INTRODUCTION TO GPSS

Thomas J. Schriber
Graduate School of Business Administration
The University of Michigan
Ann Arbor, MI 48109

Abstract

Summary information about key aspects of the simulation programming language GPSS is provided. The class of problems to which GPSS applies especially well is described; commentary on the semantics and syntax of the language is offered; the learning-oriented literature for GPSS is summarized; various GPSS implementations are commented on; the time-sharing networks offering GPSS are cited; and public courses on the language are listed. Finally, the source of a tutorial introduction to the fundamental semantics and syntax of GPSS is given. Copies of this tutorial material, excluded from reproduction here because of page-count limits, will be distributed at the session and provide the basis for the session itself.

A BRIEF PERSPECTIVE ON GPSS

GPSS (General Purpose Simulation System) is a simulation programming language whose use greatly eases the task of building computer models for certain types of discrete-event simulations. (A discrete-event simulation is one in which the state of the system being simulated changes at only a discrete, but possibly random, set of time points, called event times.) GPSS lends itself especially well to the modeling of queuing systems, but is generally applicable when it is of interest to determine how well a service organization will respond to the demands placed on it. For example, GPSS has been applied to the modeling of telephone companies, brokerage firms, computing centers, supermarkets, manufacturing shops, banks, steel mills, hotels, warehouse and distribution facilities, and general business.

THE SEMANTICS AND SYNTAX OF GPSS

GPSS offers a fairly rich set of semantics, and yet is sparse in its syntax. For example, only nine statements (excluding several control statements) are required to model a simple one-line, one-server queuing system in GPSS. These statements take such simple forms as "GENERATE 18.6" and "QUEUE LINE". No read, write, format, or test statements appear in the model. And yet when a simulation is performed with the model, fixed-form, fixed-content output is produced, providing statistics describing the server (number of times captured; average holding time per capture; and percent utilization) and the waiting line (average line content; average residence time in line; maximum line content; percent of arrivals who did not have to wait in line; and so on). This limited example is roughly suggestive of the character of GPSS.

The sparse syntax of GPSS, coupled with its block-diagram orientation, makes it possible for the beginner to learn a highly usable subset of the language quite quickly. This does not mean, however, that it is easy or straightforward to master the full set of GPSS capabilities. Considerable effort and study are needed to learn the language thoroughly.

The GPSS world view involves visualizing units of traffic ("transactions") which move along from block to block in a model as a simulation proceeds. This world view is so natural to the modeling of queuing systems that several other notable simulation languages now also offer a similar view. The effect of this cross-fertilization can be found in SIMSCRIPT (20), SLAM (18), and SIMULA (2).

Disadvantages of GPSS are that it has weak input/output capabilities, weak computational facilities, and a static control structure. (Each of these disadvantages has been remedied in GPSS/N, however; see 10.) These disadvantages can be partially offset by interfacing a GPSS model with one or more FORTRAN subroutines, or with one or more PL/1 procedures. The GPSS HELP block is used for this purpose.

THE GPSS LEARNING-ORIENTED LITERATURE

There are several books devoted to GPSS (3, 6, 8, 9, 22, and 24). Brief introductions to GPSS can
Introduction to GPSS (continued)

also be found in general simulation texts (e.g.,
7, 15, 17).

Articles demonstrating use of advanced GPSS fea-
tures also occasionally appear. For example, arti-
cles illustrating HELP block use are in (1, 5, 14, and 23). The GPSS user's manuals may also
contain good learning-oriented material. For
instance, a suggestive set of examples for HELP
block use appears in (10).

VARIOUS GPSS IMPLEMENTATIONS

GPSS first became generally available when it was
released by International Business Machines Cor-
poration (IBM) in 1961. Since then, IBM GPSS im-
plementations have evolved through several ver-
sions (GPSS II; GPSS III; GPSS/360, Versions I and
II; GPSS V; APL GPSS; and PL/I GPSS). The current
de facto standard for the language is IBM's GPSS
V, although GPSS/360, Version I, is still fre-
quently used in colleges and universities (GPSS/
360, Version I, was IBM's last pre-unbundled
"free"
version of the language). There are also
non-IBM implementations of GPSS for IBM hardware,
e.g., GPSS/H (10) and GPSS/T (4). Most GPSS
implementations for non-IBM hardware are based
either on IBM's GPSS V, or on GPSS/360. These
versions include B7000 GPS and B6700 GPS
(Burrough's 7700 and 6700 hardware); GPSS V/170
(Control Data 170 Series computer systems);
GPSS/66 (Honeywell Series 60 Level 66 hardware);
GPSS-10 (Digital Equipment Corporation's PDP-10
hardware); GPSS/UC (University Computing
Corporation's GPSS for Unicov 1108 hardware);
GPSSX8 (a high quality Unicov 1100-series GPSS
implementation maintained at Florida Atlantic
University); GPSS (a GPSS implementation for
Xerox Sigma 5-9 computers); and GPSS/VAX (a GPSS
implementation for any hardware configuration
supported by VAX/VMS; 16). GPSS/H is now also
being implemented for VAX hardware.

ALTERNATIVE LANGUAGES WITH GPSS EMBEDDED

The functions performed by the various GPSS blocks
have been embedded in other languages on some oc-
casions. Notable here are GPSS-FORTAN (21), APL
GPSS (12), and PL/I GPSS (13). Briefly, embed-
ding takes the form of implementing the functions of
the GPSS blocks and control statements in a
host language as subroutines which augment the
power of the existing language. Calling these
subroutines then has the effect of simulating the
behavior of the corresponding GPSS blocks and
control statements. A paper on the embedding
process has been given by Rubin (19).

TIME-SHARING NETWORKS OFFERING GPSS

GPSS is available in the following networks: Na-
tional CSS offers GPSS/H on IBM System 370 and
370-compatible hardware; Computer Sciences Corpor-
ation offers GPSS/T in its Infronet system; Univer-
sity Computing Corporation offers GPSS/UC on the
Unicov 1108; ADP-Cyphermatics offers GPSS-10 on
the PDP 10; Boeing Computer Services offers GPSS,
as does McDonnell-Douglas Automation Company
(McAuto); Control Data Corporation has GPSS in
its Cybernet system, and American Management
Systems (AMS) has a version of GPSS which can be
accessed via Telenet. (This list is thought to
be exhaustive, but may not be.)

SHORT COURSES

Intensive public short courses on GPSS are cur-
rently known to be available from three sources.
A five-day course is offered each summer in The
University of Michigan's Engineering Summer Con-
ferences (contact Thomas J. Schriber). This
course is also offered in the fall, winter, and
spring in the Washington, D.C., area (contact
James O. Henriksen, Wolverine Software, Inc.,
Annandale VA). And a five-day course is given
each summer at The Ryerson Polytechnical Insti-
tute (contact R. Greer Lavery, Ryerson Polytech-
nical Institute, Toronto, Ontario, Canada).

THE GPSS TUTORIAL

The GPSS tutorial will present a basic set of GPSS
blocks, then illustrate their use in a series of
three graduated examples:

(1) a one-line, one-server queuing system with
uniformly distributed interarrival and service
times, no customer balkling, and simple stopping
conditions (the simulation stops after eight simu-
lated hours, whether or not there are customers
in the system at that time);

(2) a one-line, multiple-server queuing system,
modeled by simple extension of the one-line, one-
server system; and

(3) the one-line, multiple-server queuing system
extended to include nonuniform interarrival- and
service-time distributions, a customer balkling
condition, and realistic stopping conditions (no
new customers are permitted into the system after
eight simulated hours, but the simulation is per-
mitted to continue until there are no remaining
customers in the system).

These examples, and supporting explanatory ma-
erials, are contained in a 77-page tutorial chapter
on GPSS written by Thomas J. Schriber for (17).
The Winter Simulation Conference GPSS tutorial
will be based on transparencies taken from
figures appearing in this source. The chapter is
too long to reproduce here, but copies of the
chapter will be distributed to those in attend-
dance at the tutorial. Those not attending the
tutorial are referred to (17). Interested persons
who do not have access to (17) can obtain single
copies of the chapter on request by writing
Thomas J. Schriber, Graduate School of Business,
The University of Michigan, Ann Arbor MI 48109.
BIBLIOGRAPHY


