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ABSTRACT: This paper presents an analysis of third order autoregressive time-series. The
parameter regions, in the three dimensional parameter space, that produce the six separate
types of power spectral density are analyzed. The study reveals that when a particular two
dimensional cross seetion of the three dimensional parameter space is taken, the region of
stability is always trianguler. Within each triangular stability region in this two
dimensional space, subregions which produce the six possible types of spectral shape are
indicated. From these subregions it is possible to approximately choose the parameters
necessary to model a process whose power spectral density contains at most two critieal
frequencies (maxima and minima).

1. INTRODUCTION

Autoregressive discrete time-series, X~} = al(Xt_l-u )+ aZ(Xt_Z-M )+ .-.+ap(Xt_p-11 )+ e,, are often utilized by the

simulation analyst for modeling physical and economic processes which are stochastie in nature (Fishman 1969a). In
partieuler, if the output time series of a diserete event simulation may be assumed to be an autoregressive process,
then useful statistical techniques have been developed for efficiently estimating the variance of the simulation
output's sample mean (Fishman 1978b), Burg has shown that when the first m autocovariances of a weakly-
stationary time-series are estimated, the sp%ctrum estimate, f(w), that is consistent with the m autocovariance

estimates and that maximizes the entropy, wf logf(w)dw, is the speetrum associated with the above autoregressive

processes (Lacoss). Thus, the autoregressive strueture is important in modeling and analyzing weakly-stationary
time-series such as the outputs of many discrete event simulations. In the .above recurrence relation, X, is a
random variable whose value represerits the state of the process at epoch't, is the mean of the process, 4. are
real constaants, #nd e, is a sequence of independent, identically distributed normal variates with mean zero and
variance 0&. When the process to be modeled is covariance stationary, the roots of the characteristie equation,

I I R -
lalz 89Z e .'apz =0

must all be within the unit cirele in the z-plane (Jenkins 1968).

The speetrum of the above pthorder autoregressive time-series will display at most p-1 critical frequencies
corresponding to peaks and troughs. Since the speetrum of many simulation output time-series possess two eritieal
frequencies, a detailed study has been made of the stability regions and spectra of third-order autoregressive
processes in terms of the parameters a,, a,, and a,. Analytical solutions were not used because of the size and
complexities of the expressions involveé. numerical search procedure was employed both to find the region of
stability and the sub-regions within the stability region that produce distinct spectral shapes. The results of this
study are presented below.

In order that the process be covariance stationary, the roots of the characteristic equation Z3--alzz—azz—a3 =0
must have modulus less than one (be within the unit cirele in the z-plane).
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This study reveals that when an 8y, 8, Cross section of the g a,, 8, space is taken, the stability region is always
triangular. ;

In Fig. 1 through 9 the stability triangles are shown when the parameter a, equals 1.00, 0.75, 0.50, 0.25, 0.00, -0.25,
-0.50, -0.75, ~1.00, respectively. The parameter a, affects the stability triangle by inducing rotation and reduetion
inits area as ag is increased in absolute magnitudg from zero to one.

The stability triangle boundaries correspond to parameter values that yield one or more roots to the characteristic
equation lying on the unit circle in the z-plane with the remaining roots within the unit circle.

2. SPECTRAL SUB-REGIONS

The power speetral density of -the third-order autoregressive process, assuming that 1= 0 and the sampling period
is 1, is given by (Bloom{field 1976):

2

S(f) = o8 /(1+a12+al2 o, +2(a2—a1a3)-Z(al—az(a1+a3)—3a3)cos2ﬂ f-

4og-a,85)c0s 2T £-8ageos 2T 1), -5 £2.5 (1)

There exist six possible types of spectra from equation 1, namely, low frequeney, high frequenecy, single peak, single
trough, trough-peak, and peak-trough. Peaks and troughs are obtained, from the ealculus, by obtaining the local
maxima and minima of equation 1 on the frequency interval (0.0, 0.5). The frequencies of peaks and troughs are
obtained fromis

cos2m f = (a1a3—a2i(a22+a32(a12+3a2+9)+a1a3(a2—3)) & )6a, (2)

when the right side of equation 2 is real, a,#0, and | cosam£]<1 for either or both roots. When ag = 0, only one
eritieal frequency may occur and is obtained from:

cos2Tf = —al(l—az)/4a2 3)

when a,#0 and |eos2mf| <1, Positive values of equations 2 and 3 correspond to frequencies on the interval (0.0,
0.25) while negative values correspond to frequencies on the interval (0.25, 0.5).

Referring to equation 2, it is empirically observed that the positive root corresponds to peak frequencies while the
negative root corresponds to trough frequencies. When two critical frequencies are present, the sign of a
determines whether. a peak preceeds a trough or visa versa. When a,>0, the peak preceeds the trough and wheﬁ
a, <0, the trough preceeds the peak. When the value of a, is close to'l, high frequency spectra are not generated.
Vs?hen the value of ag is close to -1, low frequeney spectra gre not generated.

When both peak and trough frequencies are present the Pegion is subdivided such that in one area cos27f, and
cos2rf, have the same sign and in the other they have opposite signs. Opposite signs correspond to one freqt}ency
on the‘interval (0.0, 0.25) and one frequency on the interval (0.25, 0.50) since cos2Tf changes sign at f =% . When
ag <0, the same sign, negative, corresponds to both frequencies on the interval (0.25, 0.5).

In Fig. 1 through 9 the stability triangles are decomposed into speetral sub-regions. In Fig. 10 through 15, typical
single trough, single peak, trough-peak, peak-trough, high frequency and low frequency spectra are depicted
forgd= 1. From these figures it is possible to locate bounds for the parameters ay, 8y, and 8y 85 & first step in
modeling a process whose spectral shape has at most two critical frequencies.
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Fig. 2 Stability Region and Spectral Sub-Regions

for ag = .75
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Fig. 3 Stability Region and Spectral Sub-Regions

for ag = .50
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Fig. 4 Stability Region and Sub-Regions for a, = .25
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Fig. 5 Stability Region and Spectral Sub-Regions
for ag = 0.00
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Fig. 6 Stability Region and Spectral Sub-Regions for ag = -.25
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Fig. 7 Stability Region and Spectral Sub-Region for ag = -.50
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Fig. 8 Stability Region and Spectral Sub-Regions
for ag = -.75
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Fig. 9 Stability Region and Spectral Sub-Region
for g = -1.00

—

Q)

15



Richard WIENER and John S. DORRENBACHER
16

' S(F)

Fig. 10 Trough Spectra for a; = -.50, ag = .80, az = .50
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Fig, 11 Peak Spectra for a = 1,00, ag = =50, ag = -.25
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Fig. 12 Trough-Peak Spectra for a; = ~.50, ag = .25, a5 = —.25
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Fig. 13 Peak-Trough Spectra for ay = .50, ag = .50, ag = .75
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Fig, 14 High Freqguency Spectra for a = ~1.70, ay = ~-.75, ag = -.25
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Fig. 15 Low Frequency Spectra for a; = 1,25, ag = -.70, ag = .25



