MICSIM--THE SIMULATION MODEL OF FDNY’S COMPUTER-AIDED DISPATCH SYSTEM

ABSTRACT

Firefighting units in the borough of
Brooklyn are currently dispatched with

the aid of FDNY's new computer dispatch
system, MICS. The system is designed
around dual PDP 11/45s which are supported
in a "fallback" {(or back-up) mode by dual
INTEL 8080 micro-processors. The computer
processes alarms, recommends the assign-
ment of available units, notifies

assigned units by voice and hard copy
terminals Tocated in fire stations,
monitors status changes of firefighting
units and incidents, and dynamically
adjusts the borough's firefighting
coverage by recommending schemes for the
relocation of units in order to minimize
future (anticipated) response times. The
system has been so successful in Brooklyn
that it is being expanded to cover all
five boroughs through a shared centralized
PDP 11/70 computer system. The city-wide
system will be called CMICS.

Simulation techniques were employed during
all phases of MICS system development to
insure that the necessary system criteria
would be met under the ever-increasing
alarm rates experienced in New York.

This paper describes the primary simulation

tool, the GPSS simulation model, MICSIM,
which was used to study the complex
relationships between real-time system
software, communication software, device
handlers, and the application programs
(components typically found in all multi-
programming real-time systems). The end
product of MICSIM is an explanation and
quantification of the response times
achieved by the system when responding
to dispatchers' CRT requests.

Even with the sophisticated performance
monitors that were used to measure CPU
utilization and perform I/0 and CPU
accouting on a task-by-task basis, it was

not possible to determine the real Timiting

factors in the system when the rates of
CRT operator actions and input messages
from the field increased. The increased

Michael Geller

overhead required to extract this data
internally from the operational system
would cause substantial interference there-
by invalidating the data. Only with the
aid of MICSIM was it possible to "profile"
a task and determine the nature of the
events that take place within MICS as it
responded to external actions. The basic
understanding provided by the model made
it possible to take the necessary steps to

_achieve the desired performance standards.

Key Words and Phrases

Discrete simulation, Monte Carlo simulation,

real-time systems, communication systems,
performance measurement, response time,
queues, bottlenecks, utlization, GPSS,
hardware, software, throughput, multi-
programming, systems design, fine tuning,
input/output.)

1. Introduction

New York City's Fire Department (desig-
nated FDNY), placed on-line, in Brooklyn,
a Management Information and Control
System (MICS) which provides computer
assistance for the department's dispatch-
ing and communication functions. The
system replaced manual procedures which
were rapidly becoming inadequate for the
soaring alarm rates currently experienced.

Since time is critical in the dispatching
of firefighting resources, careful
attention was given to the performance
aspects of MICS. Performance criteria
were established for the system's response
time to dispatcher CRT requests under

peak alarm rates. Realizing that it would
be intolerable for a dispatcher to wait
long for the computer to process his
request, the Fire Department specified
acceptable performance parameters to
insure that the system would not "Timit"
the number of alarms which a dispatcher
could process due to internal queueing
problems. Bradford National Corporation,
the developer of the MICS system, was

473

.Conf'd

MICSIM - FDNY's Simulation Model..

thus contractually obligated to demonstrate
that the performance requirements would be
met. Additionally, this necessitated the
development of artificial techniques to
provide peak alarm rate conditions so the
performance would be documented pr1or to
system cutover [1].

When developing a real-time system which
must meet tight performance criteria, it
is essential to have the means to measure
the performance of the key system com-
ponents and then to understand quanti-
tatively how these elements interact.
While the measurements may be obtained
through some other type of performance
monitoring, full understanding will
probably require the use of a simulation
model.

2. The Need for a Simulation Model

The wide variety in the types of demands
made for fire department services, coupled
with the random nature of alarm arrivals,
and constantly increasing alarm rates

make it difficult to formulate a statis-
tical description of the performance of
these tasks which MICS is called upon to
perform during a peak alarm period. The
complexity of the‘real-time system's
interactions and dependencies further
complicates the process or analyzing the
system at any "moment in time" to discover
the nature of the competition between
tasks and system routines for the various
system résources. A simulation model is

a convenient aid for use in the study of a
system driven by random phenomena and
composed of a variety of tasks competing
for finite and interdependent resources

L3, 4

A single alarm initiates a series of
operator activities at several CRTs to dis-
patch and notify fire units. These are
followed by inputs made on special purpose
panels in both the central communications
office and the firehouses to update unit
and incident status files. Alarms may
originate from mechanical street boxes
(BARS), from newer electronic street boxes
(ERS) which permit voice communication as
well as the transmission of digital signals
and via direct telephone contact. Each
source requires different initial process-
ing with the latter two requiring computer
intervention. Figures 1 and 2 show the MICS
hardware configuration and the operation
environment, respectively.

It was difficult under these conditions to
predict the work load that the MICS system
would face at alarm rates projected to be
as high as three alarms per minute. One
alarm can:result in twenty to thirty dis-
patcher interactions, each one causing a
task which, in turn, is a series of pro-*-
grams required to process the particular
input message.

The execution of each task requires precise
coordination of key hardware and software
components. Messages are transmitted over
various types of multiplexer equipment from
the terminals (CRT and other terminal
types) directing the message to the central
processing unit. Communication software
controls the transm1ss1ons by poliing the
various terminals. - In MICS, this software
is called Line Control. Each message is
received character-by=character in a silo
where it is removed by programs (calted
SILO programs) into buffers, forming a

Standivy System

P
Systee "A” Systorn "8"
PDP 11/45 P 11/46
Ioverfaces Intarisces

/

[|
!
EiEiEic])

=il

Line Switcl/Symam Cocerol Console l ﬂ;ﬂ_’
&

16 OxTs

Pigure 1 Basic configuration of Brookiyn

+ MICS, Cootrol computer is backed up

by identical standby unit, both of which
bave acces to dual dec mbeyten, On-
Une and xandby. micropeocesce coptrollers
seeve as dual backup to two larger processars,
3 all four fafl, systom ie operated manualty,

_FIGURE 1. MICS HARDWARE

IARS—..—-—.—‘
SRS

100 Pirshouss '

(30 Lineg)

474

MARAGEMENT INFORMATION

STATUS MONITORING

but

Fig 2 MICS modes of operation. All five modes are
tually part of MICS but function with it

by
or suparvisor makes final decision. Box 'alarm readout system and city-wide deployment CPUs are not ac-

message for each line. When the message
for a line is complete, the line control
software passes the buffer to the Queue
Controller, the program which interfaces
with application tasks and controls the
queueing of messages back to the terminals.
Terminals may be associated with any
number of modes of operation depending on
the function which the dispatcher is
performing. This requires a highly
sophisticated queue controller. Finally,
the input message is processed by appli-
cation programs which invoke other device-
dependent tasks when they perform I/0 to
update files or when program modules not
currently in core are neeéded. These
applications tasks are diverse and may
range from a program that takes only

five to ten milliseconds of CPU time and
performs no 1/0, to a sequence of
mathematical programs performing several
1/0s and. requiring thirty seconds of

CPU time. Coordinating all the software
is a real-time operating system, written
by Bradford, which provides the appropriate
multi-programming environment with
emphasis on timely and efficient dispatch-
ing of tasks, memory management, interrupt
handling, etc. Figure 3 shows the flow of
an alarm as it is handled by each dispatch-
er interacting with computer generated
screens and making entries into special
purpose equipment. It can be thought

of as a macroscopic view of the GPSS
modeling effort. Figure 4, on the other
hand, is a more microscopic view follow-
ing a message from its jnitiation at a
dispatcher's CRT, thru the hardware and
software processing that follows, until

a response is transmitted to the ini-
tidting CRT. The latter modeling effort
would be similar for other real-time
systems and is discussed in more detail

in the next section.

Almost 'every developer of large real-
time systems must face this type of
environment.and it can be very difficult
to project system performance. Many
questions arise during system design:

Is the CPU fast enough?
How much core is needed?

Will there be a bdtt]eneck
at the disk?

Which programs should be
core resident and how
much core should be
allocated to task
execution?

How should we prioritize the
tasks, the queues?

475

MICSIM - FDNY's Simulation Model

. Cont'd

BLINK
ERRORS

CONTACT
UNITS
VAILABLE
'ON THE AIR'

- KEY

ARD-ALARM
RECEIPT

DIS-

PATCHER

Ppo-DECISION
DISPATCHER

RD-RADIO
DIS-
PATCHER

VD-VOICE
DIS-
PATCHER

PHONE

ALARMS
ARRIVE

ALARM RECETIPT

ELECTRONIC STREET BOX (ERS)

FROM 3
SOURCES

s M

: : HANICA%BﬁgggET BOX ERS PROCESSOR
ARD PRESSES BARS PROCESSOR INPUTS
WALY KEY. INPUTS ALARM ALARM
~ MESSAGE MESSAGE
M%CS \ DECISTION MICS FORMS
DISPLAYS ALARM SCREEN
ALARM SCREEN bIsSP i TCH BOX # & ADDRESS
TR MICS MIcs
A LETES PROMPTS PROMPTS ALARM
conLE DECISION RECEIPT
DISPATCHERS (DD) DISPATCHER
MICS DD PRESSES ARD HITS "NEXT"
EDITS UNEXT™ REST SAME AS
SCREEN KEY PHONE
'y T
[DD REVIEWS,MODIFIES (15 SECOND
RECOMMENDED DIS-
~ DELAY UNLESS
PATCH SCREEN DELAY UNLES
1] n
HITS RELE?SE Sy
NOTIFICATION
RADIO TELEPRINTER VorcE
MICS TELEPRINTER {MICcS PROMPTS
PROMPTS MESSAGES TO VOICE
RADIO FIREHOUSES DISPATCHER
DISPATCHER
, 1 b
RADIO UNITS ACKNOWLEDGE VOICE
DISPATCHER VIA SELECTOR PANELS DISPATCHER
HITS 'NEXT' IN FIREHOUSE HITS "NEXT"
STATUS MONITORINEG 1[
[RD READS ; —p—— VD READS VOICE
RADIO ADDITIONAL UNITS NOTIFICATION
NOTIFICATION NEEDED? (UNLESS ALL
SCREEN UNITS HAVE
WHO HAS NOT b A
ACKNOWLEDGED? ROWPT ACKNOWLEDGED)
igKﬁSEEESGEﬁéﬁrs RELOCATIONS VD ENTER UNIT
~ REQUIRED? ACKNOWLEDGEMENT]
INTO STATUS
e INTO STATUS
ENTER PANEL Ty PANEL
T INCIDENT & UNIT -]

STATUS UPDATES
FROM FIELD

FIGURE 3

1

OVERVIEW OF ALARM PROCESSING

476

(2)
and

{(3)

OPERATOR PRESSES

MICS POLLS
CRT

il

CHARACTER
TRANSMITTED
OVER DH
MULTIPLEXER

!

MICS HIGHEST
PRIORITY
PROGRAM
YDHSILO"
EMPTIES SILO
EVERY 10

L

WHEN END OF TEXT
CHARACTER RECEIVED
BUFFER PASSED TQ

QUEUE CONTROL
PROGRAM

.

PASSES BUFFER
T0 IT

QUEUE CONTROLLER
INITIATES APPLI-
1CATION TASK -

4

IF ‘MAXIMUM

ALLOWED TASKS

ARE ACTIVE
WAIT IN TASK
QUEUE

I

NOT IN CORE
LOADER PROGRAM
LOADS IT

IF PROGRAM IS

©

O——

(2) [PROGRAM
WAITS UNTIL
CPU IS
AVAILABLE

L

CPU PROCESSING
UNTIL I/0
IS REQUIRED

-

RELEASE CPU
TO PERFORM
1/0

Il

(2) JTASK SWITCHING
OCCURS

- OTHER APPLI-
CATION OR

IDLE TASK

I

(2) ~ |pISK HANDLER
PROGRAM CPU
PROCESSING

(3) IF DISK IS

- |NOT AVAIL-
ABLE WAIT IN
{DISK QUEUE
-

PERFORM °
/0

NO

YES

MESSAGE
BUFFERS
PASSED TO
QUEUE
CONTROLLER

®

SIMPLIFIED MESSAGE FLOW THRU MICS(])

FIGURE 4

(1) This flow occurs each time a CRT function key is pressed.
:(2) Contention for CPU by programs - lower priority tasks are preempted.
‘(3) Contention for disk.

(2)

and

(3)

&)

QUEUE CONTROLLER
INITIATES OTHER
TASKS AND/OR
PASSES MESSAGE
TO LINE CONTROL

4

TRANSMIT MESSAGE
TO CRT(s)

LINE CONTROL
r—

LINE CONTROL-
PROGRAM (LC)
POLLS 1 CRT
FOR INPUT

&

LC POLLS 1 STATUS
ENTRY PANEL FOR
INPUT

s

POLLS ALL
SELECTOR PANELS

¥

POLLS ALL
TERMINALS
FOR OUTPUT

v

LC WAITS 90
MILLISECONDS

|

477

MICSIM - FDNY's Simulation Model...Cont'd

The experiences described in this paper
demonstrate that a simulation model of a
system not only helps to answer these
questions but may, in fact, be the only
means to assure that the correct steps
are taken to achieve the desired perfor-
mance.

Even early incorporation of a sophisticated
performance monitor [1] to make careful
measurements of CPU utilization, task-by-
task CPU and I/0 accounting, and measure-
ments of the elapsed time of tasks
(response times), only enabled us to
ascertain a measure of the performance and
not to explain the reasons for the perfor-
mance, The measurements told us where

we stood, but we were frustrated in deter-
mining what steps to take to achieve our
performance goals. The increased overhead
required to internally éxtract enough

data to pinpoint the cause of delays 'in
the system would have caused enocugh
interference to invalidate the measure-
ments. The amount of work involived in
interpreting these measurement was yet
another factor leading to the simulation
approach. It was at the point when
several key personnel who stuydied the PM
reports were unable to pinpoint the
componentfs) responsible for limiting sys-
tem throughput, that the idea of a .
simuiation model wWas born. Fortunately,
in our case, the need for a simulation
model was realized in time for us to
employ this technique in order to under-
stand the system response times, make
adjustments, and ultimately achieve the
desjred performance. The remainder of
this paper describes the MICSIM simulation
model, written -in GPSS H (an interactive
version of GPSS), and discusses some of
the studies that were performed with the
model including examples of the steps that
were taken to meet the performance speci-
fications.

An interesting footnote is that the model
identified the CPU as the principal bottle-
neck in the system, whereas previously,

we thought that the CPU was no problem.

It was overlooked as a bottleneck because
‘MICS tasks ordinarily took less than 100
milliseconds so that even at peak rates of
1 to 2 tasks per second, it seemed that
CPU availability would be ample. Even
considering the communications overhead
(iine control), this seemed to be true.
What we did not visualize was that the
service overhead (loading tasks, I/0, task
switching) which occurs during task
execution would lead to such high CPU
utilization at the time when the tasks re-
quire the processor. Our initial guess
was that the disk was the bottleneck,

and, in fact, we expected that MICSIM
would prove this theory.

478

3. The MICSIM Model - An OQutline

MICSIM is a model which simulates the flow.
of messages as they are transmitted over
lines by various hardware devices and
simulates their processing by the real-
time system software in the MICS system.
This model is written using GPSS which is
an ideal language for simulating the flow
of transactions through a system which
"services" them, (i.e., a system where:
queues may form because of the finite
resources and time required to process the
transactions). By changing only a few.
cards, representing GPSS function and
variables, it is possible to vary the

" alarm mix (BARS, ERS, Phone), the alarn

rate, (alarm/minute), to change the pro-
cessing speed of hardware, software, étc.,
and to change the distributions of the
service and arrival times and the number of
dispatchers. This made it easy to use the-
model for sensitivity analysis and i
determining the “"breaking points" in the
system. For example, an analysis was done
on how dispatch times vary depending on in-
coming alarm rates and number of dispatch-
ers. The fire department used the resulting
alarm response data and information about
unit availabilities as the basis for devel-
oping special ("fallback") dispatching
procedures for use during periods when
alarm rates are unnaturally high {blackouts
or disasters, Fourth of July, etc.). These
procedures include special staffing (the
use of an additional dispatcher to help
work off the Decision Dispatch queue), as
well as policy measures (changing the num-

- ber and/or types of equipment required to

respond to a particular type of incideqt)

[2].

Communication

~ When an Alarm Receipt dispatcher completes

entering or reviewing information on his
screen,he presses the RELEASE function key.
When MICS polls his CRT and determines that
there is information to be transmitted to
the CPU, it allows the transmission to occur.
The data is transmitted over a DEC's DH
multiplexer (direct memory access on output)
where each character is placed in a silo
used to store input from all the DH lines.
Each character takes about a milTisecond to
be transmitted. Data from other devices such
as the Status Entry Panels in the Communica-
tions Office and selector panels in each

_firehouse reaches MICS in a similar fashion

although the polling cycles and transmission
speeds are different. For example,data from
the firehouse. for acknowledging the receipt
of an alarm or for updating a unit's status-
is transmitted via DEC's DJ multiplexer
(character interruption output) over 600
baud iines. Each DJ line is ponlied each

time the line control program is invoked,
and the character-by-character

transmissions are stored in a silo for DJ
input. CRT.lines, are polled for input

in a cyclical fashion (once each time line
control is invoked) as are the Status
Entry Panels which are used for entering
incident and unit status updates and can
g;$o be logically connected to control a

The LINK and UNLINK blocks are GPSS in-
structions which make it simple to simulate
polling. Whenever a message is generated
at a CRT or one of the other devices, it
is LINKED to a user chain until a corres-
ponding UNLINK instruction is executed.
Thus, the simulation of the 1ine control
software is a single loop in which UNLINK
blocks are executed at the proper timing
intervals. The exectuion of the UNLINK
block allows the message (transaction) to
be removed from its user chain and
continue through a serjes of GPSS instruc-
- tions simulating the character-by-character
transmission and subsequent storage into
the silo. Note that because the line
control program runs at a lower priority
than some other service routines, the

rate of polling may decrease as the alarm
rate increases. MICSIM permitted us to
study this relationship.

The characters that are transmitted enter
their respective silos (one silo for each
type multiplexer -- DH or DJ) where they
join another GPSS user chain. They wait
there until one of the DHSILO or DJSILO
programs removes them into a buffer for
their particular line. These two programs
are executed every 20 milliseconds and
remove all the characters found in their
respective silos. It takes approximately
40 microseconds to move each character.
When an entire message of the line has
been completely placed in the buffer, it is
turned over to the Queue Control Program
which, in turn, causes the appropriate
task to be initiated ("attached“g. These
events are simulated 1in GPSS again using
the LINK/UNLINK combination to cause the
characters to remain in the silo until the
DHSILO and DJSILO programs are executed.
The use of the CPU for 40 microseconds per
character removed from each silo is simu-
lated by the PREEMPT of the CPU, the
ADVANCE of V2 or V4 (number of characters
on silo x 40 microseconds) and the RELEASE
of the CPU. The characters pass through an
ASSEMBLE block which has the effect of
holding the buffer until the end of text
character is removed from the silo.

Task Processing

Each input message results in the execu-
tion of an application task, a sequence of
programs which process the message, update
appropriate tables and files, and a for-
mulate response messages to the dispatcher

who initiated the input message and/or
other dispatchers. For example, the
release of a Recommended Dispatch Screen is
processed by a task which starts with the
program DDEDIT which can 1ink to as many as
ten other programs to update unit and in-
cident status tables and files, cause tele-
printer messages to be transmitted to the
firehouses involved in the dispatch, prompt
Voice and Radio dispatchers to notify the
units, print a fire ticket for the incident,
check for uncovered response neighborhoods.
These tasks perform I/0 to update the
appropriate files or possibly to load pro-
grams which ave not found in core when they
are required. The latter is done by the
LOADER program whenever programs LINK to
one another. When an I/0 is issued by an
applications program, task switching occurs.
One read/write results in 6 task switches,
each of which takes .70 milliseconds.

Queue services are required by each task to

‘transmit output messages to the external

devices (usually the CRTs) or to initiate
independent tasks. The Queue Controller is
then invoked and more I/0 may occur. Al]
the above processing was simulated in one
GPSS subroutine called TASK. Whenever a

task was to be initiated, the amount of CPU

processing and the number of I/0s are
stored in the transaction (GPSS trans-
actions have parameters for storing this
information) and it is transferred to the
TASK subroutine. The loading of programs,
the wait for available core, the perfor-
mance of I/0 including the execution of
the disk handler program, RPDDT, and the
seek and transfer time of the disk are all
simulated. Multi-programming simulation is
made possible by having each task RELEASE
the CPU when performing 1/0.

GPSS conveniently simulates the priority
scheme of processing programs. For
example, the disk handler RPDDT is given
the same priority in the GPSS model that it
has in the MICS system. Appropriate
priorities are also given to Line Control,
Queue Control, Loader, and the real-time
clock handler, and each of the application
tasks. GPSS automatically provides queue
and utilization statistics for the disk,
the CPU, and for core (the three greatest
potential bottlenecks).

Through the use of other GPSS features, it
was possible to develop a cross-matrix of
preempting versus preempted programs
showing the relative amounts of time
involved. A similar matrix was developed
for waiting tasks versus the task(s) or
system program(s) causing the wait. It

is interesting to note that only a modest
number of instructions were required to
simulate a multi-programming environment.

4, Making Decisions Using MICSIM

479

MICSIM - FDNY's Simulation Model ... Cont'd

This section discusses the output ‘of the
m6del and describes somé of the studies

which we performed with MICSIM to find ways

to improve performance.

The single most important piece of infor-
mation that the model provided was the
fact that the CPU was-the major -bottle-
neck in the system, significantly more so
than either the disk o¥ core. Table 1 is a
machine component analysis extracted from
the output of the MICSIM model. It should
be noted that GPSS automatically provides
queueing and utilization statistics as
well as frequency distributions of transit
times wWithout the need of additional
coding. Queue statistics for the CPU show
that éach time & task completes an I/0 and
returns to continue processing, 1t$ aver-
age wait for the CPU is 80 milliseconds:.
The mdst time-critical programs, such as
DDRECM and DDEDIT, which are used to
recommend dispatch assignments and notify
the units in the firehouse where to go,
perform more than 10 sué¢h 1/0s and hence
spend a significant portion of their time
waiting for the CPU. The queue statistics
for CORE and DISK for these programs show
relatively small wait times.

The storage and facility statistics des-
tribe the utilization of the hardware and
software components. The communication
Tines are treated as facilities as is the
CPU since they process one transaction at
a time representing characters and tasks,
respectively. CPU utilization, for the
3-atarm per minute simulation, is shown
to be 75% with the average seizure of

the CPU being 10 milliseconds. From the

TABLE 1. MACHINE COMPONENTS ANALYSIS
UTILIZATION (2)

Alarms/Min CPU . Core Disk
1 52.6 18.1 17.8
2 . 60.8 .25.2 23.4
3 (1 DD) 75.3 © 45.7 35.6
* 3 (2 DDs) 72.5 4.0 33.4
6 (1 DD) 79.3 52.7 38.2
6. (2 DDs) . 88.6 79.7 48.1
WAIT TIME (Sec.)
Alarms/Min Cru Core Disk*
1 .04 ;01 .01
2 .05 .01 .01
3 (1 pD) .08 07 .01
3 (2 DDs) 509 .13 .01
6 (1 DD) .10 1.31 .01
6 (2 DDs) .14 .86 .02

" .
NOTE: CPU and Disk wait times are for each I/0
done by a task.

DD = Decision Dispatcher

480

storage statistics, we can seen the
behavior of components which can sérve
more than one entry at a time.” For
example, the number of characters
entering the silo, the average time they
spend there, and the maximum number in
the silo at one time are all shown. In
this run, a maximum of 26 characters
were fouhd in the.DH silo at any one
time. We know a SILQO ¢an hold a

maximum of 64 characters. A hardware
interrupt for the DH SILO program was
set to occur if the number of characters
in the silo exceeded 32. The user

chain statistics tell us how long
messages wait to be polled on their
respective lines. Histograms of task
elapsed times are given for each type

of task as well as one for all tasks.
Finally the ‘'task versus task preemption'’
and 'CPU wait time' matrices describe
why and by whom each task is preeempted
from the CPU and why, how long, and

“for whom each task must wait for the

CpPU.

The CPU utilization, the polling times,
and the elapsed time of task agreed very
closely to those measured from the bpera-
tional system. This gave us confidence

in the validity of the model and trust
that the bottleneck which it pinpointed
(CPU) was correct. This was substantiated
when we eventually cut CPU processing

time of key softwaré elements and

improved performance as predicted.

Figure 5 is an average profile of DDEDIT,
a highly critical and time consuming task.
It occurs for each alarm and any delay
which it causes will hinder the Decision
Dispatcher (DD), who must review the dis-
patch recommendations and make dispatch
assignments. Since alarms are funnelled
to his position by several Alarm Receipt
Dispatchers, his is the position most
likely to develop a queueing problem.

The profile shows DDEDIT waiting for the
CPU for more than a second, spending
almost 0.5 seconds performing I/0 and
waiting for initiation for 120 milli-
seconds. During this particular 3-alarm
per minute simulation, the number of

task initiators was three, which was
adequate to reduce average task wait for
initiation to less than 0.13 seconds {see
Table 1). The model alss yields a histo-
gram of DDEDIT elapsed times (i.e., the
interval between input message receipt
and the time when the first character of
the response is returned).

A previous simulation run showed (in the
task versus Task Wait Matrix) that the
DDEDIT program was frequency "slowed

down" by a less critical program, SUMCRT,
which required 0.5 seconds of CPU and
performed four I/0s at the very end of

its processing. The SUMCRT program simply
updates the summary displays of incidents
currently active in Brooklyn. Lowering
the priority of SUMCRT dramatically
reduced the response time of the dispatch
edit task. Other similar cases were found
wherein a less critical task consistently
"interfered’ with one of a more critical
nature. Similar priority changes

improved the overall response times of

the critical tasks.

MICS SIMULATION MODEL
3 Alarms Per Minute
TASK PROFILE - DDEDIT

1. Waiting for Core (3 initiators) = 120MS
2. Waiting for cpy (¥ = 1068MS
3. Waiting for Disk = 96MS
4. Performing I/0 = 480MS
5. Executing CPU = 100MS
6. Preempted (interrupted) by (different than
waiting for)

LOADER = 36MS

RPDDT = 13MS

QUEUE CTL = 30MS

LINE CTL = 10MS

TASK SWITCHING = 19MS

1.972 sec.

FIGURE 5

(1) Wait .for other tasks as well as system routines)

After discovering the CPU as the prime
bottleneck, a concerted effort was made to
shave processing time from critical
service routines which were responsible
for a good deal of CPU processing during
the periods of time when the applications
programs also required the CPU. These
routines are the disk device handlev, the
loader, the real-time clock handier, the
scheduler, and the task switcher. By
altering priorities, refining the service
routines, and changing some of the appli-
cations programs, we were able to meet
the specified performance goals.

Simulation modeling helped us to make the
decision not to buy more core (increasing
thé two machines from 96K to 128K words)
but rather to implement software changes
to reduce CPU processing as described
above.

Summary

The development of a simulation model for
this real-time system was not only bene-
ficial but necessary for developing an
understanding of system performance. The

.insights obtained allowed us to meet speci-

fied performance goals for the system. In
addition, it was possible to project the
dispatch times under increasing alarm rates
with different quantities of dispatchers.
The saturation point of MICS was determined
This is the point where system response
time becomes the limiting factor not the
number of dispatchers.

Work has begun on the CMICS simulation

model which will be completed for the
design phase and used to make intelligent
design tradeoffs and analyze projected
performance. The CMICS system is even a
greater challenge for simulation modeling,
since it includes a communication network
employing concentrators in each borough
which control the message flow to the
central computer. Obviously, we believe
simulation tools should be considered in
the development of any other large real-
time system.

Acknowledgments

The author wishes to acknowliedge the
efforts of Dr. H. Montvilla, R. Scherma,

C. Fdaris, J. Keenan and J. Fitzpatrick of
Bradford National Corporation and J. Mohan,
I. Steinberg and L. Railing of the New York
City Fire Department.

Bibliography

1. An Environmental Simulator for FDNY's
Computér Aided Dispatch System -
J. Mohan, M. Geller - 2nd Internation
Conference on Software Engineering -
October 1976.

481

2. MICS Brooklyn GPSS Simulation - Dis-
patch Performance Projections -
M. Geller, L, Railing - Internal FDNY
document.

3. Design of Real Time Computer Systems -~
Prentice Hall - 1967 - J. Martin.

4., Real Time System Design - E. Yourdon -
Cambridge Information and Systems
Institute.

482

