SIMULATION OF MISSION TIMELINES FOR THE SPACELAB PROGRAM

ABSTRACT

This paper traces the development of the Special
Purpose Simulation Language (SPSL) for timeline
analysis. The SPSL language includes several
important features which substantially reduce the
modeling effort for timeline analysis compared to
general purpose languages such as GPSS.

INTRODUCTION

Part of the process of planning new space programs
at the National Aeronautics and Space Administra-
tion (NASA) is to study the operations which take
place on the ground, before and after the planned
spaceflight, to ensure that when the program
becomes a reality the ground operations will
function in an efficient and cost-effective manner.
A typical program study is the Spacelab project.
Spacelab is a joint project of NASA and the Euro-
pean Space Agency, and is a.major element of the
Space Shuttle system. The concept is of a modular,
reconfigurable and reusable payload, assembled for
each mission from an inventory of hardware compo-
nents. The long-range planning problem, then,
involves scheduling mission launches to provide
cost-effective utilization of the spacelab inven-
tory consistent with constraints such as launch
window limitations and competition for Space
Shuttle resources by non-Spacelab projects.

At the Marshall Space Flight Center in Huntsville,
several. programs are available to generate proposed
flight schedules for the Spacelab missions. These
programs are designed to answer 'what if" type
questions involving the impact on launch schedules
caused by the deletion, addition, or changing of
acquisition times for the various pieces of flight
and ground hardware. These programs are organized
under an executive operating system called GROPE
(Ground Resource Operations Planning Executive).
GROPE was designed to facilitate the interfacing

of the various scheduling programs under its
control and with the numerous data files containing
information on flight schedules, flow relation-
ships, timelines, and hardware requirements.

By using the scheduling programs contained in
GROPE, the analysts at Marshall are able to respond
quickly to requests from NASA headquarters concern-
ing the.impact on flight schedules caused by
changes in flight and ground hardware schedules.

J. Steven Roberts

Michael A. Fague
Glaude D.Pegden

Each time a new schedule was generated by the
GROPE system in response to changes in flight
hardware, a new -simulation model was also required
as a cross check. While GROPE is designed for
easy modification, the modification or genera-—
tion of simulation models was more difficult and
time consuming. Often the results of the studies
had to be sent to NASA headquarters without
validation by the simulation models.

This paper describes the Special Purpose Simulation
Language (SPSL) which was designed to eliminate
many of the problems encountered in generating
models using GPSS and other general purpose simula-
tion languages. We begin by giving a brief over-
view of the Space Shuttle and Spacelab programs.
This is followed by a description of timeline
analysis using the GROPE system and simulation
problem areas encountered in using GPSS for validat-
ing Spacelab timelines. Finally, a description of
the SPSL language is.presented.

SPACE SHUTTLE AND SPACELAB (1)

The Space Shuttle is composed of a retrievable
Orbiter, an expendable External Tank, containing
propellants used by the Orbiter main engines and
two refurbishable Solid Rocket Boosters. The
Solid Rocket Boosters and the Orbiter's main
engine operate simultaneously during the first
portion of flight and the Solid Rocket Boosters
are jettisoned. The Orbiter main engines continue
to operate until the desired suborbital conditions
are achieved and the External Tank is jettisoned.
The Orbital Maneuvering system is then used to
place the Orbiter in the desired earth orbit.

The Orbiter is a manned vehicle designéd to carry
a maximum total cargo of 65,000 lbs. at 1ift off.
The cargo bay located midship, is outfitted with
large clam-shell type doors that open to provide
access to the entire upper half of the cargo. A
typical cargo manifest consists of an Interim
Upper Stage, and associated spacecraft, single or
multiple automated spacecraft (free flyers), or a
Spacelab and experiment equipment alone or in
combination. Specialized payloads and payload
support equipment may also be carried in the cargo
bay area.

The Shuttle concept substantially reduces cost of
space operations by repetitive use of most of its

411

Simulation of Mission Timelines (continued)

components. It also saves money for the experi-~
menter because instrumentation and equipment can
be returned to earth for reuse or repair rather
than be abandoned in orbit.

The Spacelab 'is a space-borne laboratory being
built by the European Space Agency. Spacelab will
be transportéed to earth orbit by the NASA Space
Shuttle for missions lasting up to 30 days. The
Spacelab is a major Shuttle element being developed
to transport people and material more economically
and routinely between the ground and earth orbit.
Spacelab will have facilitiés and equipment similar
to laboratories on earth but adapted for zero
gravity. In any of several configurations to meet
specific experiment requirements it will provide a
shirt-sleeve environment, like that in a passenger
airliner, for both male and female experimenters.
Spacelab will remain attached to the Orbiter,

where the experimenters will eat and sleep, through-
out the mission. On return to earth, Spacelab
will be removed from the Orbiter and outfitted for
its next assignment.

Spacelab is conceived as having two main elements:
the pressurized laboratory module and an external
instrument platform or pallet for large man-—
directed imstruments such as telescopes or antennas
requiring direct exposure to space or a broad
field view. Pallet-mounted instruments normally
will be supplied and controlled from within the
pressurized module but could be attended from the
Orbiter cabin in a "pallet-only" mode. The pallet
can accommodate a variety of experiments where
manned attendance is unnecessary but certain
services such as temperature control and electrical
power are needed. Both the pressurized portion of
Spacelab and the pallet are modular in concept so
as to be able to adjust to varying demands.

To meet a variety of experimental neéeds within the
pressurized module, each Spacelab will include

such features as: standard laboratory instruments;
equipment racks; work benches; windows; data
recording and processing equipment; and extendable
booms for remote positioning of experiments requir-
ing special placement, Continuous voice and data
transmission capability is contemplated to allow
experimenters to maintain contact with colleagues
on the ground for consultation and rapid reorienta-
tions.

Flight equipment recovered from previocus missions
are saved, deserviced and maintained/refurbished
as required. The refurbished solid rocket motors,
the Orbiter, and a new External Tank are assembled
on the Mobile Launch Platform in the Vertical
Assembly Building and transported to the launch
pad 'with the crawler transporter.

TIMELINE ANALYSIS USING GROPE (2, 3)

Long range policy and decision making for programs
such as .Spacelab must be supported by a detailed
and realistic analysis capability. This ability
to evaluate program concepts and the impact of
changes to operating procedures and constraints
can be abstracted to a very large scheduling

412

problem: to develop a set of mission launch dates
consistent with launch window constraints and
effective utilization of resource inventories.
Moreover, since the specific analysis problems
rarely take on the same form, the general analysis
capability must have an inheéerent flexibility and
adaptability. .

Simulation was utilized in early attempts to
address this problem. A GPSS (4) model of the
Shuttle/Spacelab operations was developed and used
with some success. Unfortunately, it did not
provide the necessary adaptability to cope with
frequent changes in the problem statement. Conse-
quently, other analysis methods were sought out
and tested and the simulation capability was
maintained only as a cross~check on the results of
the other study methods. In fact, as the analysis
system grew and made increasing use of heuristic
methods, the need for a simulation as a means of
validating conclusions became correspondingly
greater.

The analysis system currently in use at NASA's
Marshall Space Flight Center consists of a number
of application programs which operate on a data
base under master control of an executive program.
Collectively known by the acronym GROPE (Ground
Resource Operations Planning Executive), the
system was developed over several years by NASA
and NASA contractors. It originally consisted of
incompatible segments addréssed at individual
pieces of the total problem, but now is a fully
integrated package. The main feature of the
system that is of interest here is the organjzation
of information within the data base.)

The information in the GROPE data base models the
important aspects of the ground operations for the
Shuttle/Spacelab system. The data can be grouped
into four subdivisions to provide a coherent
picture of the system:

. Ground Operations Model
. Mission Model

* Resource Model

° Traffic Model.

The Ground Operations Model consists of a complete
description of the ground operations for Spacelab
and significant activities of the Shuttle and some
non~S8pacelab missions. These actiwvities are
organized into several flows with individual tasks
treated as timeline activities. The task data is
made up of descriptive information, resource
seize-release flags, limited predecessor-successor
data, activity duration information and optioms
relating the task to particular mission sets.

The mission sets are defined in the Mission Model,
Missions are categorized by payload configuration
and other factors which influence the ground
support operations. Over 90 distinct mission sets
are included., The primary informatiom in the
Mission Model is the inventory requirements, by
mission, and the option data which indicates a
mission's requirement for particular tasks in the
Ground Operations Model.

Figure 1. NASA Spacelab Inventory Analysis System

EXTERNALLY GENERATED DATA

COMPUTER PROGRAM SEGMENTS

COMPUTER GENERATED DATA

C G
[TRAFFIC MODEL Y

| MANIFEST PROCESSOR | >

| MISSION CONFIGURATIONS }— °

TRAFFIC MODEL
MISSION CONFIGURATIONS

— l

{ MISSION OPTIONS

|RESOURCE CATALOG AND COSTSY"

FLIGHT SPECS

OPTIONS
j —8 FLIGHT: SEQUENCE
CONFIGURATIONS
OPTIONS

| LAUNCH wiNDOWs ¢

| GENERALIZED GROUND FLOWS J—————u| FLOW PROCESSOR |

WLAUNCH RELATIVE TIMELINES AND
RESOURCE SEIZE/RELEASE HISTORY

]

| RESOURCE CONSTRAINTS)

LAUNCH SCHEDULERS-- ALLOWED TRAFFIC
—# CONSTRAINED RESQURCE —f~———————#™
DEGREE OF CONSTRAINT

SEQUENTIAL MINIMIZATION
STRING OF PEARLS

LAUNCH SCHEDULES

 |MISSION PROFILES
RESOURCE SUMMARY TABLE
EQUIPMENT ON-LINE DATES

'

| RESOURCE SERIALIZER

I-—-———H RESOURCE HISTORY BY SERIAL Noq.

{ GRAPHICS

[———————8{RESOURCE UTILIZATION MAP

The Resource Model defines the set of resources

for which Shuttle missions contend. The resources
include flight hardware, ground support hardware,
and support facilities; and include both constrained
and unconstrained items., Significant information
in the Resource Model consists of a resource
reference table, a summary of projected resource
levels (quantities) by year and a table of resource
acquisition dates and quantities.

The Traffic Model defines the Shuttle workload
through lists of mission launch dates.

The models contain much more information as they
exist in the GROPE data base, but only items
pertinent to the simulation problem were mentioned.
The information ascribed to the models consists
both of source data and results from the several
analysis programs, since the simulation goal is to
verify rather than define resource utilization and
traffic capability. The overall GROPE analysis
process is illustrated in Figure 1.

Much of the report generation.capability within
the GROPE system is aimed at presenting study
results in a concise and succinct form. The
timeline is a natural medium for conveying this
type of planning information and it is clearly a
popular one. It displays on a time scale the
relative scheduling of activities, their duratioms,
and the occurrence of key milestones of a project.
Together with cost and resource data, timelines
have been used extensively to provide management

with the "big picture" of a project. The timeline
concept has carried over into many aspects of the
simulation,

Figure 2 illustrates some of the differences
between timeline and network representations. The
timeline bar is reflected by the network arrow,

but the network nodes do not appear in the timeline
explicitly except for key milestones. The primary
information conveyed by the node--the activity
interconnections—-is only suggested by the timeline.
Conversely, the temporal relationships among the
tasks 1s only suggested by the network.

The information in the data base is sufficient to
completely describe either a network or timeline.
There are many factors which led to the use of
the timeline concept. The timeline task consists
of more than a simple timed activity. Resources
required by a task may be seized at its beginning
and released at its end. PERT and CPM methods
name activities by their start and stop nodes and
do not permit distinct activities to begin and end
on the same nodes. Also, PERT and CPM require

a single start and a single stop node for the
network as a whole, Finally, PERT and CPM are
aimed at non-repetitive projects—-everything is
done only once.

The ground operations for Spacelab are always
described in terms of the tasks and not where the
tasks originate or end. There are many occurrences
of parallel tasks which, in a network, would start

413

Simulation of Mission Timelines (continued)

Figure 2. Graphic Comparison of Timeline and Network Concepts

TIMELINE SAMPLE

TASK
PREP PAYLOAD C——]
PREP VEHICLE . —3
MATE PL/VEH —3
ROLL OUT : [|
COUNT DOWN O
LAUNCH A
- FLIGHT —]
REFURB. PAD 3
REFURB. TRANSP. —
TIME (HRS.) 300 200 100 S0 O 50 100 200
NETWORK SAMPLE

"ACTIVITY DESCRIPTION

DURATION SLACK
1 DUMMY —

s2 DUMMY — —
: 13 PREP. PAYLOAD — —

; 23 PREP. VEH, — —
' 34 MATE PL/VEH

45 ROLL OUT

5-6 COUNT DOWN

67 FLIGHT

68 REFURB. PAD

69 REFURB. TRANSP.

7E DUMMY

8-E DUMMY

9E DUMMY

and stop on the same nodes. Typically, there are

many '"danglers," or tasks which have either no
predecessors or no successors. The tasks in the
Ground Operations Model are repetitive--operation
of the system is dependent on the competition for
resources by many missions repeated over and over
in the course of several years. One last reason
for the timeline concept over a network is that
many tasks in the model are mutually exclusive so
that a single, self-consistent network cannot be
constructed.

414

SIMULATION PROBLEM AREAS

GPSS simulation modéls have been used with varying
degrees of success in analyzing various aspects of
the Ground Operations process. The GP3S models
were used to determine if the launch schedulés
generated by the GROPE system were feasible.

In order to produce GPSS models in the least
amount of time, a well defined procedure for

conversion of a Spacelab timeline into a GPSS

model was needed. This led to the adoption of
standardized coding techniques aimed at simplifying
the conversion process. Even though these coding
techniques eliminated much of the time required to
build a model, the time required to debug and run
the model was increased. The increase in produc-
tion time of these models was due to the increase
of core and run time caused by the coding tech-
niques adopted to reduce the time required to code
a model.

The problems encountered in converting Spacelab
timelines to GPSS models are best illustrated by
example. Each task in the Ground Operations Model
represents the following sequence of steps:
required resources are seized; time is spent
performing the task; and resources no longer
required are released. Since the quantity of
resources to be seized or released is a function
of mission type, a table look-up function must be
built which incorporates the Mission Model resource
requirements table. Activity duratiom, in general,
is not constant for each task, but must be scaled
to include effects of learning and the number of
shifts per day that the task may be performed.
Thus, a function must be constructed to recompute
the activity duration each time the task is to be
performed. In general, these two functions are
best performed by support subroutines, via the
GPSS HELP block, which can be initialized by input
data extracted from the Ground Operations Model.
Unfortunately, they add greatly to the complexity
and run time of the GPSS model. The simulation
analyst, therefore, will avoid the fimctions where
possible, but finds that from case to case the
necessity for using the functions may change.

To simplify the structure of the GPSS model, the
tasks are encoded using the GPSS macro feature.
This enables the task related code to be separated
from the code controlling the flow of transactions.
The net effect of structuring the model in this
manner was an increase in size and run time but a
marked improvement in the clarity and maintain-
ability of the model. This aspect of the modeling
process is mentioned because it is a feature we
felt should be retained in any new simulation
system,

The network, or flow, logic presents a number of
more serious problems. As mentioned above, the
Ground Operations Model does not provide a single
network, but rather functions as an inventory of
tasks from which flows are constructed for individ-
ual missions., In the GROPE system, the flow
processor program actually builds a separate flow
for each mission, but this would be prohibitive in
any simulation. The approach taken to deal with
this problem evolved as follows: First, a network
was developed which linked all tasks and then
logic was added to limit transaction flow to
appropriate paths. The nature of the logic is
such that only trivial cases could actually be
simulated without overloading the model with code
for this single function. The problem points are
those places where parallel activities merge into
a single flow. In GPSS it is necessary to know
exactly how many transactions will arrive at each
assembly, or merge, point. Given the number of
different mission types, it is difficult to deter—
mine this number.

.arrive in each set to be assembled.

To get around the assembly problem, the flow was
set up so that transactions would be routed to all
tasks and logic was added to the task macros to
test the Mission Model option set and shunt trans—
actions around the task code if it represents a
mission which does not require the task, Thus,
assembly points always merge a fixed number of
transactions,

Two more problems appear at this point. The GPSS
ASSEMBLE block transmits the first transaction to
Since a
transaction moving through a sub-flow which it
does not require will be shunted immediately to an
ASSEMBLE block, it will be the transaction to
continue on once the assembly conditions are
satisfied. In other words, the transactions which
actually go through the task processing could be
destroyed in favor of a copy which has not performed
any actual processing. Consequently, any informa-
tion stored in a transaction parameter during a
sub-flow is in danger of being lost. Also, GPSS
requires resources to be released by the transac-
tion which actually seized them, and not a copy.
These problems were dealt with, again, by the
addition of logic and data tables.

One final problem in the network which has not yet
been completely solved involves the location of
slack. In the GROPE system all tasks with slack
are positioned to occur as close to launch as
posgible. Since launch is usually in the center
of the flow, prelaunch tasks occur as late as
possible and postlaunch tasks occur as early as
possible. Within the simulation network, however,
all tasks will occur as early as possible. This
can result in resources being seized much earlier
than necessary. Extreme cases are adjusted manu~
ally, but in most situations the problem is simply
not treated.

A final difficulty with GPSS is the implementation
of changes in resource levels at predetermined
times. It is necessary in GPSS to build a separate
flow to affect these changes. A simpler method
would be desirable.

Most of the problems discussed can be dealt with
successfully, but only by the addition of overhead
logic to the simulation. While the task and
network flow can be easily encoded, the overhead
logic requires close attention by the analyst., It
is precisely this overhead which detracts from the
flexibility of the simulation. The experience
gained and problems encountered in our attempts to
use GPSS were instrumental in developing the
concepts and requirements for a more direct form
of simulation based on timelines and the GROPE
data base organization. This led to the develop-
ment of the Special Purpose Simulation Language
(SPSL) described in the next section.

THE SPECIAL PURPOSE SIMULATION LANGUAGE (SPSL)

Given the scope and difficulties of the modeling
problem and the continuing need for the simulation
capability, an effort was undertaken to find and
implement a more viable approach. Alternatives
fell into three groups: use of a more suitable
simulation system, modification of an existing
system, and development of a totally new system,

415

Simulation of Mission Timelines (continued)

This ldast option was not seriously considered due
to the size of such an undertaking.

The options for simulation languages centered
around those already available to us, namely GPSS,
Q-GERT (5), GASP-IV (6), and SIMSCRIPT I.5 (7).
The problems with GPSS have already been mentioned
and similar problems were encountered with Q-GERT.
0f the event-oriented languages, GASP was favored
over the older SIMSCRIPT I.5. In either of these
cases, the question is whether an event oriented
langtuage can efficiently and flexibly simulate a
system already modeled in a timeline fashion.

In a timeline or network diagram, milestones, or
events, occur at the end points of a task——the
nodes of a network. ' Since GASP considers an event
to be any point in time at which a change in the
state of the System could occur, there appeats to
be a natural correspondence between a timeline
model and a GASP model. Unfortunately, each node
is a separate event and would require a separate
event subroutine. This would not improve the
original problem of simulation flexibility.

What is necessary is a generalized event routine,
or some minimal set of event routines. A task is
not an event since it involves the time to perform
the function, but a task could be described by two-
events, task start and task stop, displaced in
time by the task duration. The task start event
would be concerned with resource acquisition and
the stop event would process resource releases and
scheduling of successor tasks, More problems
arise, however, and these two events are quickly
broken into several more specialized events,

It was at this point in our analysis that the
prospect of proliferating event routines combined
with the experience being gained in the development
of a new, GASP based simulation language, SLAM (8),
produced the idea of modifying, or adapting, GASP

or Q-GERT to provide a simulation capability

closely tailored to our problem. As design require-—
ments, such a system would have to provide or
resolve the following key dtems:

[Reduce core and run time frequirements, compared
"+ to GPSS -
) Provide a structured framework to separate

task description from the network flow

® Tnternally control network routing and task
option selection

. Provide selective transfer of attribute
information at flow merge points

. Provide for indexed.or serialized resources

. Provide internal handling of resource capacity
changes

. Incorporate automatic scaling of activity

durations due to learning, and

416 o)

[Make efficient use of information from the

data base. e
The resulting system, which we called the Special
Purpose Simulation Language (SPSL), combines
features of GPSS and GASP. It is written in
FORTRAN and uses a slightly modified version of
GASP-IV as the system host. Simulations are
produced by developing an input data deck which
SPSL interprets and processes.

The SPSL data statements are organized to provide
a one-to-one correspondence between the information
requirements of SPSL and the existing GROPE source
data base, In addition, the modeling task is
simplified by having the overall problem descrip-
tion decomposed into separate but related elements.
The task flow sequencing, as defined by predecessor
and successor relationships between tasks, are
prescribed in the Network Description section.

The detailed ground operations associated with
each task are defined separately in the Macro
Definition section. The available resources such
as orbiters, pallets, etc., for which the individ-
ual tasks compete, are defined in the Resource
Definition section. Information transfers between
tasks are provided for by attributes associated
with transactions routed through the task, and by
SAVEX variables defined in the SAVEX Definition
section of the SPSL program. Finally, an Option
Set Definition section is provided to allow the
modeler to define the members of each option set.

NETWORK DESCRIPTION

The network section describes the linkage and
operational conditions. required for each task.
The information defining the task flow sequence
included in the network section consists of:

[The number of transactions from different
tasks that are required to start the task

» Which tasks are to be executed after the
current task is completed

) Which option set member value is required for
the task to be .executed once started

[} The attribute whose value must be the same in
each transaction which forms the set of
transactions to be merged.

There are two types of flows which are typically
encountered im timeline analysis., There are
serial .or sequential flows in which the tasks are
executed in sequential order, and parallel flows
in which the tasks operate independently until
separate flows must merge. The network section of
SPSL is designed -to accommodate both types of
timeline flows.

To illustrate the modeling of a sequential flow,
consider a series of three tasks consisting of
Prep Pallet for Shipment, Level IV Integration,
Ship Pallets to KSC, and denoted as Task SL1l, SL2,

and SL3 respectively, The duration and sequencing
of the tasks are depicted graphically as follows:

Eom|

The length and location of each task describes the
duration and starting time of each task. The
dashed lines connecting each task denote a prede-
cessor~successor relationship between the tasks.
The number following the slash (/) is the task ot
sequence number. The corresponding SPSL network
description is given as follows:

NETWORK

SL1/45, 0, 1,46% Task Number 45 has no predeces-
: sors and one successor which

is Task 46.

SL2/46, 1, 1, 47% Task Number 46 has one prede—
cessor and one successor which
is Task 47.

SL3/47, 1% Task Number 47 has one prede-
cessor and no successors.

The * is used 'to denote the end of the executable
statement and all data following * is comments.

Parallel flows which merge are as easily written
as the serial flow, The following example illus-—
trates the merging of two serial tasks (WS10 and
WS1l) from western Shuttle flow with a task from
the Tug flow. The graphic representation for the
flow sequence is depicted below:

) R
1

[Ws11/100 |

']

l. TGE 75 I
. t

1

Once task WS1Y and TG3 are finished, the two tasks
are merged and the launch task is started. This
example illustrates how these two independent

flows (one for the orbiter and ong for the tug)

are combined for launch. The corresponding network
description would be coded as:

NETWORK

Task Number 99 has
no predecessors and
one successor which
is Task 100.

Ws10/99, 0, 1, 100%

Task Number 100 has
one predecessor and
one successor which
is Task 61.

Ws11/100, 1, 1, 61%

T¢3/3, 0, 1, 61% Task 3 has no prede-
cessor and one
succesor which is
Task 61.

LAUNCH/61, 2* Task 61 has 2 prede-
cessors and no
SUCCESSOoTS.

Suppose we require the two transactions causing
the launch task to be started be from the same
mission. The launch task would be changed to:

LAUNCH, 61, 2, 0, N*

where N is the attribute of the transaction which
contains the mission number.

As mentioned previously, a transaction moves
through all branches of a flow but may not execute
the block cards within each task., The following
shows a change in the TG3 task requiring an option
matchs

63, 5, 0, 1, 61, N*

N is the option value which must match a member of

the option set specified by the transaction entering

the task.

Another unique feature of SPSL is the method by

. which the analysts can determine which transaction

data is to be saved after two or more flows are
merged. Consider the case where three flows are
merged; data from each flow is required in the
transaction which continues after the merge.
Consider the merging of the following flows:

[usz6752]

SL3/10
LAUNCH/61

Suppose the transaction coming from SL3 is to be

saved after the merge. Also suppose the informa-
tion contained in attribute 3 of WS1l6 and attri-
bute 5 of TG4 are needed in the merged flow., The
statement to accomplish this operation would be as
follows:

LAUNCH/61, 10, 3, 52, 16, 5, 60, 17*

This card specifies: First, the transaction
coming from Task number 10 (SL3) is to be saved
after the merge, second, the value contained in
attribute 3 of the transaction coming from Task
number 52 (WS16) is to be copied to attribute 16
of the saved transaction, and third, the value

contained in attribute 5 of the transaction coming

from Task number 60 (TG4) is to be copied to
attribute 17 of the saved transaction.

If copy information is not required on the saved

transaction, the transaction saved is the last one
that satisfies the merge conditions.

417

Simulation of Mission Timelines (continued)

Table 1.

Excerpt from Ground Operations Catalog

SEQ TASK OPT TASK DESCRIPTION

20 WSO O

TRANSPORT ORBITER TOWTR 3 0 (] 24

SHIFT LEARN CYCLE DUR-P DUR-M DUR-C PRECEDENT TASKS GOTO RES. ACTION/RESET QTY/CAT NO.

0 0 WE1 +0 1

MACRO DEFINITION

The Macro Definition section is a group of GPSS~
like block cards which define the operations
performed within each task. The organization of

the task is similar to the macro definition sequences

found within GPSS with one major exception. Imn
CGPSS, macro's are called in line with the regular
GPSS block cards. In SPSL, each macro call is
injtiated according to the linkage defined within
the Network Definition section.

The block cards and the macro organization were
designed to exploit the best features found within
GPSS. The block cards contained in SPSL are a
modified subset of the block cards found in GPSS.
One design criteria of SPSL which led to the use

of a GPSS-like format for the Macro Definition
section was to have a language which would simplify
the modeling process yet avoid extensive retraining
of the analysts involved.

The block types found in SPSL provide for the
basic functions required to model the ground
operations process. These cards provide for the
following operations: -

° Seizing and releasing of resources

. Branching within the task based on comparisons
of values contained in the resource, SAVEX,
or attribute variables .

° Replacing and/or incrementing the value of
system variables by values of other system
variables -

* Delaying the transaction by a quantity obtained
from the value contained in an attribute,
SAVEX, user—defined function, or one of ten
statistical functions available in GASP-IV.

One factor which simplifies the modeling of the
ground operations tasks is that the structure of
the majority of the tasks is identical. The main
difference between these tasks is in terms of the
data used. The format of this structure is:

Store the task number -

Store the nominal time for execution
Seize or release resource

Delay the transaction

Release resource and/or exit the task.

All the data required to write these block cards
is available from the Ground Resources Catalog and
the Ground Operations Catalog.

418

Table 1 is an excerpt from the Ground Opeérations
Catalog of Western Shuttle activities:

The data in this table describes the operations
associated with Task WS0/20. The task is Task
Number 20, has a nominal time of 24 hours, and
requires one orbiter for initiation of the task.
The actual duration or delay time for the task is
the nominal time scaled to include the effects of
learning and the number of shifts per day that the
task may be performed. The SPSL statements
required to model the task are shown below:

MACRO

Ws0/20 #* TASK CARD

*TRANSPORT ORBITER TO WIR

ASSIGN,ATRIB(2),20 * STORE TASK NUMBER IN

) ATTRIBUTE 2

ASSIGN,ATRIB(3),24. * STORE NOMINAL TIME
IN ATTRIBUTE 3

SEIZE,ORBITER,1 % ACQUIRE ONE ORBITER

DELAY,USER(1) % CALCULATE DELAY

BASED ON LEARNING
NOMINAL TIME AND
SHIFT DIFFERENTIAL

The card types coded in SPSL represént the minimum
number which will provide the modeling flexibility
required within the constraints on core size and
run time. There are several operations that are
not easily performed using SPSL block cards.
Provisions for these operations for one réason or
another were intentionally not incorporated in the
SPSL block card structure. However,- two block
card types are provided in the Macro section which
allow the user to interface with GASP-IV and user-
generated FORTRAN routines. The block cards are
the User Function and Activity blocks. By using
these two block types, problems previously encoun-
tered with the calculation of delay times bdsed on
learning and the changing of resource capacity is
minimized. Another important aspect of theése
blocks is the ability to start any task within the
network by user~written FORTRAN routines. This
ability allows the user to introduce transactions
into the model at the proper time, based on data
accessible thrpugh FORTRAN read statements.

RESOURCE DEFINITION

The Resource Definition section contains those
cards which define resource variables and assigns
an initial value to each. Resource variables
perform the same function as facility and storage
variables in GPSS.

The SPSL structure contains several specific
features which facilitate the use of resources
within the Ground Operations model. Resource
features incorporated include:

e Resources can be serialized or indexed

° A transaction that releases a resource does
not have to be the one that seized it

. Dynamic resource capacity change

. Resource quantities are real valued

Resource names can be indexed or nonindexed. If
indexed, the value of the index can be determined

at run time from the value of a SAVEX or attribute.

For example, if the SAVEX variable PAYLOADNUM has
been assigned a value of 3, then the statement:

SEIZE, ORBITER (PAYLOADNUM),l.*

would result in ORBITER (3) being seized. Likewise,

if attribute three of the transaction entering the
SEIZE block is equal to five, then

SEIZE, ORBITER (ATRIB=3),1%
would result in ORBITER (5) being seized.

In many cases, the transaction needs to seize the
first available resource of a serialized group
instead of a specific one. SPSL contains a method
by which the processor determines the first avail-
able resource, seizes it, and stores the value of
the index of the resource in an attribute of the
transaction.

For example, assume we want only the first avail-
able orbiter. We can accomplish this with the
following SPSL statement: ’

SEIZE, ORBITER (~3),1.%*

SPSL will seize the first available ORBITER and
store the index value of the ORBITER in attribute
three. The corresponding release of the ORBITER
would be:

RELEASE, ORBITER (ATRIB=3),l.%

In GPSS, when two flows merge only one transaction
may continue. If transactions from these tasks
are holding previously seized resources which are
still required in the flow, one or both of the
transactions must release the resource, Once
assembly is performed, the saved transaction must
seize the resources released before the merge. In
SPSL any transaction can release any resource,
This eliminates the need for the user to ensure
that the transaction which caused the seize be
preserved and routed to the appropriate release
block.

Resource capacities can be changed at run time by
the use of the FORTRAN routines and/or block cards
in the Macro section. Another important feature
of the resource variable is that the resource

capacity is real valued and the quantity of resource

may be determined at run time as well as compile
time.

SAVEX DEFINITION

In the SAVEX Definition section, the user defines
names and the initial values for SAVEX variables.
The SAVEX variable is a global variable similar in
function to the GPSS SAVEX variable.

OPTION SET DEFINITION

All branching between tasks in SPSL is determinis~
tic. A transaction can enter a task; however,
unless an option code assigned to that task matches
a member of an option set gspecified by the trans-
action, all operations within the task are skipped.
The option set definition section defines the
option set members associated with each option

set.

SUMMARY

The main con¢lusion reached in our development of
SPSL is that by employing a language such as GASP-
IV as a host, it may be practical to develop
simulation languages for specialized applications.
Future plans for SPSL include a new processor
which will automatically generate SPSL programs
from data contained within the GROPE system. This
will allow planners to more efficiently and cost—
effectively plan for future space programs requir-
ing timeline analysis.

- BIBLIOGRAPHY

1. Space Shuttle, U.S. GPO 740-049/144, NASA

Marshall Space Flight Center, Alabama, 1977.

2, KSC Ground Operatijons Plan, NASA Report SP-
PAY-56~76, Kennedy Space Center, Florida,
June 2, 1976,

3. Spacelab Payload Accommodations Handbook, ESA
Ref, No. SLP/2104, European Space Agency,
January 1977.

4, General Purpose Systems Simulator (GPSS 1100)
Programmer Referepce, UP-7883, Rev. 1-A,
Sperry Rand Corporation, 1974.

5. The Q-GERT Users Manual, ?ritsker & Associates,
Lafayette, Indiana, 1974.

6. The GASP~IV Simulation Language, Pritsker,
A. A. B., John Wiley and Sons, New York,
1974,

7. SIMSCRIPT I.5 Programmer Reference, UP-7885,
Sperry Rand, 1974,

8. Introduction to Simulation and SLAM, Pritsker,
A. A. B., and Pegden, C. D., Halstead Press
and Systems Publishing Corporation, 1978.

ACKNOWLEDGEMENT

Portions of the work was sponsored by NASA, George
C. Marshall Space Flight Center, Alabama, under
contract NAS8-31640.

419

