THE SEARCH FOR THE PERFECT HANDICAP

1. Introduction.

Suppose that two competitors A and B have symmetric
score distributions. If B's mean score is greater
than A's subtract the difference in means to obtain
B's net scores. The result is suggested by Figure
1, in which B's net scores show greater variabil-~
ity. In a particular competition the actual net
scores shot might be a and b. Assuming the objec-
.tive is to score low, A wins this match. But for
any such pair of scores there is a symmetric pair
a',b' of equal probability for which B is the win~
ner, so clearly each player ought to win just as
often as the other. The competition is fair. Put
in another way, the mean score is a perfectly accu-
rate measure of ability in this situation. The
same can, of course, be said of the median. With
B's game having wider spread there is the somewhat
unfortunate fact that A can play his very best and
still lose, but in compensation he can also play
his very worst and still win. Things are about

as fair as a cruel world allows.

FIGURE 1

Symmetric distributions of
net scores with equal means.

Francis Scheid
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In most types of competition scores are not sym-
metrically distributed. In golf, for example,

it is well known that poor scores range farther
from the mean than good scores do, and more so

for weak golférs than for strong ones. The ques-
tion arises, what 1s then the most accurate measure
of ability and do the mean and median still perform
well? To £ind the answers to this and related
questions in a golf setting the following experi-
ments were carried out.

2. The types of measure tested.

Hole by hole scores of rounds shot by more than
1500 golfers at eighteen courses in various parts
of the country form the data bank on which the
experiments are based. For each player twenty
rounds were used to compute a variety of ability
measures. The present official procedure of the
USGA was included. It begins by reducing hole
scores if necessary to a maximum size dependent
upon the ability level of the player. This process
is called stroke control. It then subtracts from
each score the rating of the course at which the
score was shot, averages the ten lowest of these
"differentials" and finally multiplies by 96 per-
cent, The result is called the USGA handicap.
The officlal British procedure was also included,
in a way. This method depends somewhat upon the
discretion of local handicap committees, but guide-
lines are provided which effectively make most
players' handicaps their second best differential.
These methods of measuring ability find broad use
throughout the golfing world.

Over the years many alternative handicapping meth-—
ods have been discussed by golfers. These are the
basis for the variety of ability measures tested.
Most prominent are the averages of certain score
differentials such as the best five, the best ten,
best fifteen, all twenty (the mean), the middle
ten, and other sets obtained by trimming one or
more of the best and worst, symmetrically or not.
Also included were single differentials such as

the very best, the second best (as an approximation
to the British handicap), fourth best, sixth best
and so on, and palrs such as the best and worst
averaged, or the sixth and fifteenth averaged,

or the tenth and eleventh (the median). Of some-
what different character are the point style handi-
caps which have been much discussed in golfing
circles. 1In the 1248 system, for example, one
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THE PERFECT HANDICAP ... Continued

point is given for a hole score of par plus one
(bogey), two for par, four for par minus one
(birdie), and eight for better (eagle). The av-
erage number of points per round is subtracted
from 36 to obtain the handicap. A 1234 system
is similar and probably clear without further de-
scription. In the 12 system one point is given
for par and two for better, the average number
of points per round being subtracted from 18 and
the result limited to the interval 0 to 18. Dif-
ferent again are the selected hole types of handi-
cap. For example, only the nine best holes of each
round, relative to par, are selected and averaged,
the total score for this nine then being doubled.
Subtraction of course rating then produces a new
differential for each round. The average of these
differentials or of selected groups of them may be
taken as ability measures. Similarly one may take
the best twelve holes per round, or the best fif-
teen. A few measures of dispersion were included,
such as the spread (worst score minus best) and the
- standard deviation. Even one or two measures of
skewness were tried. For most of these types, all
for which it was appropriate, a recomputation was
made after stroke control, and counting these the
list runs to more than a hundred. Some are clearly
inferior but were left in to avoid prejudice, the
experiment itself serving as impartial judge of
merit.

Lo

Abbreviations for the various types will be con~-
venient. For example, (2) is used for the second
best differential, 6-15 for the average of the
sixth to fifteenth best, Bl2 when the best twelve
holes per round are selected, PT18 for the point
system in which from one to eight points are given,
STEF for the average of the sixth, tenth, eleventh,
and fifteenth best differentials and 1,20 for the
average of the best and worst. Other abbreviations
fmay be understood from these examples.

3. Simulation of head-to-head play.

The most popular form of individual head-to-head
competition is match play. Here each hole is a
separate contest and the player winning the most
holes wins the match.  For even play the weaker
player is usually allowed to reduce his scores
for a number of holes (usually the more difficult
ones) equal to the difference in handicaps. Be-~
cause of its greater interest match play was the
focus of the head-to-head part of this study.
Stroke play, in which the total scores for rounds
of eighteen holes are compared, is not sc common
vhen only two players are concerned but was in-~
cluded anyway partly because it was so easy to

do and partly for comparison with the match play
results. For both kinds of competition extensive
play simulations were made.

At each of the courses for which data was in hand
fifty pairs of golfers were chosen, using current
USGA handicaps to assure a variety of ability dif-
ferences within pairs. For each pair the stronger
player A gave the weaker B an initial number of
strokes also determined by the USGA handicaps.
Matching each of A's rounds against each of B's
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in the 400 possible combinations, say at individual
match play, the number of wins by A was noted. If
not 200, a change in stroke allowance was made and
the simulation repeated. This was done at least
four times and until the 200 level was straddled,
at which point a least-squares line was fitted to
the four (wins by A, strokes given) pairs and an
interpolation made to estimate the number of
strokes actually needed to equalize the pair. For
each club then the output of the simulation was of
this sort, figures in column three corresponding to
match play,

Club Players Strokes
number A B needed

01 01 03 2.; ’

0l 01 02 0.9

01 01 12 11.9

01 03 10 7.0

and the full list running to fifty pairs. At least
1600x50 or 80,000 matches were played at each club
to produce these results. For stroke play output
was in the same form, the strokes needed being 2.1,
0.9, 11.8 and 6.4, differing only slightly from the
match play figures. Another 80,000 or more matches
were played at each club to produce these results.
A little arithmetic will show that for the two
types of play combined almost three million golf
matches were simulated.

4. Orthogonal polynomials aqd smoothinz.

At this point the natural question asks how well
each type of handicap might be used to predict
the number of strokes needed to equalize pairs.
To find the answer we consider strokes needed as
a function of handicap difference, at both indi-
vidual match and stroke play, and treat each type
of handicap in its turn for each course in the
collection. For smoothing purposes this function
is represented as a combination of orthonormal
rolynomials on the discrete set of handicap dif-
ferences, say

v
z(k) = ] e(§)Q(,k) .
j=0

The Q(3,k) are found ds follows. Let x(k) be the
handicap difference of a golfing pair and y(k) the
corresponding strokes needed to equalize as found
by the simulation. This discrete function is first
shrunk by removing duplicate arguments x(k), let-
ting w(k) stand for the number of duplicates and
y(k) the average of the associated function values.
Orthogonal polynomials P(j,k) are thén determined
by the recursion

P(4,k) = (x(k)-A(3))P(I-1,k) - B(I-1)P(3-2,k)

with P(0,k) = 1 and P(1,k) = x(k) - xav, where
xav 18 the mean x(k), and



A(3) = T w(k)x(k)P(3-1,k)2/Z w(k)P(3-1,k)2
B(3~1) = I w(k)P(§-1,k)2/% w(k)P(§-2,k)2 .

All sums are over the k which remain after the
removal of duplicates. The orthonormal Q(j,k)
are then '

Q(i,k) = P(3,k)/sqrt(Z w(k)P(j,k)?) .

Standard least—squares procedure then determines
the coefficients

c(d) = £ wlk)y(k)Q(j,k)

'

and the minimum error .

v

rms = sqre(s wk) (z(k) - y(k))2/50) .

" One advantage of this procedure is that scanning
the c(3) suggests where the representation might
be truncated, that is, it allows one to choose
the degree M of the smoothing polynomial. At
course 1, for match play, using the USGA handicap,
these coefficients prove to be
5.12, 34,02, -.16, -.06, .51, .57, -.94,
-.18, 1.32, ~-.79, .72 .
and so on. After the first two these resemble
the coefficient behavior of a random error function
so a linear approximation seems appropriate. The
rms error of this linear function was .68 and de-
scended very slowly as higher degree terms were
included, the value for a sixth degree approxima-
tion being .66. The standard analysis of variance
test using the F distribution accepts the reduced
(linear) model at the 99 percent level. - This
proved to be true for all but a few handicap types,
for which quadratic approximation was required.
For uniformity the rms error of the quadratic was
adopted generally as the measure of accuracy of a
handicap type.

5. The results.

The average errors for more than a hundred handicap
types at each of eilghteen golf courses form a
fairly large matrix. Only a selected fragment

is presented here, as the MATCH PLAY ERRORS table,
in which each column represents a handicap type.
There is, of course, a similar table for stroke
play. Even a casual inspection shows differences
between columns, and a Friedman test indicates that
the differences are significant at a level far
below one percent. The same was true at stroke

play. .

To compare the accuracy of the various types the
median error of each column of the full matrix
was found. Some of these are presented in the
MEDIAN ERRORS, MATCH PLAY table. The same pro-
cedure at stroke play produced the MEDIAN ERRORS,
STROKE PLAY table. All entries are for methods
without stroke control, since 1t was soon apparent
that whatever the merits of this process may be it
almost always reduces accuracy by a small amount.
Several things should be noticed. First of all
the same types dominate both lists; ability meas—
ures that are accurate for match play also seem

to be accurate for stroke play. Application of

the Wilcoxon signed-rank test showed differences
of .1 to be significant at the .05 percent level
more often than not, while differences of .2 or
more were almost always significant. Second, con-
spicuous among the top performers in each table
are averages of differentials from which some of
the best and worst are omitted, and it is inter-
esting to see that the overall average is outdone
by several of these. In other words,.a certain
amount of trimming at the ends of the. score dis~
tribution improves the accuracy. Too much trim—
ming, however, reduces it again. The median score,
for example, does rather badly. Apparently one can
afford to discard only so much of the information
available. Numerous other trimmed averages of the
same sort are not listed, often because they were
not included in the experiment. Their median
scores may be estimated to some .extent by reading
between the lines.

Finally note the types of ability measure that
performed relatively poorly. The USGA handicap
(with stroke control in this one case) had error
.83 at match play and .80 at stroke play even when
used optimally, which meant inflation by 108/96 at
the former and slightly more at the latter. When
used in the officially recommended way the, errors
were 1.1 and 1.2. The British handicap, as approx-
imated, had errors of size .90 and .95 when used
optimally. The most accurate single differential
proved to be the eighth best. All the point and

"selected hole types were inferior. Measures of

dispersion and skewness were entirely undependable
for predicting ability, as anticipated, having
errors of three to five strokes.

6. Events with many competitors.

Arranging fair play when there are many competitors
is'a somewhat different problem. Some insight into
it can be gained from a simple example. Suppose
that just three players compete and the best net
score wins. A 1s perfectly consistent, always
shoots 75, while B and C manage rectangular dis-
tributions between 70 and 8Q0. For A to win it

1s necessary that both B and C play in the poorer
halves of their games, and this happens with prob-
ability 1/4. B and C share the remaining wins
equally, giving probability 3/8 to each. So A

is at a slight disadvantage because of his con-
gsistent game, unless he is given strokes. For

fair play A ought to win 1/3 of the time. To ar-
range this we could reduce his scores until the
probability p that he outperforms B, and conse~
quently the probability p® that he outperforms

both B and G, is 1/3. 1In the same way if there

are N competitors in all, A's failr share is 1/N

and what is needed is

ot = .

As N increases the limit of p 1s 1, which means
that A's net score must equal the best of the other
competitors.

This same conclusion can be reached by an intuitive
argument. When there are many competitors someone
1s almost certain to be on his best game, or near
it. In a field of one hundred players, for
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Handicap types
USGA*  (2) MEAN MED 6-15 2-19 2-17 (8) Bl2 Bl5 PTI8 PTi4 PT12
c .68 .67 .59 .45 49 .50 .35 .27 .76 .68 .48 .41 1.02
z 1.11 .96 .96 .98 .60 .89 .58 .62 1.44 1.02 1.40 1.28 2.21
r .50 43 .24 .47 .39 .19 .20 .52 .40 .39 .35 .27 .52
: .25 ©29 .15 .29 .25 .13 .16 .31 .50 .24 .35 .17 .20
8 .74 .94 .47 .81 .36 .36 .33 .68 .98 .71 1.22 1.12 2.83
.90 -84 .37 .59 .43 .32 .32 .36 .72 .51 .44 .32 1.02
1.13  1.27 .71 .77 .51 .58 .37 .50 .78 .58 .83 .76 1.56
-64 .66 .19 .49 .30 .21 .30 .26 .32 .24 .42 .36 .84
£70 7 .77 .40 .62 .53 .33 .33 .38 .77 .47 1.44 1.08 2.72
-89 1.23 .42 .50 .63 .49 .28 .55 .37 .4k .34 .35 .46
1.04  1.40 .46 .75 .47 .56 .37 .54 .85 .53 .88 .70 1.70
1.26 1.36 .49 .31 .30 .37 .5 .53 .64 .66 .53 .51 1.39
.81 <72 .40 .50 .48 .42 50 49 .62 .44 .75 .62 2.09
.86 1.62 .46 .64 .47 .36 .50 .58 1.21 .71 1.05 .66 1.52
' <72 2,00 .52 .49 .49 4L 40 .97 .74 .55 1.44 1.48 3.56
.55 .78 .42 .52 .41 .39 .52 .46 .72 .56 1,50 1.54 2.47
.86 99 .38 .36 .30 .27 .60 .82 1.15 .84 1.67 1.29 2.62
MATCH PLAY ERRORS
Selected handicap types
MEDIAN ERRORS, MATCH PLAY
A. The most accurate types tested.
Error Types
4 2-17 2-19 4-17 3-18 2-15 5-16 MEAN
4~15 8,13 '
.5 3-15 1-15 6-15 STEF 3-14 4-14 2-14
(12) M™MeD 4-13 (8) 6,15 (10) 'B1S
2-13
B. Certain other types, selected.
Error Types . Error Types
7 PT14 Bl12 1.0 (2) 1-5
.8 .USGA ' 1.6  PT12
.9 PT18 B9 2,19



instance, it can be argued roughly that only one

MEDIAN ERRORS, STROKE PLAY

A. The most accurate types tested.

Error  Iypes
.2 3-18 4-17 2-19 2-17 5-16 4~15
.3 3-15 6-15 2~15 4-14 3-14 MEAN 1-15 STEF
4 8,13 2-14 413 6,15 3-13 2-13 (8) 4-12
B. Certain other types, selected.
Error  Iypes Error  Iypes
.5 MED 1.0 B9
.6 B15 1.2 1-5
.7 PT14 1.7 PT12
.8 PT18 Bl2 USGA A SPRD
.9 2 2,19

will probably play in the top hundredth of his

score distribution, and doing so ought to be the

winner.

equalizing the percentile 1l scores of the compet—
itors, which is not the same as equalizing means,

This suggests that fair play calls for

the weaker player B's scores being shifted only
by the amount shown in Figure 2.

FIGURE 2

Equalizing the percentile 1 scores

FIGURE 3

Equalizing the percentile 25 scores.

The above argument applies if equal chance to fin~
ish in first place is the criterion of failrness.

.In large field events, however, prizes of some

sort will usually be given to about a quarter of
the field and if Figure 2 prevaills most of these
would go to the stronger players. In fact the
bottom of the order of finish would be heavily
populated with high-handicappers. For equal chance
to finish in the top quarter B's scores should be
shifted until his percentile 25 score coincides
with those of the other competitors, as shown in
Figure 3. Both criteria of fairness will now be
explored.

7. The simulation.

In order to determine the percentile scores just
discussed the twenty rounds available for each
player were taken as a base and eighty more simu-
lated using random numbers to select hole-by-hole
scores from this base. After sorting the hundred
total scores so obtained the lowest serves as the
percentile 1 score and other percentiles are easily
identified. This procedure was followed for each
player in the data bank. The output of the simu-
lation thus consisted of a list of players identi-
fied by club and number together with percentile 1
and percentile 25 scores, relative to course rat-
ing. The list began as follows.

Club Player Pctile 1 Pctile 25
1 1 -1.0 5.0
1 2 2.0 6.0
1 3 2.0 7;0
1 4 4.0 7.0
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8. Analysis and results.

And how accurate are our handicap types at pre- .
dicting success iIn many-competitor events? To
answer this question the idea of equalizing scores
at some percentile level can be implemented. This
might be dome by bringing everyone to a specified
score, say the appropriate percentile score of an
average scratch player. Strokes needed would then
be P(1) ~ S, where P(i) 1s player i's percentile
score and S is scratch. The function (strokes
needed, h'cap) is then smoothed by the same or-~
thogonal polynomial routine used before, with the
individual golfers forming the experimental unit
at -each course instead of the fifty selected pairs.
The rms errors again serve as measures of accuracy.
In carrying out this process the subtraction of §
can be omitted, making it unnecessary to estimate
S, since smoothing of the function (P({),h'cap)
will lead to exactly the same rms errors, the new
smoothing function having values just S units
greater. From another point of view what this
means is that if the latter function requires very
little smoothing for some handicap type then that
type will be a good predictor of strokes needed.

Applying this procedure first to the percentile 1
data the usual large matrix of rms errors was pro-
duced, but will again be omitted. Certain medians
are displayed as before in the MEDIAN ERRORS, PER-~
CENTILE 1 table. The neéw abbreviation NORM ap-
pears, representing the measure MEAN - 2.326SIG

vwhich is the percentile 1 level of a normal model
of the player's score distribution. The first
thing to notice here is the larger size of the
errors compared with those reported for head to
head play. This is probably due to the fact that
the tails of a distribution are harder to define
with precision, and it suggests that 1t may be
harder to arrange for fair play by this criterion.
Even so it is reassuring to note that prominent
among the most accurate types are those which rely
more heavily upon the better part of a player's
game. The normal model also does about as well

as any, but it is the one best of the basic twenty
differentials that leads the list. The Wilcoxon
signed rank test found a difference of .1 to be
undependable, but a difference of .2 was quite
trustworthy at the .05 percent level of signifi-
cance. Among other things this means that the
official USGA and British handicaps take a close
second place. Of the averages after trimming which
dominated the lists for head~to-head play several
can be found along with the MEAN only slightly
lower down.

Approximation of the percentile 25 data led to

the comparable table MEDIAN ERRORS, PERCENTILE 25.
The handicap type NORM which took first place here
represents MEAN ~ .674SIG which is the percentile
25 level of the normal model. Behind it is a tight
pack of trimmed averages and miscellania. The USGA
handicap was expected to perform well here, since
it is based upon the average better half of the

' 1.2 1) 1-5
1.3 NORM
1.4 (2) 2,19 USGA 1-15

Error Types

1.5 PTI8 Bi2
1-15 2-15
STEF 2-14

1.6 . 5-16 PT12

1.7 8,13 MED

MEDIAN ERRORS, PERCENTILE 1

A. The most accurate types tested.

B. Certain other types, selected.

MEAN 2-17 Bl5 PTl4 6,15
2-19 3-18 1,20 4-17 B9
4-15
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(8) PT14

MEDIAN ERRORS, PERCENTILE 25

A. The most accurate types tested.

Exror  Types
.2 NORM
N 2-19 MEAN 2~16 2-15 1-15 2-14 3-18
5 2-10 to 2-13 3-10 to 3-15 4-10 to 4-17

B15 6,15 STEF 8,13 5-16 6-15 (6)

B. Certain other types, selected.

Error  Iypes

.6 MED USGA PY18 BI2
.8 2,19

.9 2) B9

1.2 (1) PTI12

player's game, but finished slightly behind the
pack. The British handicap and the one best dif-
ferential were definite also-rans, while PT12 again
brought up the rear. As before differences in
medians of .2 are statistically significant at

the .05 level.

9. Summary.

The experiments just described may be summarized
by saying that for both head~to-head and large
field competition a moderately heroic effort was
first made to measure Individual playing ability.
This consisted for the former of simulating paired
matches in great number, and for the latter simu-
lating many rounds in addition to those available
from scorecards. Hopefully those efforts brought
their reward in the form of accurate ability meas-
urement. But an operating handicap system must
deal with millions of players, provide frequent
updates and still be economically feasible, so

it has to be based upon a more modest procedure.
In the second part of the experiments the question
was, which among numerous simpler procedures best
approximates the heroic. No one method proved to
be best for all cases, a result which was surely
predictable. However, a wide varilety of averages
does establish a clear superiority, both at head-
to-head play and when errors for the four types

of competition are combined. This variety includes
the overall mean, the others involving some trim—
ming of extreme scores symmetrically or not, such
as 1-15, 2~-19, 3-18, 4-17, 5-16, 6-15, 2-14, 3-14
just to name a few. For predicting winners in
large field competition these averages are outdone
by certain measures which emphasize the best part
of a player's game, such as the best of twenty
rounds, or the second best or even the USGA handi-
cap, but these prove to be inferior when measured
by any other criteria. The various point systems

which have been proposed, and the selected hole
methods also prove to be disappointing.

‘Work has been begun on a follow-up experiment

focusing upon events in which the best ball, hole-
by~hole, of a team of two or more players is ac-
tive. This will without doubt make things more
complicated still, It is clear that the perfect
handicap does not exist, but the search for the
nearest thing goes on.
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