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In many simulation studies a large amount of time and money is spent on model
development, but Tittle effort is made to analyze the simulation output data
in a proper manner. Since most simulation models use random variables as
input, the output data are themselves random and care must therefore be taken
in drawing conclusions about the system under study.

In this paper we present an up-to-date treatment of procedures which can be used
for constructing confidence intervals for measures of performance of a simulated
system. The emphasis will be on simple, easy-to-use procedures which have been
shown to perform well in practice.

1. INTRODUCTION

It has been our observation that in many simulation studies a Targe amount of time and money is spent
on model development and programming, but 1ittle effort is made to analyze the simulation output data
inanappropriate manner. As a matter of fact, the most common mode of operation is to make a single
simulation run of somewhat arbitrary length and then treat the resulting simulation estimates as being
the "true" answers for the model. Since these estimates are random variables (r.v.'s) which may have
large variances, these estimates may, in a particular simulation run, differ greatly from the corre-
sponding true answers. The net effect is, of course, that there may be a significant probability of
making erroneous inferences about the system under study.

One reason for the historical lack of definitive output data analyses is that simulation output data
are rarely, if ever, independent. Thus, classical statistical analyses based on independent iden-
tically distributed (i.i.d.) observations are not directly applicable. At the present time, there

are still several output analysis problems for which there is no completely accepted solution, and

the solutions that do exist are often complicated to apply. Another impediment to getting accurate
estimates of a model's true parameters or characteristics is the computer cost associated with collect-
ing the necessary amount of simulation output data. Indeed, there are situations where an appropriate
statistical procedure is available, but the cost of collecting the amount of data dictated by the
procedure is prohibitive. We expect this Tatter problem to ‘become less important as the cost of
computer time continues to drop.

Our goal in this tutorial is to giveanup-to-date treatment of statistical analyses for simulation
output data, and to present the material with a practical focus which should be accessible by a
reader having a basic understanding of statistics. The emphasis will be on statistical procedures
which are relatively easy to understand, have been shown to perform well in practice, and have
applicability to real-world problems. The remainder of the paper is organized as follows. In
Section 2 we define the two types of simulations with regard to analysis of the output, namely,
terminating and steady-state simulations. Section 3 contrasts measures of performance for these two
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types of simulations and Section 4 discusses the need to assess the accuracy of simulation output.
In Sections 5 and 6 we discuss how to construct a confidence interval (c.i.) for a measure of
performance in the terminating and steady-state cases, respectively.

A more comprehensive treatment of statistical analyses for simulation output data may be found in
Law and Kelton (1981c).

2. TYPES OF SIMULATIONS. WITH REGARD TO ANALYSIS OF THE OQUTPUT

We begin by giving a precise definition of the two types of simulations with regard to analysis of
the output data. A terminating simulation is one for which the desired measures of system performance

are defined relative to the interval of simulated time [O,TE], where T, is the instant in the

simulation when a specified event E occurs. (Note that T, May be a r.v.) The event E is
specified before the simulation begins. Since measures of performance for terminating simulations
explicitly depend on the state of the simulated system at time 0, care must be taken in choosing
init?a] conditions. This point will be discussed further in the following examples of terminating
simulations:

a) A retail establishment (e.g., a bank) closes each evening (physically terminating). If the
establishment is open from 9 to 5, then the objective of a simulation might be to estimate some
measure of the quality of customer service over the period beginning at 9 and ending when the last
customer who entered before the doors closed at 5 has been served. In this case & = {at least 8
hours of simulated time have elapsed and the system is empty}, and reasonable initial conditions for
the simulation might be that no customens are present at time 0.

b) Consider a telephone exchange which is always open (physically nonterminating). The objective of
a simulation might be to determine the number of (permanent) telephone Tines needed to service
adequately incoming calls. Since the arrival rate of calls changes with the time of day, day of the
‘week, etc., it is unlikely that a steady-state measure of performance (see Section 3), which is
defined as a Timit as fime goes to infinity, will exist. A common objective in this case is to

study the system.during the period of peak loading, say, of Tength & hours, since the number of
lines sufficient for this period will also do for the rest of the day. In this case, E = {t hdurs
of simulated time have elapsed}. However, care must be taken in choosing the number of waiting calls
at time 0, since the actual system will probably be quite congested at the beginning of the period
of peak loading. ,
¢) Consider a military confrontation between a defensive (fixed position) blue force and an offen-
sive {attacking) red force. Relative to some initial force strengths, the objective of a simulation
might be to estimate some function of the (final) force strengths at the time that thé red force
moves to within a certain specified distance from the blue force. In this case, = = {red force has
moved to within a certain specified distance from the blue force}. The choice of initial conditions
{e.g., the number of troops and tanks for each force) for the simulation is generally not a problem
here since they are specified by the military scenario under consideration. :

A steady-state simulation is one for which the measures of performance are defined as 1imits as the
lTength of the simulation goes to infinity. Since there is no natural event E to terminate the
simulation, the Tength of one simulation is made large enough to get "good" estimates of the quantities
of interest. Alternatively, the length of the simulation could be determined by cost considerations;
however, this may not produce acceptable results (see Subsection 6.1). The following 1s an example

of a steady~-state simulation:

a) A computer manufacturer is constructing a simulation model of a proposed computer system. Rather
than use data from the arrival process of an existing computer system as input to the model, he
typically assumes that jobs arrive in accordance with a Poisson process (i.e., i.1.d. exponential
interarrival times) with rate equal to the predicted arrival rate of jobs during.the period of peak
loading. (This is done because it is not clear that the arrival process of an existing system will

be representative of that of the proposed system, or {alternatively) out of simplicity.) &He is
interested in estimating the response time of a job after the system has been running long enough so
that initial conditions (e.g., the number of jobs in the system at time 0) no longer have any effect.

Because the arrival rate of jobs will vary with the time of day, etc., steady-state measures for
real-world computer systems will probably not exist. However, by assuming that the arrival rate is
‘constant over time in the model, this allows steady-state measures to exist. In performing a steady-
state analysis of the proposed computer system, the model's developers are essentially trying to
determine how the system will respond to a peak load of infinite duration.
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3. MEASURES OF SYSTEM PERFORMANCE

3.1. Contrast of Measures of Performance

In this subsection we contrast measures of performance for terminating and steady-state simulations
by means of an example for which the true measures of performance can be analytically computed.
(This would not be possible, of course, for most complex real-world simulations.) :

Consider the output process {Di,i > 1} for the m/mM/1 queue, where D, is the delay in queue

(exclusive of service time) of the ith arriving customer. This is a single-server queueing system with
i.i.d. exponential interarrival times with parameter 1/X, i.i.d. exponential service times with
parameter 1/u, and customers are served in a first-in, first-out manner. Assume that the traffic
intensity p = A/p < 1. Theobjectiveof a terminating simulation of the M/M/1 queue might be to
estimate the expected average delay of the first m customers (1.e., the terminating event is

E = {m customers have completed their delays}) given some initial condition, say, that the number of
customers in the system at time 0, m(0), is zero. The desired quantity, which we denote by

d(m|n(0) = 0) (the vertical line is read "given that"), is then given by

a(m|w(0) = 0) = E{'f] b /ml(0) = 0] . (1)

Although the expression on the right-hand side (r.h.s.) of (1) might seem imposing at a first glance,

m

its interpretation is really quite simple: The r.v. x= 7} Di/m is just the average delay of the
i=1

first m customers and we are interested in estimating E(x) given that ~(0) = 0. Since we may
think of E(x) as the average of the Xx's resulting from making a very large (infinite) number of
independent simulation runs each of length = customers, one legitimate question is to ask how many
independent runs of length m customers each are required to get a good estimate of E{x). This
issue is taken up in Section 5.

Note that measures of performance for terminating simulations explicitly depend on the state of the
system at time 0. In particular, d{(m|N(0) = 2]) # d(m|w(0) = 22) for l] #* 25-

The objective of a steady-state simulation of {Di,i > 1} for the »/M/1 queue would be to estimate
the steady-state expected average delay d, which is given by

a = Vim a(m|¥(0) = 2) for any 2 =0,1,... . (2)
mee

If p <1, as we assume, then d exists (i.e., the 1imit exists and is finite). (If, however,

p > 1, then customers are arriving faster, on the average, then they are served. As time gets large,
the lengt? of the queue will get Tonger and longer, and the r.h.s. of (2) will diverge to plus
infinity.

Observe in (2) that d s independent of the state of the system at time 0, ~(0). In Figure 1 we
plot d(m|w(0) = 0) (see Heathcote and Winer (1969)) as a function of m. (The arrival rate A =1
and the service rate u = 10/9, so p = 0.9.) The horizontal Tine that da(m|~(0) = 0) asymptotically
approaches is at height & = 8.1 (see Gross and Harris 1974, p. 58). Note that d(m|w¥(0) = 0) is
small for small values of m because ~(0) was artifically chosen to be zero.

3.2. The Meaning of Steady State

In the above queueing example, d was defined as the 1imit (as the number of customers m goes to
infinity) of the expected average delay of the first m customers. (That definition was convenient
there because it allowed us to relate d to d(m|w(0) = 2).) The difficulty with this definition is
that it implies that 4 1is, in effect, the average delay over an infinite number of simulation runs,
‘each of infinite duration. We therefore give a more pragmatic definition of 4. If d, as defined
by {2), exists and is finite, then 4 9s also given by the following expression:

m
d=T1im } p,/m (with probability 1) for any n~{(0) =2 . (3)
me i=1 T

We now drop the adjective "expected" and call d the steady-state average delay in gqueue. What (3)
says is that if one performs an infinite number of simulation runs, each resulting in a
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Figure 1. d(m|w(0)=0) as a function of m for the M/M/1 queue with

p =9.,9.

D(m) = 2 p,/m, and m is sufficiently large, then D(m) will be arbitrarily close to 4 for
i=]
virtually (i.e., with probability one {w.p. 1)) all simulation runs. We can therefore think of 4
as the average delay resulting from making one sufficiently long simulation run. In the remainder
of this paper, we will define steady-state measures of performance s1m11ar1y to the manner in which a4
is defined in (3) (see Section 6).

For the queueing system considered above, we plot in Figure 2 D(m) as a function of m (computed
from a s1ng1e simylation run) and also 4. Note that the convergence of p(m) to 4 as m goes to
infinity is certainly not monotone as in Figure 1. Observe, in addition, that B(m) (as a function
of m) still exhibits some random fluctuation even for m as large as 5000.

In many books and papers on simulation, a statement is made such as "It is desired to estimate some
measure of performance for a system that is operating in steady state." Since we believe that this
statement is not well understood, we now attempt to shed some 1ight on the meaning of steady state.
For the M/M/1 queue let

Firz(x).= P{p, < x|n(0) =

We call F, (x) the transient distribution of delay at time i given ~N{(0) = 2. (The word

"trans1ent" means that there is a different distribution for each time i.)} Now it can be shown
that for any x > 0, ‘

Flx) = Tim 7, (x) for any w{(0) = & (4)

N 1.8
I

exists, and we call F(x) the steady-state distribution of delay. It follows from (4) that there

exists a time index i' such that for all i > i', F; 2(x) ~ F(x) for all x > 0. At the point in
time when F, z(x) is essentially no longer changing with i, we will intuitively say that the
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Figure 2. A realization of D(m) as a function of m for the M/M/1 queue with p = 0.9.

process {Di,i > 1} 1is in "steady state." Thus, steady state does not mean that the actuali delays

in a single realization (or run) of the simulation become constant after some point in time, but
rather that the distribution of the delays becomes invariant.

Let D be the delay of a customer who arrives after the process {Di,i > 1} 1is in “steady state.”

Then it can also be shown that E(p) = 4. Although we have given three definitions of &, we will
(as stated above), henceforth use the one given by (3).

4. THE NEED FOR CONFIDENCE INTERVALS

Suppose we would Tike to estimate a(25|¥(0) = 0) = 2.124 for the M/M/1 queue with p= 0.9. The
following are ten independent realizations (i.e., different random numbers were used for each
25
realization) of the r.v. } p./25 given n(0)
i=1

n

0:

1.051, 6.438, 2.646, 0.805, 1.505, 0.546, 2.281, 2.822, 0.414, 1.307.

Note that the estimators range from a minimum of 0.414 to a maximum of 6.438 and that most of the
estimators are not very close to the true answer, 2.124. We conclude that one realization, or
replication, is generally not sufficient to obtain an acceptable estimate of a measure of performance
and that a method is needed for ascertaining how close an estimator is to the true measure. The
usual approach to assessing the accuracy of an estimator is to construct a c.i. for the true measure.

Although the above discussion was oriented toward terminating simulations, the same conclusion is
valid for steady-state simulations; namely, that one needs a way of assessing the accuracy of an
estimator and 'that a ¢.i. is the usual approach.



5. CONFIDENCE INTERVALS FOR TERMINATING SIMULATIONS

Suppose we make n independent repiications of a terminating simulation, where the length of each
replication 1s determined by the specified event = and each replication is begun with the same
initial conditions. The independence of replications is accomplished by using different random
numbers for each replication. Assume for simplicity that there is a single performance measure of
interest; the more general case is discussed in Law and Kelton (1981c). If Xj is the estimator of

the measure of performance from the jth replication, then the x.'s are {i.i.d. r.v.'s and classical
statistical analysis may be used to construct a c.i. for u» = E(x). For the M/M/1 queue discussed
above, Xj might be the average delay i§1 Di/m from tﬁe jth rep]icaiion. For an inventory system
with a planning horizon of m months, X3 might be the average cost 121 c;/m from the jth
replication (Ci is the total cost in the ith month).

5.1. Fixed Sample Size Procedure

The usual approach to constructing a c.i. for u is to make a fixed number of replications =(n >2).
If the estimators X{sXys. 000X o arE assumed to be normal r.v.'s, in addition to being i.i.d., then a

100(1 - )% (0 < < 1) c.i. for u s given by
- /2
2(n) # tn—'l Ji-0/2 s (n)/n (5)

n n

where X(n) = ¥ Xj/n _is the sample mean, sz(n) = 3 [x3 - i(n)]zl(n = 1) 1is the sample variance,
j:] '=]

and £ 1-0/2 is the upper 1.- /2 critical point for a ¢ distribution with =z - 1 degrees of

freedom. Note that (5) is the same expression that is used in classical statistics to construct a
c.i. for the mean of a population.

Suppose that we would like to construct a 90% c.i. for a(25|w(0) = 0) in the case of the M/m/1
queue with. p = 0.9. From the ten replications presented in Section 4, we obtained

%(10) = 1.982 and s2(10) = 3.172 .
Then an approximate 90% c.i. for &(25|~(0) = 0) s given by

ty 95¢g2(1o)/1o =1.982 +1.032 .

Thus, subject to the correct interpretation to be given to c.i.'s, we can claim with approximately 90%
confidence that a(25|n(0) = 0) 1is contained in the interval [0.950, 3.0141].

x(10) =

Suppose that we construct a very large (an infinite) number of 100(1 - a)% c.i.'s for u using (5),
with each c.i. being based on n replications. We call the proportion of c.i.'s which actually
contain (cover) u the coverage for the c.i. If the x.'s are normally distributed, then the

covérage will be exactly 1 - a. Alternatively, if the number of replications n for each c.i. is
"sufficiently large," then we know by the central 1imit theorem (c.1.t.) that the coverage will be very
close to 1 = a. In practice, the X&'s which result from a simuTation will rarely be exactly

normally distributed nor will we know how to choose n sufficiently large. As a result, the actual
coverage of the c.i. given by (5) may be somewhat less than the desired 1 ~ a3 this is why we called
the c.i. in the above example an approximate 90% c.i. If, however, an Xj is the average of a large

number of individual data points (as in the example above), then our experience indicates that the
degradation in coverage will not be very severe. Fortunately, many real-world simulations produce
x&'s of this type. See Law (1980d) and (Law and Kelton 1981c) for further discussion.

5.2. Obtaining Confidence Intervals with a Specified Precision

One disadvantage of the fixed sample size approach to constructing a c.i. is that the simulator has

no control over the c.i. half-length (i.e., tn_]’1_a/2/sz(n)/n); for fixed n, the half-length will
depend on the population variance of the x.'s, o2(x). In the example of Subsection 5.1, the half-
Tength of 1.032 (based on n = 10" replications) was probably too large to get an accurate idea of the
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true value of a(25|m(0) = 0). In this subsection we briefly discuss procedures for determining the
number of replications required to obtain a c.i. with a specified precision.

There are two principal ways of measuring the precision of a c.i. We will call the actual c.i. half-
length the absolute precision of the c.i., and we will call the ratio of the c.i. half-Tength to the
magnitude of the point estimator (i.e., X{n)) the relative precision of the c.i. (Although not
strictly correct, one can think of the relative precision as the "proportion" of wu by which x(n)
differs from u.) In Law (1980d) and Law and Kelton (1981c), procedures are given for obtaining a
c.i. with a specified absolute precision or relative precision. These procedures are sequential in
that they add new replications one at a time until a c.i. with the specified precision has been
obtained.

5.3. Recommended Use of the Procedures

We now make our recommendations on the use of the fixed sample size and sequential procedures for
terminating simulations. If one is performing an exploratory experiment where the precision of the
c.i. may not be overwhelmingly important, then we recommend using the fixed sample size procedure.
However, if the x_'s are highly nonnormal and the number of replvications = 1is too small, then the

actual coverage of the constructed c.i. may be somewhat lower than that desired.

From an exploratory experiment consisting of n repbications, one can estimate the cost per replica-
tion and the population variance of the X5's, and then estimate from formulas in Law and Kelton
(1981c) the number of replications required for a desired absolute precision or relative precision.
Sometimes the precision desired might have to be tempered by the cost associated with the required
number of replications. If it is finally decided to construct a c.i. with a small absolute or relative
precision, then the sequential procedures mentioned in Subsection 5.2 are recommended. It should be
noted that almost all of the statistical analyses for terminating simulations thus far discussed in
Section 5 can be automatically performed in SIMSCRIPT II.5 using a Tibrary routine called STAT.R

(see Law 1979c).

Depending on the complexity of the system of interest, the cost of making one repiication of a simula-
tion model may range from less than one dollar per replication to an extreme of $500 or even more.
Thus precise c.i.'s may simply not be affordable. Regardless of the cost per replication, we
recommend always making at Teast three replications of the simulation to assess the variability of the
X}'S. (With two replications it is possible to get 2 and X, very close together even though the

Xj'S are highly variable.) zr X{s X,> and X4 are not very close together, then additional

replications must be made or any conclusions derived from the simulation study will probably be of
doubtful validity.

6. CONFIDENCE INTERVALS FOR STEADY-STATE SIMULATIONS

Let Y1s¥paeee be an output process resulting from a single simulation run. {(For example, ¥, might
be the delay of the ith customer, D;» for a queueing system or the total cost in the ith month, ;s

for an inventory system.) Then define the steady-state average response v of {v.,i > 1} (when
it exists) by 1

m
v=T1lim § v./m {w.p. 1).
ma i=] 1

(This definition is consistent with the definition of 4 given by (3).)} We also assume that the
Timit v 1is independent of the state of the simulation at time zero.

There have been two general approaches suggested in the simulation literature for constructing a c.i.
for wv:

(i) Fixed sample size procedures - A simulation run of an arbitrary fixed length is performed and
then one of a number of available procedures is used to construct a c.i. from the available data.

(ii) Sequential proce&ures - The Tength of a simulation is sequentially increased until an "acceptable”
c.i. can be constructed. There are several techniques for deciding when to stop collecting data.

These two general approaches are discussed in further detail in the next two subsections.
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6.1. Fixed Sample Size Procedures

There have been five fixed sample procedures suggested in the literature (see Law and Kelton 1979b
for a survey). In this subsection we discuss two of these five procedures, namely, batch means and
replication. Both procedures break the output data ¥1s¥psee into (approximately) i.i.d.
"observations" to which classical statistical analyses cafi be applied to construct a c.i. for wv.

Batch Means

Assume temporarily that {Yi,i > 1} 1is a covariance étationary process with E(Yi) =v for all 3.

(For a covariance stationary process, all observations have the same mean and the same variance, and
the covariance between any two observations depends only on the separation between the observations.)
Suppose we make a simulation run of length m and then divide the resulting observations

SN TPPIS 4 into n batches of length %. (Assume that m ==n - 2.) Thus, batch 1 consists of

observations Fyseens¥ys batch 2 consists of observations Yorpoeeo¥oqs etc. Let §j(2)

( =1,2,...,n) be the sample (or batch) mean of the & observations in the jth batch and let
- n m -

¥(n,8) = } y}(z)/n = 3 Y,/m be the grand sample mean. We will use ¥(n,%) as our point

i=1
estimator for v. (The i}(%)'s will eventually play the same role for batch means as did the Xj's

for the fixed sample size ¢.i. in Subsection 5.1.)

If we choose the batch size % Targe enough, then it can be shown that the iﬁ(%)'s will be

approximately uncorrelated (see Law and Carson 1979). Suppose we can choose £ large enough so that,
in addition, the 23(2)'5 are approximately normally distributed. This is not implausible since

there are c.1.t.'s for certain types of correlated stochastic processes (see Anderson 1971, p. 427).
Also it can be shown that the sample mean of the first 2 delays, D(¢), for the M/M/1_ queue will
be approximately normally distributed if ¢ ds large (see Law 1974a). However, if the 7.(2)'s

are both uncorrelated and normally distributed, then it can be shown that the ¥.(2&)'s are
independent and normally distributed. Denote these two properties by (P1). J

Since ¥s¥oseee is assumed to be covariance stationary with E(Yi) = v, it easily follows that
the iﬁ(z)'s have the same mean v and the same variance; denote these properties by (P2).

It follows from {P1) and (P2) that the ¥.(2)'s are normal r.v.'s with the same mean and variance.

Since a normal r.v. is completely determined by its mean and variance, it in turn follows that the
y&(z)'s are identically distributed with mean v, which we denote by (P3). Therefore, if the batch

size & is large enough, it follows from (P1) and (P3) that it is not unreasonable to treat the
¥.(2)'s as if they were i.i.d. normal r.v.'s with mean v and to construct an approximate

100(1 - 0)% c.i. for v from

/£ (a)/m (6)

¥(n,2) # tn-],]-a/? s;j(z)
where
L (= Y IR - Ha)1¥(a - 1) .
7, (2) =1 7

Expression (6) is analogous to the c.i. given by (5) for terminating simulations.

There are three potential sources of error when one uses (6) to construct a c.i. for v:

(i) The fact that ¥35¥psenn will rarely, if ever, be covariance stationary in practive. However,
if v exists, then in general AT AIPTRRE will be approximately covariance stationary if x is

large enough. (Thus it may be prudent to delete some data from the beginning of the simulation run
before applying batch means.)

(i1) If 2 is not large enough, then the §j(2)'s may not be approximately normally distributed.
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(ii1) If 2 s not large enough, then the §3(£)'s may be highly correlated and sf ( )(n)/n
Y. (%
J

will be a severely biased estimator of 02[;(n,£)]; see Law (1977b). 1In particular, if the Yi's
are positively correlated (as is often the case in practice), then the ¥_.(2)'s will be too, result-
ing in the variance estimate's being biased low and the c.i.'s being too small.

In order to see how well the method of batch means works in practice, Law and Kelton (1979b)
simulated the M/M/1 queue with p = 0.8 and a model of a time-shared computer system. The
measures of performance of interest were, respectively, the steady-state average delay and the
steady-state average response time, both of which can be computed analytically. They performed 200
independent simulation experiments for each stochastic model and in each experiment their goal was
to construct a 90% c.i. for the desired measure of performance. Not knowing how to choose defini-
tively the total sample size m and the number of batches n, they arbitrarily chose m = 320,
640, 1280, 2560 and n = 5, 10, 20, 40. Thus, for each experiment with each model they constructed
sixteen different c.i.'s using batch means. They then computed the proportion of the 200 c.i.'s
which covered the known measure of performance in each of the sixteen cases for each model. They
found that if the total sample size m 1is chosen too small, then the actual coverages for batch means
may be considerably lower than the desired 0.90. For example, when m = 1280 and n =10 for the
M/M/1  queue, the estimated coverage was 0.74. Their results also suggested that if m was chosen
Targe enough, then batch means would produce coverages close to the desired level; however, the
“"appropriate" choice of m appeared to be extremely model dependent.

At the same time that the above experiments were being performed, Law and Kelton also tested the
other fixed sample size procedures (with the exception of replication}. They found that these

procedures also did not perform well in terms of coverage if the total sample size m 1is chosen too
smatl.

Replication

The reader may have wondered why a simulator could not do a terminating simulation-type analysis of
an output process ¥;,¥ps... to estimate the steady-state average response v. To illustrate the

danger 6f making independent replications (each starting from the same initial conditions) and of
doing a terminating analysis of a system for which we really want to estimate a steady-state measure
of performance, consider the M/M/1 queue with p = 0.9. Suppose we want to estimate the steady-
state average delay 4 = 8.1, and make n 1independent replications each of length m = 320
customers and each with ~(0) = 0. Since E(Xj) = d(320|~(0) = 0) = 6.01 (see Figure 1),

E[x(n)] = 6.01 and X(n) s a biased estimator of 4 no matter how many replications are made.
(Here x. 1is the average delay of the 320 customers in the jth replication.) Furthermore, as =n

gets large the length of the c.i. constructed from (5) will become smaller and smaller, and the
coverage of the c¢.i. eventually approaches zero (see Law 1977b). We are actually constructing a c.i.
for a(320|n(0) = 0), not 4. ’

In Tooking at Figure 1, it becomes clear why the above terminating analysis does not perform well in
the steady-state case. Because of a simulator's inability to start the simulation off at time 0 in
a state which is representative of the steady-state behavior of the system (see Subsection 3.2), the
output data at the beginning of the simulation are not "good" estimates of the steady-state average
response v. (This difficulty has been called the "startup probiem" or the problem of the "initial
transient" in the simulation Titerature.) This suggests "warming up" the simutation for some amount
of time, say k observations, before beginning data collection. The difficulty is in knowing how to
choose k; a survey paper by Gafarian, Ancker, and Morisaku (1978) indicates that no published
procedure performs at all well in practice.

6.2. Sequential Procedures

We saw in the last subsection that fixed sample size procedures cannot, in general, be relied upon to
produce c.i.'s with coverages close to the desired Tevel. The results were encouraging, however, in
that they indicated these procedures would perform well provided that enough data were available. In
this section we discuss briefly sequential procedures for constructing a c.i. for a steady-state
average response v which determine the amount of data required during the course of a simulation run.

In (1978a), Law and Kelton surveyed the published sequential procedures and found that only two of
these procedures performed well when tested on a variety of stochastic models with a known value of wv.
One procedure, which was developed by Fishman (1977c), is based on the regenerative method (see Crane
and Iglehart 1974a, 1974b, 1975c, 1975d, Fishman 1973a, 1974b, 1978d, and Crane and Lemoine 1977)
and, thus, we feel has limited applicability to most real-world problems at the present time. The
other procedure (see Law and Carson 1979), which is based on idea of batch means, .appears to have

greatgr applicability. It also performed well for each of the 13 stochastic models on which it was
tested.
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