Proceedings of the 1980 Winter Simulation Conference
T.I. Oren, C.M. Shub, P.F. Roth {eds.)

SLAM TUTORIAL

Claude Dennis' Pegden
Associate Professor, Pennsylvania State University
Consultant, Pritsker & Associates, Inc.
University Park, PA 16802

A. Alan B. Pritsker
President, Pritsker & Associates, Inc.
Professor, Purdue University
West Lafayette, IN 47907

1. INTRODUCTION

SLAM is a simulation language that allows for alternative modeling approaches. It allows systems to be
viewed from a process, event, or state variable perspective. These alternate modeling world views are
combined in SLAM to provide a unified systems modeling framework (1,4).

In SLAM, a discrete change system can be modeled within an event orientation, process orientation, or
both. Continuous change systems can be modeled using either differential or difference equations. Com-
bined discrete-continuous change systems can be modeled by combining the event and/or process orientation
with the continuous orientation. In addition, SLAM incorporates a number of features which correspond to
the activity scanning orientation.

The ability to construct combined network-event-continuous models with interactions between each orienta-
tion greatly enhances the modeling power of the systems analyst. In the following sections of this
tutorial, a discussion of network, event, and continuous SLAM capabilities is given.

2. NETWORK CAPABILITIES

The process orientation of SLAM employs a network structure comprised of specialized symbols called nodes
and branches in a manner similar to Q-GERT (2). These symbols model elements in a process such as
queues, servers, and decision points. The modeling task consists of combining these symbols into a net-
work model which pictorially represents the system of interest. In short, a network is a pictorial
representation of a process. The entities in the system (such as people and items) flow through the net-
work model. The pictorial representation of the system is transcribed by the modeler into an equivalent
statement model for input to the SLAM processor.

Time delays associated with entities as they move through a network are prescribed for branches. Thus an
activity that an entity engages in as it moves through a system is represented by a branch. In addition
to the time delay referred to as the activity duration, other characteristics associated with a branch:
are: a probability or condition for an entity to take the branch; the number of-parailel servers if the
branch represents a service activity; and an activity number. Utilization statistics can automatically

be obtained for any branch in a SLAM network. The graphical representation and syntax for a branch is
shown on the next page. .

80CH1617-0/80/0000-0347$00.75 (C) 1980 IEEE

348

Branches are used to separate nodes-and each node in SLAM performs a distinct function.

Claude D. PEGDEN and A. Alan B, PRITKR

DUR, PROB or COND

® 2]

The fifteen

node types included in SLAM are listed in Table 1.

Table 1. Types of Network Nodes in SLAM

Node Name ‘ Function

Accum Accumulates a set of entities into a single entity.

ALTER Changes the capacity of a resource.

ASSIGN Assigns values to entity attributes or global system variables.

AWAIT Delays entities in a file based on the availability of a resource or the status
| of a gate.

CLOSE ‘Changes the status of a specified gate to be closed.

COLCT Collects statistics and histograms on SLAM variables.

CREATE Creates entities based on the specified arrival pattern.

FREE Releases resource units seized at AWAIT and PREEMPT nodes.

GOON A continuation {go on) or "do nothing" node.

MATCH Delays entities in QUEUE nodes until a match condition occurs in which entities
with the same value of a specified attribute are resident in every QUEUE node
preceding the MATCH node.

OPEN Changes the status of a specified gate to open.

PREEMPT Preempts a resource seized at an AWAIT node or at a PREEMPT node with lower
priority.

QUEUE | Delays entities in a file until a server becomes available. The QUEUE node is
also used in conjunction with MATCH nodes.

SELECT Selects among multiple queues and available servers based on the queue selection
rule and server selection rule.

TERM Destroys entities and terminates the simulation.

Five node types control the general flow of entities.
values and the collection of statistics.

This includes changing an entity's attribute

These node types are: CREATE, ACCUMULATE (GOON), TERM, COLCT,

and ASSIGN.

A general method for routing entities from these nodes jnvolves specifying the maximum number of branches
that can be taken from the node. By including a probability or condition on the branches emanating from
the nodes, entity routing is specified. This same procedure is used for routing entities from other node
types.

To simplify the process of representing a machine or machine group and its associated queue, SLAM in-
cludes a QUEUE node. Thus, a QUEUE nede with a following branch is used to represent a processing sta-
tion. When the processing station involves different processors, a SELECT node is used to select accord-
ing to a prescribed rule which processor should be used when a choice exists. The SELECT node also is
used to route entities to queues or to take them from queues. A MATCH node stops the flow of entities
until an attribute match can be made with other entities flowing through the network. When a match
oceurs, the matched entities flow through the MATCH node.

Four nodes are included in SLAM that relate to the use of resources. A resource is a commodity that is
required by an entity before it can continue on its route through the network. A resource in SLAM is
allocated at an AWAIT node to an entity and it is not available for reallocation until the entity passes
through a FREE node. When freed, the resource can be reallocated to an entity. Entities for which re-
sources are not available wait for the resource at AWAIT nodes. Thus, the AWAIT node plays a similar
function to a QUEUE node. These two node types are the only locations within a SLAM network where an im-
plicit delay for an entity can occur. Resources can be preempted from an entity by other entities
arriving to PREEMPT nodes. The syntax for the PREEMPT node specifies that the disposition of the entity
from which resources are preempted and the priority that enables one entity to preempt resources from

SLAM TUTORIAL 349

another entity. The fourth node type associated with resources is the ALTER node which causes the
available number of units of a resource type to be changed.

The Tast two nodes in SLAM are associated with gates. A gate is a mechanism for halting the flow of en-
tities. If the gate is closed, entities are stored in AWAIT nodes until the gate is opened. The gate
is opened by having an entity arrive to an OPEN node. When this occurs all entities being held up by
the closed gate in AWAIT nodes are moved forward. An entity arriving to a CLOSE node, closes the gate.

As can be seen by the above discussion, the set of network elements in SLAM is concise yet powerful. In

addition, functions exist for assigning samples of random variables for activity durations and to attri-

bute values of entities. Also, SLAM variables for each of the network constructs is available to provide
conditions for routing entities through the network. In this way, the path of an entity through the net-
work can be made to be dependent on the status of a server, the number in a queue, resource availability,
and the 1ike. In the next section, a simple example of a SLAM network model is given.

3. A NETWORK MODEL IN SLAM

Consider a situation involving two types of jobs that require processing by the same server. The job
types are assumed to form a single queue before the server. The network model of this situation is
shown in Figure 1. The input statements corresponding to the network shown in Figure 1 are Tisted below.

NETWORK;
CREATE,8,,,100;
ASSIGN,ATRIB(1)=EXPON(7.);
ACTIVITY,,,QOFS;
CREATE,12,,,50;
ASSIGN,ATRIB(1)=EXPON(10.);
QOFS QUEUE(1);
ACTIVITY/1,ATRIB(1)+RNORM(0.0,1.0);
TERM;
ENDNETWORK;

BAP—Time between arrivals

’
" ATRIB(1)=EXPON(7.) '
< e

Assign estimated
CREATE Nodes processing times

" ATRIB{1)=EXPON(10.)

Maximum number of arrivals

QUEUE Node

ATRIB(1)+RNORM(0.0,1.
} Departure

Service activity of entity

Figure 1. Network Model of a Multiple Entity, Single Server Queueing Situation

In this model, one type of entity is scheduled to arrive every 8 time units and only 100 of them are to
be created. These entities have a service time estimated to be a sample from an exponential distribution
with a mean time of 7. This service time is assigned to attribute 1 at an ASSIGN node. For the other
type of entity, the time between- arrivals is 12 time units and a maximum of 50 of these entities can be
created. The estimated service time for each of these entities is exponentially distributed with a mean-
time of 10. Both types of entities are routed to a QUEUE node whose label is QOFS.

The server of the system is modeled as activity 1 where the service time is specified as attribute 1 plus
a sample from a normal distribution. Thus, the actual processing time is equal to the estimated proces-
sing time plus an error term that is assumed to be normally distributed. This model might be used to
represent a job shop in which jobs are performed in the order spec1f1ed by the ranking rule specified for
the QUEUE node.

350 Claude D. PEGDEN and A, AlanB. PRITSKR

4. DISCRETE EVENT CAPABILITIES

In the event orientation of SLAM, the modeler defines the events and the potential changes to the system
when an event occurs. The mathematical-logical relationships prescribing the changes associated with
each event type are coded by the modeler as FORTRAN subroutines. A set of standard subprograms is pro-
vided by SLAM for use by the modeler to perform common discrete event functions such as event scheduling,
file manipulations, statistics collection, and random sample generation. The executive control program
of SLAM controls the simulation by advancing time and initiating calls to the appropriate event subrou-
tines at the proper points in simulated time. Hence, the modeler is completely relieved of the task of
sequencing events to occur chronologically.

The organization for developing a discrete event model of a system using SLAM is shown in Figure 2.
Basically, the SLAM user writes subroutine INTLC to establish the initial conditions for the simutation,
subroutine EVENT(I) and the corresponding event routines to specify the consequence of the occurrence of
EVENT(1), and subroutine OTPUT to obtain, if desired, specialized outputs of systems variables not in-
cluded in the standard SLAM reports.

\
T SLAM Input [N SLAM SLAM
! Statement Library J Initialization Processor
y A \
Subroutine Subroutine Subroutine SLAM
INTLC i EVENT{I} OTPUT Reports
' i
|
| A
| [Event1 | [“Event 2 J..oof EventN |
4 ‘]
!

SLAM Library of Subprograms

Subroutine COLCT {XVAL, ICLCT)

Subroutine COPY (NRANK, IFILE,A)

Subroutine FILEM{IFILE, A}

Function NFIND (NRANK, IFILE, NATR, MCODE, X, TOL)
Subroutine RMOVE (NRANK, IFILE, A}

Subroutine SCHDL (JEVNT, DT,A)

Random Sample Functions

Figure 2, SLAM Organization for Discrete Event Modeling

Included in Figure 2 is a partial Tist of the SLAM library of subroutines for performing such functions
as statistics collection (subroutine COLCT), file manipulations {subroutines COPY, FILEM, RMOVE and
function NFIND), event scheduling (subroutine SCHDL), and 'random sample generation. From experience,
this set of subprograms constitutes approximately 90 percent of the subprograms required when building a
discrete event model using SLAM. SLAM does, however, contain subprograms for performing the following
functions: accessing and using file entry pointers; accessing attributes of entities; Tinking and un-
linking entities from files; auxiliary attribute processing; report writing; accessing collected statis-
tical data; entity tracing; statistics clearing; error reporting; table look-up and interpolation; and
preparing and reporting histograms and plots.

5. AN EVENT MODEL IN SLAM

We illustrate the building of a discrete event simulation model by describing the coding of a single
server queueing situation. In the coding which follows, we assume that the time between arrivals is
given by the exponential distribution with a mean of 20 minutes and that the service time is uniformly
distributed between 10 and 25 minutes. The operation of the system is to be simulated for a period of

480 minutes.

SLAM TUTOR IAL 357

In this discussion, we present only the event subroutines. The logic for the arrival event, ARVL, is
presented in Figure 3.

SUBROUTINE ARVL
COMMON/SCOM1/ATRIB(100},...
EQUIVALENCE (XX(1),BUSY)
CALL SCHDL(1,EXPON(20.,1),ATRIB)
ATRIB(1)=TNOW
IF(BUSY.EQ.0.) GO TO 10
CALL FILEM(1,ATRIB)
RETURN

10 BUSY=1.
CALL SCHDL(2,UNFRM(10.,25.,1),ATRIB)
RETURN
END

Figure 3. Subroutine ARVL for Single Server System

The values of the SLAM discrete event variables are passed to the event routine through COMMON block
SCOM1. The SLAM variable XX(1) is equivalenced to the user defined variable BUSY. The first function
performed by the event is the rescheduling of the next arrival event (event code 1) to occur at the
current time plus a sample from an exponential distribution with mean of 20.0 and using random stream
number 1. The first attribute of the current entity is then set equal to the arrival time, TNOW. A
test is then made on the variable BUSY to determine the current status of the server. If BUSY is equal
to 0.0, then the server is idle and a branch is made to statement 10 where BUSY is set to 1.0 to indicate
that the server is busy and the end-of-service event (event code 2) is scheduled to occur at time TNOW
plus a sample from a uniform distribution between 10.0 and 25.0 using random stream number 1.- Otherwise,
the entity is placed in file 1 to wait for the server. In either case, the entity is identified by its
arrival time which is stored as attribute 1.

The logic for the end-of-service event, ENDSV, is depicted in Figure 4.

SUBROUTINE ENDSV
COMMON/SCOM1/ATRIB(100),. ..
EQUIVALENCE (XX(1),BUSY)
TSYS=TNOW-ATRIB(1)

CALL COLCT(TSYS,1)
IF(NNQ(1).GT.0) GO TO 10
BUSY=0.

RETURN

10 CALL RMOVE(1,1,ATRIB)

CALL SCHDL(2,UNFRM(10.,25.,1),ATRIB)
RETURN
END

Figure 4. Subroutine ENDSV for Single Server System

The variable TSYS is set equal to the current time, TNOW, minus the first attribute of the current entity
being processed. When an event is removed from the event calendar, the ATRIB buffer array is assigned
the attribute values that were associated with the event when it was .scheduled. Since the value of
ATRIB(1) is the entity's arrival time, the value of TSYS represents the elapsed time between the arrival
and end-of-service event for this entity. A call is then made to subroutine COLCT to collect statistics
on the value of TSYS as collect variable number 1. A test is made on the SLAM function NNQ(1) repre-
senting the number of entities waiting for service in file 1.

If the number of entities waiting is greater than zero, a transfer is made to statement 10 where the
first entity waiting is removed from file 1 and placed onto the event calendar. The end-of-service event
is scheduled to occur at time TNOW plus the service time. If no entity is waiting, the status of the
server is changed to idle by setting the variable BUSY to 0.

The input statements for this example are shown in Figure 5. The GEN statement specifies the analyst's
name, project title, date, and number of runs. The LIMITS statement specifies that the model employs 1
file, the maximum number of attributes is 1, and the maximum number of simultaneous entries in the sys-
tem s 20. The STAT statement specifies that collect variable number 1 is to be displayed on the stand-
ard SLAM summary report with the Tabel TIME IN SYSTEM and that a histogram is to be generated with 10
interior cells, the upper limit of the first cell is to be 0, and the cell width of each interior cell is
to be 4. The TIMST statement causes time-persistent statistics to be automatically maintained on the
SLAM variabTle XX(1) and the results to be displayed using the Tlabel UTILIZATION. The INIT statement

360 Claude D. PEGDEN and A. Alan B. PRITSKR

specifies that the beginning time of the simulation is time 0 and that the ending time is time 480. The
FIN statement denotes the end of all SLAM input statements. This completes the description of the dis-
crete event model of the single server queueing situation.

GEN,C. D. PEGDEN,ONE SERVER,11/20/77,1;
LIMITS,1,1,20;

STAT,1,TIME IN SYSTEM,10/0/4;
TIMST,XX(1),UTTLIZATION;

INIT,0,480;

FIN;

Figure 5. Data Statements for Single Server System

6. CONTINUOUS CAPABILITIES

A continuous model is coded in SLAM by specifying the differential or difference equations which describe
the dynamic behavior of the state variables. These equations are coded b{ the modeler in FORTRAN by em-
ploying a set of special SLAM defined storage arrays. The value of the Ith state variable is maintained
as variable SS(I) and the derivative of the Ith state variable, when required; is maintained as the vari-
able DD(I). The immediate past values for state variable I and its derivative are maintained as SSL(I)
and DDL(I), respectively. When differential equations are included in the continuous model, they are
automatically inteégrated by SLAM to calculate the values of the state variables within an accuracy pre-
scribed by the modeler. The event and continuous. aspects of SLAM are based on GASP IV concepts (3).

Basically, a continuous model consists of a set of equations that describe the time varying performance
of the system being studied. In SLAM, the equations are coded ¥n subroutine STATE using the SS and DD
variables described above. The initial values of these variables are defined through input statements .or
through c¢oding included in subroutine INTLC.

SLAM computes values of the state variables in accordance with the equations specified by taking steps in
time and evaluating the equations that have been coded. If difference equations have been used; SLAM
takes a fixed step size. If differential equations have been employed, a variable step size using a
Runge-Kutta-Fehlberg numerical integration algorithm is used. SLAM automatically determines the step
size in accordance with -daccuracy requirements specified by the user on the CONTINUOQUS input statement.
The plotting of variables over time is specified through the input statements: RECORD and VAR. Changes
to the parameters of the equations or to the active equations are made when state-events occur. State-
events are defined in terms of state variables crossing thresholds. The request for the detection of
the crossing of .a threshold is specified through the SEVNT statement.

The organization for continuous modeling that is used by SLAM is shown in Figure 6.

SLAM SLAM
Initialization Executive
1 =
Subroutine Subroutine Subroutine SLAM
SLAM Input State-
ment Library: INTLC A STATE ‘ OTPUT Reports
INTLC
. SEVNT) [) ¥
RECORD : 1 |
A 1 Subroutine 1
CONTINUOUS : ! EVENT(1%). |
| ‘ |
1 ! [y I
1) !

SLAM Variables & Library

Figure 6. SLAM Organization for Continuous Modeling

SLAM TUTORIAL 353

As can be seen from Figure 6, a similarity was designed into the discrete event and continuous organiza~
tional structures to facilitate their integration for combined modeling.

7. A CONTINUOUS MODEL IN SLAM

To illustrate a model of a continuous system using SLAM, we present a model of Cedar Bog Lake that was
developed by Williams (5).

The model includes three species, a solar energy supply {xg), and the organic matter that forms a sedi-
ment on the Take bottom (xg). These lake variables are modeled in terms of their energy content (calor-~
ies/centimeter?) and the energy transfers between the various lake variables and Josses to the environ-
ment (xe). The three species are plants (xp), herbivores (xp), and carnivores (xc). The differential
equations relating these species to the sediment and the solar energy source are shown below.

dx

q - Xs ™ 4.03xp .

dxh

T 0.48xp - 17.87xh .

dxC

F - 4.85xh - 4.65xc .

dx0

rral 2.55xp + 6.]2xh + 1.95xC
dxe

o 1.00xp + 6.90xh + 2.70xc .

The values of the variables at time zero are: xp(O) = 0.83, xp(0) = 0.003, xc(0) = 0.0001, x(0) = 0.0,
and x¢(0) = 0.0.

The annual cycle in solar radiation is simulated using the following equation:

Xy = 95.9 (1+0.635 sin 2nt)
where t is time in years. These equations represent such processes as the predation of one species by
another, plant photosynthesis, and the decaying of dead species. Energy transfers between lake entities
and their environment are due to respiration and migration.
We will use SLAM to illustrate the procedure for obtaining the values of the variables Xﬁ’ Xhs Xgs Xos

Xcy Xg over time. First, we make an equivalence between the model variables and the SLAM state vector
SS{*) as shown below.

d
SS(1) = x_~» DD(1) = Te

p dt

dxh
$5(2) = x, ~ DD(2) =

dx
$S(3) = x + DD(3) = EC—
dx
$S(4) = x, + DD(4) = —&3
dx
$S(5) = x, » DO(5) = =
and SS(6) = Xg -

The entire SLAM program consists of writing the main program, subroutine STATE, and the input statements.
These are shown in Figure 7. The main program is in the standard SLAM form. In subroutine STATE, the
set of differential equations is coded. The translation of the equations from the model to the SLAM code

354

Claude D. PEGDEN and .A. Alan B. PRITSKRR

is direct and normally does not requiré an excessive amount of work. The input statements for the model
involve mainly the definitions of the variables to be plotted which is done on RECORD and VAR input
statements. The CONTINUOUS statement defines the 1imits on the step size and the accuracy requirements
for the numerical integration of the differential equations.

PROGRAM MAIN(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT,
1TAPE7)

DIMENSION NSET(1000)

COMMON/SCOM1 /ATRIB(100) ,0D(100),. ..
1,NCRDR ,NPRNT ,NNRUN ,NNSET ,NTAPE ,$5(100) . . .

COMMON QSET(1000)

EQUIVALENCE (NSET(1),QSET(1))

NNSET=1000

NCRDR=5

NPRNT=6

NTAPE=7

CALL SLAM

STOP

END

‘SUBROUTINE STATE
COMMON/SCOMI/ATRIB(100) ,DD(100),...
1,NCRDR ,NPRNT ,NNRUN ,NNSET ,NTAPE ,SS(100) , ...
DATA P1/3.14159/
S5(6)=95,9%(1.+0.635*SIN(2.*PI*TNOW))
DD(1)=SS(6)-4.03%55(1)
DD(2)=0.48%SS(1)~17.87%SS(2)
DD(3)=4.85%55(2)-4.65455(3)
DD(4)=2.55%SS(1)+6.12%5S(2)+1.95*SS(3)
DD(5)=SS5(1)+6.9%SS(2)+2.7*SS(3)
RETURN
END

GEN,PRITSKER,CEDAR BOG LAKE,3/5/1978,1;
CONTINUOUS,5,1,.00025,.025,.025;
INTLC,SS(1)=.83,55(2)=.003,55(3)=.0001;
INTLC,SS5(4)=0.0,55(5)=0.0;
RECORD,TNOW,TIME,0,P,0.025;
VAR,SS(1),P,PLANTS;

VAR,SS(2) ,H,HERBIVORES
VAR,SS(3),C,CARNIVORES;
VAR,SS(4),0,0RGANIC;

VAR,SS(5) ,E,ENVIRONMENT;
VAR,SS(6),S,SOLAR ENERGY;
INITIALIZE,0,2.0;

FIN;

Figure 7. SLAM Program of Cedar Bog Lake

The INTLC statement initializes the SS(*) values as prescribed by the problem statement, and the
INITIALIZE statement specifies that the simulation should start at time zero and end at time 2. This
.example illustrates the ease of coding continuous models in SLAM.

8. THE MANY INTERFACES OF SLAM

Interfaces have been designed into SLAM to encourage combined modeling using networks, events, and sets
of equations. These interfaces consist of the following interaction capabilities:

1.

An entity flowing through a network model can initiate the occurrence of a discrete event by
arriving to an EVENT node. Upon the arrival of an entity, the EVENT node causes subroutine
EVENT(JEVNT) to be called. The value of JEVNT specifies the event code of the discrete event to
be executed. Since the logic associated with the EVENT node is coded by the modeler for use in
a discrete-event model, its operational logic provides complete flexibility. Thus, a modeler
faced with an operation for which no standard network node is provided can employ the event

node to perform the specialized logic required.

The duration of activities in the network model can be specified to end when a time-event
occurs, a state-event occurs, a network node is released, or by a function completely written
by the modeler. The duration of an activity can be specified as STOPA{I) which means that the

SLAM TUTORIAL 365

activity will end whén the niodeler calls subroutine STOPA with an argument of I from within a
discrete event model. Thus, the conditions for the activity to be completed can be tested at
any event time and the activity ended through a call to subroutine STOPA. When the activity

is ended for the entity, the entity continues its flow through the network by arriving to the
end node of the activity.

The duration can also be specified as REL(NLBL) to indicate that the activity is to be com-
pleted when another node in the network with a node Tabel of NLBL is released. In essence, this
capability provides a network to network interface. In SLAM, a DETECT node is available for
detecting the occurrence of state events, that is, a continuous variable crossing a threshold
value. By assigning a label to the DETECT node, and referencing this DETECT node Tabel ‘in the
specification, the occurrence of a state event can cause the end of an activity to occur.

The duration can also be specified as USERF(IFN). This specification indicates that the model-
er will write the FORTRAN function USERF. The duration of the activity is specified by the
value given to USERF. IFN is a function number to differentiate between the use of USERF for
different activities. Through the use of USERF, complex activity durations can be coded. Func-
tion USERF can also be used to assign attribute values to the entities f10w1ng through the
network.

3. An entity can be inserted into a network model from a discrete event at an ENTER node. Each
ENTER node has a unique integer code NUM. An entity is inserted at the node from a discrete
event when a call is made to subroutine ENTER(NUM,A), where NUM is the numeric code of the ENTER
node and A contains the values of the attributes of the entity to be inserted into the network.

4. Entities in the network can cause instantaneous changes to values of state variables. This is
accomplished by resetting the value of the state variable at an ASSIGN node. When an entity
arrives to an ASSIGN node, the assignment specified at the ASSIGN node is made.

5. Events can cause instantaneous changes to the values of state variables through the use of
statements that shecify the new values for the state variables.

6. An input statement is available in SLAM for defining state events. When the conditions for the
state event occur, subroutine EVENT is called with an event code that is part of the input
specification. The occurrence of an event can initiate any of the changes described above.
That is, other .events can be scheduled, state variables can be updated, and entities can be in-
serted into the network through calls to subroutine ENTER. 1In addition, activities can be com-
pleted through calls to subroutine STOPA.

Examples of the use of each of the above interfaces have been described (1,4).

9. CHARACTERISTICS OF THE SLAM PROCESSOR

SLAM is written in standard ANSI FORTRAN. The SLAM program is completely portable and is currently run-
ning on the following computers: IBM 360/370, Univac 1108, Honeywell 6000 Series, CDC 6000 Series,
Harris 550, VAX 11/780, PRIME 400 and 700 Series, MODCOMP CLASSIC, and XEROX Sigma 7.

Since 1979, over 80 copies of the SLAM program have been distributed to government, industry, and aca-
demic installations. As an example, storage requirements for the compiled version of SLAM are:

VAX 11/780: 126,000 bytes
CDC 6000 Series: 77,000 octal words, and
IBM 360/370: 128,000 bytes

10. APPLICATIONS

SLAM is a new language which was introduced in 1979. Due to the time delays for publications, there are
no papers in the literature dealing with applications of SLAM. However, the distribution of the SLAM
program has been extensive and we are continually receiving information about current applications.

At Pritsker & Associates, SLAM has been used to analyze proposed designs of an aerospace manufacturing
facility, for assessing material handling and storage requirements at a blast furnace, to determine the
effectiveness of an electronic message switching system, and to project the throughput of a new pharma-
ceutical production Tine. A few of the other applications in progress around the country are: design
evaluation.of multiprocessor computer systems, assessment of improvements of a group technology based
plant design; and development of a training and educational program.

356 Claude D. PEGDEN and A. Alan B. PRITKER

REFERENCES

Pegden, C. D. and A. A. B. Pritsker (1979), "SLAM: Simulation language for alternative modeling",
Simulation, 33, 5, pp. 145-157.

Pritsker, A. A. B. (1979), Modeling and analysis using Q-GERT networks, second edition, Halsted Press
(Division of John WiTey & Sons, Inc.), New York and Pritsker & Associates, Inc., West Lafayette,

Indiana, 456 p.

Pritsker, A. A. B. (1974), The GASP IV simulation language, John Wiley & Sons, Inc., New York, 451 p.

Pritsker, A. A. B. and C. D. Pegden (1979), Introduction to simulation and SLAM, Halsted Press (Division
of John Wiley & Sons, Inc.), New York and Systems Publishing Corporation, P.0. Box 2161, West
Lafayette, Indiana, 588 p.

Williams, R. B. (1971), “"Computer simulation of energy flow in Cedar Bog Lake, Minnesota based on the
classical studies of Lindeman", in Systems analysis and simulation in ecology (B. C. Patten, Ed.),
Academic Press, New York.)

