount and calculate the resulting change in
the energy, AE. If AE < 0 then accept the
displacement and use the resulting configuration as
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the starting point for the next iteration. If AE > 0
then the displacement is accepted with probabitity
P( A E) = exp(- A E/k,T) where T is the temperature
and ky, is Boltzmann's constant.

The probabilistic aspect is implemented by comparing
P( A E) with a random variable drawn from a uniform
distribution on the (0,1) interval. Repetition of this step
continues until equilibrium is achieved. At that point,
the temperature is lowered and the procedure repeated.

The analogy we are seeking now presents itself. If
we view the discrete e¢lements of a combinatorial
optimization problem as the atoms of a physical system,
we are seeking a configuration that gives us the lowest
energy state, or ground state. The energy of the system
is calculated by the objective funetion. Heuristic
methods, which rely on iterative improvement,
continually seek a rearrangement that lowers the
objective funetion as much as possible from one iteration
to the next. When looked at from a statistical mechanics
viewpoint, this is similar to rapidly quenching the system
from a high temperature to a very low temperature with
the result that solutions of inferior -quality may be
obtained. The following serves to illustrate this concept
with respect to the Traveling Salesman Problem (TSP).

Suppose we apply the 2-OPT branch exchange
procedure (Lin (1965 )) to a tour with the option of
aceepting an inerease in the tour length with some
probability. Figure 1A depiets a ten node example with a
starting tour. We note.that this tour is 2-Optimal, that
is, no decrease in the tour length is possible under the
allowed transformation. We are thus at a local minimum
with a tour length of 271.16 units.

Now consider exchanging ares (7,3) and (4,5) with
ares (4,3) and (7,5). This results in an inerease in the tour
length of 8.9 units (see Figure 1B), but suppose that the
probability is such that we accept the exchange and
continue executing the 2-OPT procedure. This would lead
us to the solution shown in Figure 1C with a tour length
of 263.74 units. So we see that accepting an
intermediate increasse in the tour length can lead to a
better solution.

Simulated amnealing gives us a inechanism for
accepting increasses in a controlled fashion. At each
temperature setting, we can accept an increase in the
tour length with a certain probability. It is possible that
aceepting an increase will reveal a new configuration
that will avoid a local minimum or at least a bad loeal
minimum. This is clearly shown in Figure 1. Note that
we always accept a decrease in the tour length. The
effect of the method however, is$ that one descends
slowly. By controlling these probabilities, through the
temperatures, we are in essence simulating many random
starting solutions in a controlled, simultaneous fashion.
An analogy similar to this is well-known in statistical
mechanies.

Kirkpatrick et al. argue that an iterative
improvement scheme can be incorporated into the
Metropolis procedure and used as a general strategy for
solving combinatorial optimization problems. Instead of
always rejecting a rearrangement that increases the
objective funetion, weé now accept it with some smail
probability, It is argued that taking controiled uphill
steps gllows one to break away from configurations
leading to loeally optimal solutions and hehee increases
the likelihood of obtaining a higher quality solufion,
eventually.

In the following sections, we apply this strategy to

the traveling salesman problem, perhaps the most
celebrated of combinatorial optimization problems. We
formally define the Metropolis procedure as applied to
the TSP and state the assumptions made in implementing
the approach, The procedure is then applied to several
problems of varying size and their solutions are compared
to the optimal solution (where available) or to solutions
generated by heuristics known to produce high quality
fours. Sensitivity of the procedure with respect to
several control parameters is examined closely.

2. THE ALGORITHM

The attractiveness of using the simulated annealing
approach for combinatorial optimization problems is that
transitions away from a local optimum are always
possible when the temperature is nonzero. As pointed out
by Kirkpatrick et al., the temperature is merely a control
parameter so we no longer require Boltzmann's
constant. In keeping with Kirkpatrick et al.'s
terminology, we will refer to this control parametér as a
temperature. In discrete optimization problems, it
controls the probability of accepting a tour length
increase. As sueh, it is expressed in the same units ‘as the
objective function. In implementing the approach, the
2-OPT procedure developed by Lin { 1965 ) is used for
rearranging a tour.

In order for the method to funetion well; a proper
annealing schedule must be developed. An annealing
schedule is defined to be the sequence of temperatures
and the amount of time at each to reach equilibrium for
that temperature. Given this schedule of temperatures,
S={ tpty ety } with the sequence obeying
ty >ty > e >tg 0> t,» we formally define the
afgorithm (SA):

Generate a random TSP tour.
Set i« 1,

Step 0.

Step 1. Execute one step of the 2-OPT
algorithm and evaluate the change
in the objective function, A C,

as a result of the exchange.

If AC < 0go toStep 3; otherwise
go to Step 2.

Step 2. (AC> 0.

Select a random variable B £ U(0,1).

If B <P(AC) = exp(~AC/ty,

go to Step 3.

¥ 8 > P(AC), then reject the 2-OPT
exchange and go toSteép 1.

Step 3. (AC < Oor B < P(AC).

Accept the 2-OPT éxchange and compute
the new value of the objeé¢tive function.
Go to Step 4.

Stepd. ~ 1If equilibrium, with respect to
temperature t;, is reached

set i + i+1.

If i > n STOP; otherwise

‘go to Step 1,

Two implethentation issués, ¢rucial to the success
of the method, are: What is #dn équilibrium and Low does
one construct an annealing schedile? In the unabridged
version of the "Sciénce article, Kirkpatrick @t
al. {1982 ), give the following guidence on when a
steady state or equilibrium is reached: At each
temperature, the simulation must proceed long enough
for the system to reach a steady state. The sequence of
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temperatures and the amount of time required to reach
an equilibrium at each temperature can be considered an
annealing schedule. We performed a rather lengthy set of
computational experiments in an attempt to observe a
steady state and gain insight into the construetion of an
annealing schedule.

Recall that the 2-OPT is a braneh exchange
procedure in which a pair of ares in a feasible tour are
exchanged for a pair of ares not in the tour as long as the
result remains a tour and the length of thé tour is less
than the length of the previous tour. If an exchange is
made, we term the exchange a swap, In the simulated
annéaling method, recall, we are permitted to make
exchanges that increase the tour length. We refer to
these as swaps also.

Starting with an arbitrarily high temperature and
random tour, the method was executed with the resuiting
tour length observed after each swap or attempted
swap. After a number of swaps had been made, the tour
lengths were observed to cycle. The cycle consisted of
making & swap that increased the tour lengths
subsequently followed by a swap that decreased the tour
length to a previously encountered value. That is, tour
lengths oscillated between two or more values.

Based on these experiments, a steady state was
defined as a set of tour lengths that is not systematically
decreasing — a reduction beyond that is thus highly
unlikely. We refer to this condition as being at
equilibrium at temperature t;. This is obviously related
to how long one lets the procedure run for a given t;.

Because the algorithm relies on uniformly
distributed random variables, we want the 2-OPT to
proceed long enough for the random element to work,
however, excessive execution of the 2-OPT would greatly
inerease the running time. Based on our observations, we
derived a method for equilibrium testing. Central to the
understanding of our method is the coneept of an epoch,

Before testing for an equilibrium, we allow the 2-
OPT to effect a number of swaps, this number specified a
priori. We define this interval between equilibrium
testing to be an epoch. An epoch thus eonsists of n
attempted swaps.'" After execution of an epoch, the
resulting tour length is saved and we test for an
equilibrium. The test consists of compering the tour
length from the most reeent epoch with the tour lengths
from all previous epochs at a specified temperature. If
the tour length from the most recent epoch is sufficiently
close fo any previously observed tour length (at the given
temperature), we declare the system to be at an
equilibrium point. At this stage, the next temperature is
selected dnd the procedure is repeated.

The procedure thus eonsists of executing the 2-OPT
(allowing for tour increases) for a number of epochs (the
length of which is defined by the maximum number of
swaps we permit) and testing for an equilibrium at the
completion of each epoeh, Thus, a number of epoechs
elapse hefore equilibrium. Following Kirkpatrick et dl,
we always permit the system to reach equilibrium before
the next temperature is selected. We now state the
algorithm, termed SA} incorporating the equilibrium
' testing or stopping rule:

Define the set Lf = { Lgs Loy eons b } as the tour
lengths observed during an epoch at temperature t

Step 0. Set §

« Q.
set Lt < @,

Execute steps 1 through 3 of (SA) for one
epoch. Call the resulting tour length L.

lj-LI

Step 1.

EquilibriumtTest. If l
any l; € L~ then

go t6 Step 3 otherwise, perform the
following updates:

Step 2. 2 € for

v+

.+
l] L

tt o« 1ty y .

Go to Step 1.
Step 3. Select the next temperature and go to
Step 0.

Construetion of the annealing schedule was the next
task and it proved to be a very burdensome process.
Kirkpatrick et al. offer little guidance other than trial
and error. However, care must be taken so that large
decreases in the objective function are avoided at any
given temperature. According to the physical analogy,
large decreases at any temperature are likely to result in
descent to a local minimum that might make it diffieult
to exit from. The extreme case is a single application of
the 2-OPT procedure at the zero temperature.

In order to determine an annealing schedule, a set
of computational experiments were conducted on a 100
node problem _ taken from Krolak, Felts, and
Marble (1971 ). We found that the initial temperature
could easily be caleulated by substifuting the largest

possible arc length for - AC in the expression

exp(- A C/t) and solving for t;using a probability of .99.
The process consists of starting with the high
temperature and then slowly redueing it by a fixed
amount while observing the changes in the objective
function. If the objective function is found to -decrease
significantly as the temperature drops from say tjto iy
then that interval is further subdivided.

Despite our persistent efforts to find a schedule
that lowered the objective function slowly, the
experiments revealed that there seems to be one critieal
temperature at which a large decrease in the objective
function inevitably oceurs. The decrease was. observed to
be fairly uniform preceding and following this ecritical
temperature. When this interval was further subdivided,
the effeet was to either defer the large decredse until a
later temperature, or keep it at the same temperature.
It was also observed that the final tour length, that is,
the tour length resulting from the execution of the entire
procedure, was only slightly changed by the process of
interval subdivision. As we shall see later, the amount of
computational effort to run a reasonable size problem is
not insignificant, making the schedule selection process
quite important.

varied.
this paper.

u The maximum number of swaps (n) per epoch is a parameter which can be
We examine the sensitivity of the method to variation in n later in



Optimization by Simulated Annealing 527
TEST CONDITION

No. oF  BEST Known  Swaps/ Bast e’ +] ce” -1 cpt’  ResTart cpu’
Nopes  Soiution  Epoch (Z over) (secs) (X over) (secs) (X over) (secs) (X over) CowpivioN ({sEcs)
50 .00 40,8¢ W27 43,11 W26 €L.97 41 -1 40,86

25 297.03 25 .00 20,97 .31 25,22 .00 26,29 1.08 B 20,13
15 .00 17.77 .00 15.92 .00 18.74 1,08 B 13.78

5 L0000 10,15 .00 8.91 .00 7.53 .00 -1 12,30

50 1,60 41,87 3,31 60.55 A1 150.61 A -1 146.79

32 390,89 25 1.60 42,55 3.70 30.05 A1 95,63 A1 -1 89,03
15 1,92 30.93 2,46 28,57 A1 62,22 .00 +1 40,53

5 1,60 1€.65 €.04 14,38 41 28.95 .15 -1 25,19

50 3.47 79.10 €.2€ 59,94 3.13 102,20 1,8€ B 73.71

40 234,36 25 1.27 62.44 2.73 73,94 8,35 66.09 1,27 B 44,83
15 L1l 43,99 59 41,10 .00 -1 39,69

5 7.82 3€.,99 4,7¢ 39,20 4,85 35.33 4,85 -1 32,32

50 4,08 3€1,11 3,7¢ 3€0.69 5,33 126.50 3.38 B 196,24

50 2€4,15 25 6,75 150,€4 7.71 116.30 7.04 218,26 4,79 -1 102,26
15 2.15 79.39 3,35 75.24 3,91 108.71 2,15 +1 59,53

5 5.47 70,01 6.19 129,78 2,90 70.01 3.90 -1 44,27

50 4,1¢ 302,67 - 2,12 285.78 4,89 288,08 2,81 -1 93,74

55 283,98 25 5.19 321,84 4,06 101,95 1,91 - 429,48 1.8t +] 100,91
15 1.62 119,88 1.37 189.41 2,34 104,19 2,34 +] 71.23

5 2.58 105,76 2.34 108,48 2,22 13€.03 2,22 -1 52,86

* IBM 4381 BesT SOLUTION FOR PROBLEM|HIGHLIGHTED|
TABLE 1

SUMMARY OF COMPUTATIONAL RESULTS

3. COMPUTATIONAL RESULTS

In order to evaluate the algorithm, a set of test
problems of varying size was generated using a uniform
random number generator o locate the nodes. Internode
costs were determined by the Euclidean distances. All
problems were generated in the same rectangular space.
The experimentation revealed that the same annealing
sehedule was found to work well across varying problem
sizes as long as the problems remained in the same
rectangular space. The procedure is thus somewhat
stable in this regard. The problems were tested varying
the number of swaps per epoch and slightly altering the
annealing schedule. Finally, the set of five 100 node
problems taken from Krolak, Felts, and
Marble ( 1971 ) wes tested. For all problems, the
annealing schedule was determined by caleulating the
initial temperature and then experimenting with various
temperature reductions between that value and zero.
The schedule was deemed acceptable when it produced a
fairly uniform decrease in the tour length between
epochs. The rule of thumb that we adopted was to let
each annealing schedule consist of 25 temperatures.

Because the number of swaps per epoch affeects the
running time, we varied this parameter in order to
examine not only its effect on running time, but also its
effect on the quality of the solution. All solution times,
unless otherwise noted, are virtual CPU seconds on an
IBM 4341 running under VM/CMS. Solution times include
only time spent executing the modified 2-OPT procedure

and exelude all input-output times and distance matrix
caleulations.

In addition to varying the number of swaps per
epoch, we examined the effect of small changes to the

annealing schedule by defining two perturbation
conditions. The first of these, termed the +1 condition
consists of executing the procedure with the

experimentally determined annealing schedule exeept
that we add one to every temperature greater than one.
In a similar fashion, we define the -1 condition by
subtracting one from every temperature greater than
one. Finally, for all problem sizes and all test conditions
the procedure was executed using, as a starting tour, the
tour resulting from an application of the simulated
annealing algorithm. This condition was termed
Restart. The annealing schedule used for the Restart
econdition was a second experimentally derived schedule
that started at a much lower temperature than the first
schedule. The initial temperature for the Restart
condition was calculated by substituting the average are
length from the resulting tour in the probability
expression and solving for the temperature.
Determination of the other temperatures was as
previously described.

The results for the randomly generated test
problems, for all test conditions, are summarized in Table
1. The Best Known Solution (ecolumn 2) used for purposes
of comparison was determined by repeated application of
the OROPT branch exchange procedure (see
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TEST CONDITION

No. oF  BEST Knowh  Swaps/ BasE cpu” +1 cpu” -1 cpu®  RESTART cpu”
Nopgs SoLuTION EpocH (1 over) (secs) (% over)  (secs) (X over)  (secs) (X ovEr) CoNDITION (secsi
50 0,68 290,86 3,33 181,02 [.00 879.88 0! -1 475,62

60 290.28 25 3.42 181,02 NS 599,93 3,99 224,88 1€ +] 205,85
15 32 358,06 95 287,08 1.93 201,68 W32 B 118.47

5 3.71 1€3.,57 4,89 129.47 3.42 141, 44 3.3€ B 51.91

50 .00 1296.91 5.96  1314,25 €9 1217.23 .01 B 472.l39

70 300.21 25 3,17 511,25 5.04 332,78 2,04 777.39 2.04 -1 151.11
15 3.75 603,43 4,39 344,24 4,93 408,67 375 +1 157.64

5 8,28 287,23 5.94 354,23 4,1¢ 232.72 4,16 -1 89.02

50 5.32  1000.88 3.6€ 984,62 2,23 921.44 3.27 +] 441,€1

75 303.08 25 3.62 485,22 £.3€ 423,2) 8,87 482,5€ 3,62 B 221.52
15 10.60 449,33 12,59 4,22 12,94 421,€3 8.87 -1 191.44

5 2,59 384,39 2.37 401,21 €.24 432,23 2.37 B 152.€€

50 €.82 495,10 5.78 1168,02 4,53  1058.32 3.3€ +] 254.35

80 314,15 25 12,84 563,21 4,51 £98.35 7.08 777.81 5.00 +] 138,13
15 5.78 495,22 3.73 421,54 5,11 558.07 4,22 +1 123.75

5 1,90 401,11 9,22 509,38 7,44 455,58 1.90 B 148,23

50 3,65 1710.89 24 1820,62 2,06 161123 1.4 +] 282,11

85 323.45 yis 8.57 1002,11 2,31 1142.75 20 1278.77 04 -1 221,11
15 7.83 1222.48 3,90 942,48 5,39 1124,93 1.58 -1 428,62

5 . 4,69 848,56 5.29 £41,22 2,08 600,59 1.85 -1 132,34

“ IBM 4341  Best SOLUTION FOR PROB[;EM“
TABLE 1
SUMMARY OF COMPUTATIONAL RESULTS )
(CONCLUDED)

or (1976 )). Note that in these runs we adopted a’
striet definition of equilibrium in that we set € equal to
unity. We later present results based on a relaxation of
this definition.

In evaluating the results, we seek to answer several
questions.  First, what is the relationship between
problem size and running time? Kirkpatrick et dl. peport
that the computational effort grows as N {the number of
nodes), or as a small power of N. Second, how do the
solutionn quality and runnin%‘_hjci'mes compare with other
heuristies for the TSP? ird, what effect do small
perturbations of the annealing schedule have on running
time and solution quality? Finally, does a variation in the
number of swaps per epoch have a signifieant impact on
thie solution quality? We examine these topies next.

4. ANALYSIS OF RESULTS

We first examine the impact of problem size on the
computational effort. Considering each test eondition
independently, an examination of Table 1 reveals, not
surprisingly, that as the number of swaps per epoch is
loweréd, the solution time generally decreases. Also,
examining the solution times for a fixed number of swaps
per epoch, we find that solution time increases as the
problem size inéreases. Figures 2, 3, and 4 display these
relationships graphically for each test condition:

These graphs show that as the number of swaps per

epoch is lowered, the solution time becomes less.
Clearly, five swaps per epoch is most attractive from the
point of view of solution time for all test conditions. In
order to quantify some of the above observations, a least

. squares fit of the solution time as a funetion of problem

size was performed for all test conditions. Simple power
functions were used. Tables 2, 3, and 4 summarize the
results.

For the unperturbated schedyle, see Table 2,
excellent fits are evidenced with no r“below .89. We see
that for all number of swaps per epoch conditions the
computational effort scales at a rate greater than cubie.

Looking at the +1 condition resu;ts, see Table 3, the
fits are similar. Three of the four r valueszare greater
then or equal to .90 with the remaining r“ value only
slightly less at .88. Again the rate of inerease is greater
then cubie.

The fits for the ~1 condition, shown in Tabl‘e24, are '
not as clear. Here we see that the the highest r® value
oceurs at 15 and 5 swaps per epoch. Looking at Figure 4,
we see a rather large variability in the solution times as
the problem size increases for both the 25 and 50 swap
per epoch conditions. This variability contributes to the
fits. Note that for 15 and 5 swaps per epoch, the rate of
increase for the power funetion is, again, cubic or
approximately cubie.
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) FIGURE 2 FIGURE 4
PLOT OF RUNNING TIME VS. NUMBER OF NODES — PLOT OF RUNNING TIME VS. NUMBER OF NODES -
BASE CONDITION ~1 CONDITION
Swaps/ y=a xP
BUNNING TIME VS. = BOF NODES-+1 CONDITION
Epoch
E 2 a b
g 50 .89 1.19-10°3 3.12
] 25 .96 1.08-1073 3.04
g 15 .93 2.20-1074 3.40
& 5 .08 8.92-10"5 3.53
-C,D
=3
&y x = Problem Size
8 y = Solution Time (cpu secs)
2 TABLE 2
e RESULTS OF CURVE FITTING — BASE CONDITION
wo
.E:" In examining the second question, we wish to
P compare these results with those of a specialized
U;. heuristic for the TSP. The method we chooge is the
CCAQO procedure developed by Stewart (1977 ]because
g of its ease of implementation, fast running time, and its
sS4 documented ability to produce high quality solutions (See
o Golden and Stewart ( 1983 ) ). The CCAO heuristic is a
- © 15 sweanr hybrid procedure that uses the convex hull of points as
<l . . . A the starting subtour and inserts nodes using a combination
%.DU 20.00 60,00 20.00 100,00

40,00
NUMBEB OF NODES

FIGURE 3

PLOT OF RUNNING TIME VS. NUMBER OF NODES -

+1 CONDITION

of the Greatest Angle method (Norback and
Love (1979 )) and the cheapest insertion criteria.
Finally, a branch exchange heuristie, the OROPT
procedure (Or ( 1976 )), is used as a post-processor.
The results of applying this heuristic to the ten test
problems are summarized in Table 5.

Table 5 shows that the CCAO procedure failed to
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Swaps/ y = a xP
Epoch
r? a b
50 .88 8.07+10"4 3.23
25 .90 $.73+1074 3.20
15 .96 3.59+1074 3.25
6.63+1075 3.61

Problem Size

»
L]

Solution Time (cpu secs)

~ TABLE 3 ~
RESULTS :OF CURVE FITTING ~ +1 CONDITION

T
n

Swaps/ y=a xP
Epoch
r? a b
50 .85 .01 2.71
25 .68 | .01 2,47
15 .93 1.33-1073 2.95
s .98 1.43+1074 3.41

x = Problem Size
y = Solution Time (cpu secs)

‘ TABLE4
RESULTS OF CURVE FITTING — —1 CONDITION

No. of Best Known % Cpu
Nodes Solution over {secs)
25 297.03 .00 0,76
32 390.89 30 1.28
40 234.36 .00 3.7
50 268.01 .00 5.77
55 280.15 1.37 7.17
60 290.28 .00 16.61
70 300.21 00 27.88
75 303.09 .32 23.78
20 314,15 .00 30.59
85 32345 .70 44,59
TTABLES T

COMPUTATIONAL RESULTS FOR CCAO HEURISTIC

find the best known solution on only four out of ten
problems with the percentége above the best known
solution being less than 1,5% for thése problems. The
rurining times are also very reasonable. The curve fitting
“experiments show that run-time as a fu‘nctioa ﬁ nimber
of, nodes fits the power funetion y = 1.1E=05 x #** with.an
r“ of .98, ‘While the computational effort:of the-CCAO
séales closely with that of the simulated annealing
approach, the rate of inerease is always less and, as we

will show, its behavior, in terms of both acecuracy and
efficiency, is considerably more consistent than that of
the simulated annealing method.

In order to rigorously examine the effects of
perturbations of the annealing schedule and swaps per

epoch, we apply tests from nonparametric statisties.

Such methods have been used to compare heuristie
procedures for combinatorial optimization problems with
respect to a number of eriteria (see Wasil, Golden, and
Assad (1983 }). These tests are particularly suited to
this application as they overcome the problems
associated with large fluctuations in the data that may
oceur across problem sets. We use the nonparametric
test due to Friedman (see Conover (1980 }) with
=05,

Focusing on solution quality, we test the following
null hypothesis for each of the three annealing schedules
(Base, +1, -1)

Hy The variation in the number of swaps per
epoch produces identical resulls
against the alternative : "
H,: At least one swaps per -epoch condition
tends to yield better results than-at least
one other condition.

As Table 6a shows, we do not reject the null
hypothesis for any of the test conditions. From Table 1
and Table 6a, we conclude that none of the number of
swaps per epoch conditions produces consistently -good
results. Figures 5, 6, and 7 graphically -depict the
variability resulting from altering the number of swaps
per epoch.

Considering the effect ¢f perturbing the annealing
sehedule, we test the following null hypothesis for each
number of swaps per epoch condition

'Ho: The three test conditions, Base, +1, -1,
yield identical solutions
against the alternative
H;: At least one test condition tends to yield
better solutions than at least one other
test condition.

Table 6b summarizes the results and shows that we
do not reject the null hypothesis. As Figure 8 shows,
perturbing the annesling schedule produces varied and
rather unpredictable results. )

In a similar manner, we test for differences in
running time by first testing the following null hypothesis
for each of the three annesling schedules (Base, +1, -1)

Hy The variation in the number-of swaps per
epoch produces identical rumiing times

TEST CONDITIONS

BASE +1 -1
Result Aceept H, Accept Hy Accept Hy

{a)

SWAPS.PER EROCH

50 25 15 7 $
- Result Accept l;!o Accept Ho Accept H o Accept H°
(b)
— T T TTABLE®
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% Above Best

Swaps/Epochs

Nodes

FIGURE 5 N
VARIABILITY IN SOLUTION QUALITY -
BASE CONDITION

0} E : o

70
Nodes Swaps/Epoch

% Above Best

Swaps/Epochs

FIGURE 6
VARIABILITY IN SOLUTION QUALITY —~ +1 CONDITION

against the alternative
" Hy: At least one swaps per epoch condition
vields a larger running time than at least
one other condition.

% Above Best

Swaps/Epoch

% Abave Best

Swaps/Epachs

FIGURE 7
VARIABILITY IN SOLUTION QUALITY — —1 CONDITION

The results, shown in Table 7a, indicates that we
reject the null hypothesis for all test conditions.
Furthermore, & test for multiple comparisons (Conover
( 1980 ) ), points out the significantly different pairs.
As expected, running time generally decreases as the
number of swaps per epoch is decreased.

To examine the effect that perturbing the annealing
schedule has on running time, we test the following null
hypothesis

Hy The three test conditions, Base, +1, -1,
yield identical running times
against the alternative
H;: At least one test condition tends to yield
a higher running time than at least one
other condition.

Table 7b shows that for 15 swaps per epoch, the null
hypothesis is rejected with the significantly different
pairs displayed in the appropriate columns. Clearly, for
some swaps per epoch conditions, the method shows a
sensitivity in running time to slight changes in the
annealing schedule. The reason for this is not entirely
clear.

The last test condition we examined was termed
Restart. In this setting the tour resulting from the
application of simulated annealing was used as the
starting tour for yet another application of the method
with a different annealing schedule. This was done for
each test eondition and number of swaps per epoch. The
results are summarized in Table 1.

The data for Restart in Table 1 reports the
percentage above the best known solution and the test
condition that yields the best result. We note that in less
than ten percent of the cases did Restart produce tour
lengths greater than those with which it was started.
Also, in only four cases did the solution time of the
Restart condition exceed the solution time of the
randomly started problem.
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TEST CONDITIONS
BASE + -1
Significantly (5,15) (5,50 (5,25)
Different Pairs ,
(5,15) (5,50)
(5,50) (15,50)
(15,50}
()
SWAPS PER EPOCH
50 25 15 5
Significantly (BASE, -1} (BASE, -1)
Different Pairs
(+1, -1) (+1, -1)
)
TABLE 7

STATISTICAL TESTS OF RUNNING TIMES

Sinee the simulated annealing method for the TSP is
based on the 2-OPT procedure, we now wish to ecompare
the ‘performance of repeated applications of the 2-OPT

" procedure and the simulated annealing approach. For
each problem listed in Table 1, we executed the 2-OPT
from 15 randomly generated initial tours and recorded
the cumulative epu seconds expended and the percentage
above the best known solution thus obtained every five
executions of the algorithm., This permits us to compare
the performance of the 2-OPT and simulated annealing
methods for somewhat comparable expenditures of

We perform the comparison by matching, as closely
as possible, the epu times from the best answer obtained
by the simulated annealing approach with a comparable
cpu expenditure by the 2-OPT elgorithm. We note that
this comparison is biased in favor of the simulated
annealing method as we are not adding the set-up times
or the experimentation with number of swaps per epoch
and other user controlied parameters required to produce
the solution. On only one problem out of ten did the
simulated annealing approach outperform the .2-OPT
procedure.

In order to reduce the solution times for the
simulated annealing approach, we decided to experiment
with modifying the definition of equilibrium as expressed
in Step 2 of SA' Instead of requiring a nearly exact
mateh of a current tour length to any one of the
previously encountered tour lengths, we now require that
the percentage difference in the tour lengths be less than
a specified amount. Specificelly, we replace Step 2 of

SA' with
Step 2a.  Equilibrium Test. If (l]--L) /L <e
0 <e<) :
for any I eL” then go to Step 3;
otherwise perform the updates as in Step

2 of SA'.

In general, we expect faster convergence as € is
increased. In order to examine the effect that € has, we
tested the five 100 node problems taken from Krolak,
Felts, and Marble {1971 ) with various € settings
using 50 swaps per epoch. The results are displayed in
Table 9. We note that adopting the previous definition of
equilibrium produced solution times in excess of one cpu
hour so the times reported in Table 9 represent a
substantial improvement.

computational effort. Table 8 reports the outecome. Statistical tests, similar to those described
No. oF  Best Known  2-0PT Best cPy No, oF  Besy Known  2-OPT Best cPY
Nooes  SoLutioN  RuNs (% over)  (secs) Nopes  SoLuTion  Runs (Z over)  (sEcs)
5 3.70 2.57 5 1.53 200.12
25 297.03 10 2.89 7.22 €0 290,28 10 1.53 403,31
{5 0.00 10.29 15 0,00  604.92
5 0.00 8.64 5 1.4 -~ 380.14
32 390,89 10 0.00 18,42 70 300,21 10 0.€9 76€.19
15 0.00 28,24 15 0,00 1152.34
5 2,33 31.9¢ 5 3.86 533.25
40 234,36 10 0.78 £8.82 75 303.09 10 2,86 1056.50
15 0.00 104,82 15 1.51  1598.25
5 0.€2 84,94 5 2,41 €73,45
50 264,15 10 0.62 174,17 80 314,15 10 0.81 1373.43
15 0,00 260.32 15 0.81 1905.98
5 0.59 122,65 5 3.10 737,48
55 283.98 10 0.00 255.39 85 323.45 10 1.56  1495.93
15 0.00 38E.12 15 0.82 2257.08

TABLE 8
REPEATED APPLICATION OF THE 2-OPT ALGORITHM
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€= 257 €= 107 e =5% € = 1,03 € = 0.52
PRoBLEM  NUMBER OF  OPTIMAL 7 Asove  cru™t  ZAsave  ceu” T Asove ceut X Amove cputt X Asove  ceu
Ko." NoDES SOLUTION OpTiMAL  (mins)  OprimaL  (WiNs)  OpTiwaL  {mins)  Op7iWaL  (MINs)  ORTIMAL (MINS)
24 100 21282 3.35 16,92 1.34 22,60 1.37 29.59 3.63 17,35 1,98 25,67
25 100 22148 3.93 18,79 1,70 17.70 1,40 20,22 4,21 33.16 10,00 17.08
26 100 20749 7.75 19,30 1.48 28.89 4,48 29,40 2.07 30,46 2,60 46,01
27 100 21294 4,32 20,52 343 ~2‘~2.98| 5.00 31.58 9,60 22,68 9,61 21,98
28 100 22068 4,33 16. 49 2*39——_":1_8__9_9] 9,66 14,37 7.55 27.75 2,87 20,22
* KroLax, FELTS, AND MARBLE (1971)
" VAX 11/780
Best Sorution it Row 1s[HLGHLIGHTED
‘ _ TABLE 9
COMPUTATIONAL RESULTS FOR VARIOUS ¢ VALUES
Problgm No. of "\': Above Cpu,, Problgm No. of CCAOQ V Cpl;”.
No. Nodes Optithal {mins) No. Nodes % Above Optimal (mins)
24 100 7.53 13.97 24 100 0.01 180
25 100, 4.32 14.25 25 100 2.76 2.02
26 100 6.56 13.94 26 100 0.83 174
27 100 3.56 8.85 27 100 1.35, 170
= 100 5.28 1604 28 100, 172 L4
* Féom Krolak, Felts, and Marble (1971) * From Krolak, Felts,and Marble (1971)
**VAX 11/780 *UAX 12/780
TABLE 10 TABLE 11

COMPUTATIONAL RESULTS FOR 50 SWAPS PER
EPOCH AT EACH TEMPERATURE

previously, revealed that an eof 10% consistently
outperformed all others with respeet to solution
aceuracy. There was no significant difference among
running times for the various e values, however, if one
computes the total solution time tfo solve the five
problems at each evalue, the times increase as
¢ decreases.

In an attempt to further reduce the solution times,
we relax the equilibrium condition by only considering 50
swaps at each temperature setting. Again, we use the
five 100 node problems. Table 10 reporis. the results.
Statistical tests show that the running times for this
condition are significantly less than those reported on in
Table 9. The accuracy, however, was significantly worse
than the €= 10% condition only.

Comparing these results with those of the CCAO
heuristic, Table 11 shows that the solution times are
consistently small fraetions of the time required by the
simulated annealing method. In only one case, did the
simulated annealing method turn in a higher quality
solution.

5. CONCLUSIONS.

This paper has presented & preliminary
computational study of the Kirkpatrick et al approach to
combinatorial optimization as applied to the TSP.

COMPUTATIONAL RESULTS FOR CCAQ HEURISTIC

Through an analogy to physical systems and statistieal
mechanics , a general heuristic method for combinatorial
optimization is proposed. This method is intended to
serve as a framework within which problem-specific
methods can be embedded. The results of ou
investigation can be summarized as. follows: :

. Using & definition of equilibrium similar to the
one advoeated by Kirkpatrick et al, the
computational effort grows faster than
cubically. The CCAO heuristic is faster and
consistently produces tours.of higher quality.

. Despite persistent efforts, we failed to find a
set of annealing schedule pargmeters that
performed consistently well,

() The solution times displayed a marked
sensitivity to. minor perturbations in the
annealing schedule and to variatiens in the
Bpumber of swaps:per-epoch. .

[} Eor comparable amounts of computer time,
repeated, application of the 2-OPT algorithm
oytperformed the simulated annealing method
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on nine out of ten randomly generated test
problems.

. For the Restart condition, there was no
significant improvement in accuracy over the
initially generated simulated annealing
solution.

° A slightly modified definition of equilibrium
resulted in substantially reduced computation
time for the 100 node problems. Interestingly,
an ¢ of 10% significantly outperformed all
other ¢ values with respect to solution
aceuracy.

. Further relaxation of equilibrium, in which we
consider 50 swaps per epoch at each
temperature, turned in the lowest solution
times for the 100 node problems. In terms of
acceuracy, this alternative was no worse than
any of the other ¢ eonditions except for ¢=
109%.

In sum, we found the simulated annealing procedure
to be sensitive to a number of control parameters and
stopping rules and we were unable to find an
implementation strategy that consistently performed
well. Furthermore, the CCAO heuristic and repeated
application of the 2-OPT algorithm outperformed the
simulated annealing procedure for a comparable amount
of eomputational effort.

To be fair, we should point out that traveling
salesmen problems have been studied by an extremely
large number of management and computer seientists. It
is perhaps unfair to expect a new approach such as
simulated annealing to compete with the best of an
almost endless array of TSP heuristics without extensive
fine tuning. With this in mind, as well as an appreciation
for the notion of randomizing in order to avoid inferior
loeal minima, we plan to pursue the following topies in
future research:

. Experiment with larger problems.

] Construct an annealing schedule by redueing
the temperature by a fixed percentage at each
step.

. Examine a number of alternative rules for
equilibrium.

. Experiment with different density functions for
the probability of accepting an increase in tour
length. It would also be interesting to
investigate probabilistically accepting small
decreases in the objeetive function as well as
increases.

. Study the effeet of probabilistically inereasing
the objective funetion only upon reaching or
getting close to a local minimum.
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