A FILING SYSTEM WITH VARIABLE SIZE ATTRIBUTES

FOR THE GASP SIMULATION LANGUAGES

ABSTRACT

This paper presents a new filing system
which dynamically allocates storage based upon
the attribute requirements for each file. Thus,
we can eliminate the storage overhead associated
with the current method which requires using the
same number of attributes for all filés based
upon the maximum number of attributes required
for any one file. 'The new filing system is
transparent to the user and its computational
overhead is minimal.

INTRODUCTION

Simulation techniques are being utilized by
management personnel and design engineers at an
ever-increasing rate. Simulation models provide
insight into the future with much smaller costs
than alternative means, such as physical models
or prototypes.

GASP-IV and GASP-PL/1l are simulation lang-
uages which are gaining in popularity due to
their ability to process combined (continuous
and discrete) models. These languages utilize
a filing system which facilitates dynamic entries
and exits into and out of the file. Each item
in the filing system has a specific number of

Robert E.Young
Terrence EWilson

attributes. Entities defined by these attributes
are grouped into files based upon user defined
relationships. TFiles allow the user to group
entities together to facilitate the movement of
items within the simulated model.

GASP currently uses the same number of attri-
butes for each file, based upon the largest
number of attributes required for any one file.

In general, this procedure is inefficient in its
allocation of storage. This paper involves. the
development of a new technique’ for allocating
storage to a file according to the number of
attributes required for that file.

Initially, the current GASP filing system
is discussed. A presentation of the new system
follows detailing both the storage allocation and
recovery methods.

CURRENT GASP FILING SYSTEM#*

The current GASP filing system will be pre-

" sented through the insertion and deletion of entries

which each have four attributes. In the GASP input

*This discussion of the GASP filing system is
abstracted from Pritsker [PRIT74] and from Pritsker
and Young [PRIT75].

FIGRE I: IMITIALIZATION OF STORAGE AREA - (LRRENT IETHOD

HOLHEEE HGHA0

BACKWRD POINTERS(TYP.)

] 30/
STORAGE LOGATION

-~ — -
v

FILING SYSTEM-GASP SIMULATION LANGUAGES ,..Continued

d HooooeE

1
|

P

LAST SNTRY =1
§) e g of

FIRST ENTRY

FIGRE 2: RMHGGFFHSTfMMV-j}R&%Vﬂﬂ#ﬂ

|
i
I
f
'

FIRST GHTRYFILE O.) - FINST TIFIE D)

é@@ EEEEd & il..l@-

0112 13 ho1s 617
\

AT m{m@

i)@-@m@f

\;

FIGRE 3: FILING OF MILTIFLE FNTRIES FOR TWO FILES - (LRRENT METHOD:

!

i

data, the maximum number of entries and maximum
number of attributes required for any one file must
be provided by the user. GASP then sets asidq an
amount of storage equal to the maximum number .of
attributes plus two (these two ‘additional places
are occupied by file pointers) times the maximum -
number of entries for all files. The result is

a storage area divided into subareas with each
subarea a potential.storage location for a file
entry. The subareas are linked together by back—
ward chaining. (see Figure 1).]

Entries within the filing system are linked
together with both predecessor and successor |
pointers producing both backward and forward !
chaining. This allows insertion and removal of
entries with minimal effort. If a predecessor/
successor pointer has a zero value it signifies the
associated entry is the first/last entry in the
file. Thus, if a file has only one entry, both
the entry's predecessor and successor p01nters will
be zero. Figure 2 illustrates a flle with only one

entry. i

As successive entries are filed, the for&ard
pointer of the previous entry for this file is set
to the first location of the entry (see Figure 3).
When an entry is removed from a file the forward
pointer of the previous entry is set to the first
location of the next entry. The backward pointer
of the next entry is set to the first locatioh of
the previous entry, and the vacated space becomes
available to file the next entry. (see Figure 4).

Each time an entry is filed or removed, file
statistics are updated. The statistics include

324

mean, standard deviation and maximum number in the
file. Entries to multiple files are interspersed
among each other and connected to previous and
subsequent entries by backward and forward
pointers.

The priority of an entry is determined at the
time it is placed in the file. Thus, for example,
if a file useda FIFO priority, an inserted item
would be iinked with the current last entry at the
time it was inserted into the file. The ranking
priorities available are first-in-first—out (FIFO),
last-in-first-out (LIF0), low-value-first (LVF)
and high-value-first (HVF). The event file (file
number one) is always ranked LVF based upon time
(attribute number omne).

Recently, a variable number of attributes
capability was added to GASP by Pritsker & Associ-
ates (see Grant and Sabuda [GRAN77]) based upon
the work by Gehringer [GEHR74]. The system is
similar to the buddy system described in Knuth
[RNUT75], p. 442-445. 1In this system the GASP file
structure row maintains up to four different block
sizes of 4, 8, 16 and 32 cells. Files are cate-
gorized into one of the block sizes by using the
closest block size with a value greater than or
equal to the number of attributes plus two. Thus,
entries with one or two attributes would be placed
in blocks of size 4; entries with between three and
six attributes.would be placed in blocks of size
8, etc. A simulation program is restructed to a
maximum of 30 attributes in any one file.

F(MOVAL:

—FIRST §4TRY

CEEE L

5 6

UAST ENTRY

@g@@l;ngqu

l@)@

LAST ENTRY _
mmes DEgEsY gUoggy

FIGRE 4: REMVAL OF AN ENTRY FIR FILE @ - (URREAT METHOD

CURRENT GASP FILING SYSTEM INEFFICIENCIES

The number of attributes for am entry, regard-
less of the file, is equal to the maximum number
of attributes required for any file. When the
actual number of attributes needed for a file is
less than this maximum value, the additional
attributes are included with the entry. Figure
3 and 4 illustrate this storage inefficiency. The
additional attributes filed per entry are the dif-
ference between the maximum required for any file
and the actual number of attributes needed for the
file. As this difference increases and the number
of file entries becomes large, the amount of unused
space can become significant. The new filing system
eliminates this storage overhead by efficiently
allocating storage to a file based upon the file's
specified number of attributes.

The variable number of attributes scheme re-
cently implemented by Pritsker & Associates only
partially solves the storage inefficiency problem.
If we have a file with 17 attributes an entry for
it will be assigned to a 32 cell block incurring
a 15 storage location overhead. This can lead to
situations where Gehringer's scheme actually re-
quires more storage overhead than the old GASP
filing system.

THE NEW SYSTEM

In the new system, an area is set aside which
contains available storage, designated the "avail~
able storage area." When a file requires storage
to file an entry it seizes only that amount from
the available storage area consistent with its
number of attributes. The seized storage remains
with the file, being allocated and released within
the file as needed. When all available storage
has been seized by requesting files, all files
are examined for free storage. Any free storage
which is located is returned to the available
storage area to be redistributed to requesting
files as the simulation continues.

The maximum number of entries for any file
is not required in the GASP input data; however,
the number of attributes per file must be speci-
fied. A storage space 1s initially set aside.

However, pointers are not initialized as in the
current GASP method. When the first entry is filed,
the forward and backward pointers of this entry are
set at zero and the attribute values are placed in
storage, Figure 5 illustrates a single entry placed
in the storage system.

As successive entries are filed, additional
space is allocated to files as needed. Refer to
Figure 6. Note that only sufficient space is allo-
cated to satisfy the exact number of attributes
specified for each file (i.e., the storage area
contains no unused space). 'The storage remains with
a given file until the compression routine is called
to recover empty storage (the compression routine
will be discussed later). Thus, storage is dynam-
ically allocated during execution based upon each
files storage requirements.

Since allocated storage remains with a file
until the compression routine is called, we must
keep track of spaces within each file which become
empty due to the removal of entries. This is accom-
plished by backward chaining empty spaces for each
file but not between files. Thus, pointers are
created which locate the first available storage
location for each file. Let us denote these
pointers as Py,k = 1,...,n and n is the maximum
number of files.

As an entry is removed a backward pointer is
placed in the first position of the entry (see
Figure 7). It points to the previous blank entry
for the file. The second position of the removed
entry is filled with a "-1", this is a blank space
indicator. The third position contains the number
of blank spaces for the file (i.e., the number of
attributes plus two).

‘As successive entries are filed in file k, oy
is checked for a zero value. If p, is zero, indi~
cating that there are no blank entr¥ies available
within this file, new storage space equal to the
number of attributes for the file plus two locatlons
for the two pointers is acquired from the available
storage area. The forward pointer of the preceding
entry and the backward pointer of the successive
entry are updated as before, p;, is also updated.

If no blank space is available for the file a com-

325

- S e

FILING SYSTEM-GASP SIMULATION LANGUAGES:} ...Continued

gz&v My UAST EWTRY
2

/

FIGRE 5: FILING OF FIRST fNTRY = N METHOO:

@3} , DBDDDDIDDDDQ9

4 5 6. 0 /2/3/4/516/7

alals

er 23)

O e
;.1

IRST ENTRY(FILE @)

6 l I

: LAST ENTRY(FILE @) .
e e EEHE eebpEE PEEE «
7\ 12 /3 h 15 16 7 18 19 20 2o 22 2

| FIRST 4Ry
/'ﬁ”(f b) /

3 X X

FIGRE 6: FILING OF MATIPLE SNTRIES - K3H AETHOD

: \

X

b

) i LAST TRy
Bl EHEE @@@ EEEE

2 2

BER MVAL '

: FIRST ENTRY

é@~@@@@ 1
I'4 2 3 4 5 '] 7 8 9 [0 U -/2 13 /! 5 6
\ ' AN r
W&?@WMUFIAV{W:

. FIRST £NTRY ’
ENESSEN SwEE
I 2 3 4 s 6 7\ 8 9 /0 II‘/;_? /3 {4 5 173 17 (8
" AFTER REMVAL OF SELOND (NTRY :

f@m@ EDE]’,IHIIZ

FIGRE 7: REPVAL OF FNTRIES FROM FILE @ - KA WETHOD

@@@ fesnsd Guag

7 8 19 2 2 2 27

-
Fitg a | o
Fllr bl o

"ORAGE AREA AT TIRE CONPRESSTON ROUTIRE 1S (ALLED:

T T s T [e BLAR

OPAGE AREA AFTER FIRST NOMBLANK ENTRY IS MVED:

2] €2 BLANR Os, [GLANK] BLK

]W@fﬂg%AHZRM?TM%HMOWéWRVLSMMgb

€3z | €12 Ew.kl €33 leal .

] =0 [€ I ok S sk M € | e:x: 27 ez

TRAGE ARG AFTER ALL MOKBLARK EMTRIES ARE MOVED:

TR | ez]| €x | €3z | €12

€ el BLANK

FIGIRE 8: BEMONSTRATION OF MOVERENT OF ENTRIES
WLTHIN TRE (ORPRESSION ROUTIAE

Cit = 2 eury FR FILE

: €3z | S22 @ €33 jez]

pression routine is called to recover blank space
from all the files.

THE COMPRESSION ROUTINE

The compression routine returns unused storage
space to the available storage area. The returned
space is recovered from space previously allocated
to a file but currently not in use. The recovery
techniqué relies upon a modified bubble sort
algorithm. Occupied storage is pushed to the top
and unoccupied storage is pushed to the bottom.

The boundary represents the new location for the
beginning of the available storage area.

To recover unoccupied storage it first must
be located. This is accomplished by sequentially
searching the filing system looking for a blank
storage indicator. The indicator was placed in the
blank storage at the time an entry was removed from
a file. When blank storage is found the next
occupied entry is located. The blank storage and
the entry are "swapped." Pointers for the entry,
and its predecessor and successor entry, are ad—
justed to reflect its new location. The next
entry is then located and "swapped.”" Continuing
in this manner the blank storage is pushed to the
bottom. The procedure is illustrated in Figure 8.

When a occupied entry is located, its number
of attributes must be determined. Since we are
sequentially searching the file storage array, we
have no prior knowledge about the number of attri-
butes from either the file or the entry itself.

As a consequence, the number of attributes is

determined by testing among the possibilities
represented by the various files. -The test is pro-
vided by examining the successor and predecessor.
entries. If their respective predecessor and
successor pointers contain the location of the
current entry being tested then we have correctly
identified the proper number of attributes. Tf
not, then we choose a new candidate.

To improve the efficiency of searching for the
correct number of attributes, the sequence employed
in the search was based tipon the attribute number
to which the largest amount of availlable storage
had been allocated. For example, if 500 allocations
had been made to files with ten attributes and only
150 allocations to all others, we would expect more
unoccupied storage with a length of ten attributes.

Thus, we rank the number of attributes by their
allocation count and test sequentially based upon
the greatest probability of occurance for a given
number of attributes.

CONCLUSION

The new filing system has been successfully
run with sets of test data. Tuture testing will
include the processing of some classic simulation
examples, and comparison of results with the current
GASP filing system.

327

FILING SYSTEM-GASP SIMULATION LANGUAGES L..Continued

REFERENCES

GER74 Gehringer, Edward F.
"GASPIV with Variable Number of Attri—
butes" IE 680 project report submit-
ted to Allan Pritsker School of In-
dustrial Engineéring, Purdue Univer—
sity, June, 1974.

GRAN77 Grant, Floyd H. and Sabuda, Jerome.P.
"New GASPIV Capabilities"
Pritsker & Associates, Inc. <
W. Lafayette, Indiana j
October, 1977 ‘ |
KNUT75 Knuth, Donald :
The Art of Computer Programming, Vol.
1, Fundamental Algorithms, 2nd Edition
Addison-Wesley Inc., Reading, Mhss.,

1973, p. 442-445.

PRIT74 Pritsker, A. Alan B.
The GASP IV Simulation Language !
John Wiley & Sons, New York, 1974

PRIT75 Pritsker, A. Alan B., and Young,
Robert E., Simulation with GASP-PL/1
John Wiley & Sons, New York, 1975

I
v

