ON THE RELATIVE MERITS OF TWO MAJOR METHDDGI.()GIES

FOR SIMULATION MODEL CONSTRUCTION

ABSTRACT

Given a model of a discrete change system there are
two major methodologies for developing a simulation
program of the model. They are (A) describing the
flow of typical units of traffic through the model,
and (B) describing what occurs at those instants of
time when the state of the system changes. This
paper compares, without entering into the contro-
versy of which language is best for modeling, the
relative advantages and disadvantages of the two
methodologies. The comparison is made at the
modeling or source language level of detail and
does not specifically adjudicate the relative merits
of language package internals such as dynamic stor-
age implementation, the notion of an events chain,
be it current or, future, or the notion of a timing
routine except as necessary for comparisons. The
paper is concerned with the relative advantages of
the two methodologies in handling such problems as
simultaneous occurrences, synchronization of traf-
fic units, communication between traffic units,
complex decision algorithms involving waiting line
manipulation, the general notion of "style" in the
code produced, the ease of gathering meaningful
statistics, the level of knowledge required of the
system internal structure, and the refinement of
level of detail.

INTRODUCTION

The analyst faced with implementing a discrete
change system can select from among a number of
programming languages and simulation packages and
languages for his implementation. Though the lan-~
guages and packages vary widely in detail, the
basic choice of methodologies boils down to a
choice between two alternatives; namely describing
the flow of typical units of traffic through a sys-
tem or describing what happens at those instants of
time when a change in the state of the system
occurs.

As a simple example, consider a barbershop with a
single barber who only cuts hair, and a waiting
area with an infinite number of chairs, Imn any
implementation, one will need some information con-
cerning the distribution of interarrival times of
clients and the distribution of haircut time for
the barber. These details, while interesting in
their own right, are not within the scope of this
paper. One approach to simulation of this system

Charles M. Shub

would involve describing the action of a customer
as follows: The customer arrives and waits his
turn and uses the barber and leaves. This method-
ology will be called the "FLOW" method. The other
approach would be to describe the actions at the
times the system changes state. Such a description
would include the following: (A) when a customer
arrives, depending upon whether the barber is busy
or not, he either sits down to wait or starts
getting his hair cut; (B) when the barber finishes
cutting a customer's hair, the customer leaves, and
then, depending upon whether there are any more
customers, the barber either starts cutting the
hair of the next customer or sits down to read a
book. This methodology will be called the "STATE"
method.

In a model such as this, typical measures of inter-
est would include how many people are waiting, how
long people wait, how long people are in the bar-
bershop, and what fraction of the time the barber
is busy cutting hair. In either implementation
methodology, such statistics are routinely avail-
able, though some knowledge of the package inter-
nals may be necessary to obtain these statistics in
an easy manmner,

This paper explores the differences in coding a
model using each of the above methodologies in the
hope that a programmer can use the information pre-
sented to make a better informed choice as to how
to solve his problem. Following a brief discussion
of the question of why a language, and thus a meth-
odology, should be chosen, a section on implementa-
tion details provides a short description of enough
implications of the internal details to make the
remainder of the discussion meaningful. The simple
system described above 1s then analyzed to set the
discussion tone. The difficulties of simultaneous
occurrence are then considered. Next, the general
problem of data structure manipulation is consid-
ered. Synchronization, communication, and refine-
ment of level of detail are covered in an inte-—
gratéd fashion. A brief comment is made on the
style and readability of the code. Finally, the
notion of statistics gathering is described and
conclusions are drawn. Several excellent works

{1, 3, 5, 10] not cited elsewhere in the paper have
provided much valuable information regarding dif-
ferences in methodologies.

257

TWO MAJOR METHODOLOGIES *** Continued

FACTORS INFLUENCING CHOICE OF METHODOLOGY

All too often, when asked why he chose a particular
language or methodology,. a modeler gives one of the
following replies:

A) That is the language or methodology I know or
. feel comfortable with;
TB) That is the language or methodology my man-—
ager or supervisor directed me to use; or
C) That language or methodology was readily
available on our system.)
Since, with one possible exception, choice of lan-
guage dictates choice of model description method-
ology, the above reasons should not be used as a
major design criterion for the model. The liter-
ature suggests several factors for making such a
choice. They include:

A) Suitability of the language, not only for the
solution to the problem, but also the future

_.=. users of the program;

B) Ease of implementation of the model in the
chosen language;

C) Ease of explanation of what the program and
model do, not only to mahagers and super-—
visors, but also to professional colleagues;

D) Evaluation of previous use of the language;

E) Cost effectiveness of the choice of language;

F) Technical and functional characteristics of
the language;

G) Portability requirements of the model and
related portability of the program;

H) The ability to use partial results of others;
and ‘

1) Flexibility, compatibility, and expandability
considerations.

If, for example, the problem is much easier to
implement in oné methodology, or a similar model is
available and can be easily adapted, the most effec~
tive technique for solving the problem may involve
either learning enough about a previously unknown
language in order to develop changes within the
scope of that language to an already existent model,
or to purchase outside computer time to solve the
problem. Knowledge of alternative approaches and
their relative merits can be a particularly power-
ful tool, not only to ease the burdens of doing ones
job, but also to enable the modeler to make persua-
sive arguments to management regarding justifica-
tion of his decisions :and desires relative to the
task guidelines.

Jean Sammet [4] not only provides an excellent in-—
depth discussion of the major factors influencing
language selection, but also gives several other
sources for further information on the topiec. More-—
over, she also provides a few details concerning
over ten different simulation languages. More
recently, Robert Shannon [6] has provided a general
flow chart for selecting not only a type of simula-
tion (analog, hybrid, or digital), but also some
generalizations which can often be quite useful as
an aid to language selection. He also provides a

- ——number of references for varlous languages.

~ 258

IMPLEMENTATION DETAILS

While it is not the purpose of this report to pro-
vide a detailed comparison of package internal
details, some knowledge of the internals, and
inherent differences in implementation methodology,
is necessary to make comparisons. The following
notational conventions will be used throughout this
report.

Definitions:
SYSTEM: That system which the program is
trying to model.
MODEL: The computer program.

CUSTOMER: A unit of traffic in the system.
Always represented by a block of
memory cells. Typical names used in
packages for a customer include trans-—
action, process, entity (usually tem—
porary), etc.

SERVICE: A person or thing in the system which
is normally used or utilized by one or
more customers. Normally, a service
is represented in memory by several
words which usually contain status-
type information. Typical names used
in packages for a service include
resource, entity (usually permanent),
facility storage, etc.

LINE: A mechanism for keeping track of cus-—
tomers, all of which have something in
common, Typical names used in pack-
ages include sets, queues, chains,
etc. There are two distinct imple-~ |
mentations used for lines.

Ordered Line
This implementation involves somé
physical sort of linked list arrange-
ment as described so well by Knuth
[2]. With this arrangement, the soft-
ware can traverse the list, insert and
delete customers at will, and perform
any of a variety of list manipulatdion
actions. .

Unordered Line
The line is treated similar to a ser-
vice in the respect that there is a
control block containing status infor-
mation concerning the line, and, in
addition, each customer who is in the
line has an "in line" status bit in
his own memory set to indicate he is
in the line. No ordering is directly
possible with the unordered line
implementation.

SOFTWARE: The code or instructions which imple-
ment the algorithms to perform theée
various actions which the language
supports and the language statements
imply. For example, when processing a
‘QUEUE instruction, the software takes
the necessary steps to show that the
customer to whom the QUEUE action was
applied is shown as being in the
appropriate line. The manner in which
this is done is, of course, an imple-
mentation detail which need not con-
cern us.)

TIMER: That portion of the software which
decides which software action is to
occur next. The timer may embody
several ordered lines. Typical names
used for the timer include events
chain, timing routine, controller,
executive, etc.

Implementing the Flow Technique:
There are two major implementations of the flow
technique. One dinvolves essentially a translation
by the compiler to the state technique, and the
internal operations are quite similar to that of
the state technique internals using ordered lines
of customers waiting for a service and an ordered
line of customers actually using a service. The
other involves the more classical use of flow
timing algorithms as described below.

Time Details:
The first major point to notice is that no matter
what descriptive methodology is used, the actual
implementation must involve a timer section to
coordinate actions so that they occur in proper
sequence. If one uses a "STATE" model methodology,
the transformation from program to timer inputs is
fairly straightforward and rather simple. Thus,
the "STATE" model implies that the translation task
1s somewhat easier and intuitive. Furthermore, the
description maps very micely in an almost one-to-~
one fashion onto the implementation. This can lead
to some simplifications when error correction is
needed, but can also lead to complications and is
thus, perhaps, a mixed blessing. In fact, normally,
what the timer must do is to select the first event
descriptor from the timing line and "call" it as a
subroutine.

The interaction of the "FLOW" description method is
somewhat more subtle but is, as far as the timer is
concerned, essentially similar. The timer must
have at its disposal all active customers, and must
further have them in an ordered line which is
ordered first by time of occurrence of the next
incremental step in the flow of the customer through
the system, and then by some other as yet unspeci-
fied criterion. Typical implementations usually
involve the use of two lines, the first being those
customers who. cannot progress in their flow at the
current time but can progress at a later time, and
the second being those customers who are willing to
continue their flow immediately. As an example of
the first situation, consider a customer utilizing
- a service. The customer will continue to utilize
the service until he is done and, thus, cannot con-
tinue his flow through the system until his use of
the service is complete. Consider, as an example
of the second type, a customer who wants to use a
service. The customer is ready to progress through
the system as soon as he can but circumstances,
such as the service being busy or occupied, may
prevent that. Perhaps the best way to differentiate
between the two classes of timer lines is to clas-
sify the customers on one line as customers who do
not wish currently to flow through the system (a
passive timer line), and those on the other as cus-
tomers who do wish to- currently continue to flow
through the system but who may not be able to (an
active timer line).

The actions of the timer in this situation are
somewhat more complex. For each customer in the
active line, the timer must use the software to
effect the flow of the. customer through the system
until the customer can no longer flow or the soft-
ware has moved that customer into the passive timer .
line. When no customer on the active timer line -
can flow, the simulation clock is updated to the
time when the first customer on the passive timer
line becomes active and that customer is moved to
the end of the active timer line. Of course, if
more than one customer is due to become active at
that same time, all of them are moved to the active
timer line. Then the scan of the active timer line
is restarted.

Order In An Unordered Line:
Though an unordered line can have, by definition,
no direct ordering, an indireet ordering can be
implied on an unordered line. If every customer in
an unordered line is also in an ordered line, the
order of the ordered line is then implied on the’
unordered 1ine. Note that in the "FLOW" descrip-
tion method, all active customers are in ordered
timer lines so that the implied ordering is also
transmitted to all unordered lines.

ANALYSIS OF THE SIMPLE SYSTEM

Clearly, in the simple barbershop system any model
will have customers. There is also a service,
namely the barber. Some sort of waiting line is
implicit in the system. In a state model, the line
must be explicitly provided in order to keep track
of the customers. However, with the flow model, the
the line can be implicit within the timer and need
not be explicitly provided. Therefore, a cursory
glance indicates that the flow model is actually
much simpler than the state model. Proponents -of
any given language can easily generate these simple
models in a few moments. Most programmers using
flow models will, almost as a matter of course, add
a line explicitly to their model. If this is
implemented as an unordered line, it is usually to
take advantage of the built in line status statis-
tics. If an ordered line implementation is used,
the reason usually is to offset the effects of
timer slowness and the resultant execution inef-
ficiency due to a buildup of customers on the
active timer line.

In the final analysis, ejither model will include
customers and a service and at least one ordered
line. Some ordered lines will be hidden within the
timer software and, therefore, not readily apparent
to the programmer. However, based upon shortness
of program and simplicity of the model, the flow
model appears to be the choice for this system,
Despite this, one must remember that in terms of
actual execution effort at the computer instruction
level, the actions are both extremely similar, and
the apparent superiority of the flow model derives
from its software doing several things which the
state model programmer must do.

As an example of the difference, consider the ser-
vice. In either model, at any given time, the ser—
vice will be either idle or busy. In the case of
the flow model, the software effects the status
changes, while .in the state model, the programmer

259 .

TWO MAJOR METHODOLOGIES *** Continued

" must explicitly change the status. Within the
state model, the timer is extremely efficient
because it has at most two alternatives to cope
with. The next state change is either due to an
arrival of a customer or the departure of a cus-
tomer. In the flow model, the timer (assuming an
unordered line) must manage each customer in the
barbershop and must, therefore, cope with an
unbound line. Within the. scope of the flow model,
one does have the alternative of explicitly using
an ordered line. If this choice is made, then the
flow model is mo longer that much simpler than the
state model because the line manipulation opera-
tions are specified by the programmer in both
models.

SIMULTANEQUS OCCURRENCES

A problem which can occur in many models is the
problem of simultaneous occurrence. In terms of
the state model, when two perhaps unrelated state
changes occur at the same time. In teims of a flow
model, this happens when two customers become able
to flow at the same time, The resultant system
behavior may depend quite significantly upon which
of the two actions is processed first.

Consider the simple example used previously. Modify
the system so that there is only a finite number of

(say 7) chairs in the barbershop, and the customers

all follow the rule that if no chair is available
when they arrive, then they leave without waiting
for service. Suppose that a customer arrives at
exactly that instant of time that the barber is
finishing. Suppose further that all (7) chairs are
full, Does the customer stay or leave? ‘

In thée state model, the answer dépends upon whether
the arrival algorithm is processed before or after
the departure algorithm. In the flow model, the
answer depends upon whether the arriving customer
flows before or after the customer being served.

In both cases, the programmer can specifically con-
trol which action occurs first. However, the
mechanisms are very different and not always
straightforward in all models. -

Recall that in the flow model, the timer has an
ordered line. This line can be, ahd in fact is,
further ordered by assigning a dynamic priority to
each customer who can be on the active timer line.
The active timer line is then ordered first by
priority class and second by the placement algorithm
within each class. Thus, the modeler can assure
that the customer whose hair is being cut will flow
before a customer newly arriving by ensuring that
customers receiving service always have higher pri-
ority than newly arriving customers. Thus, the
timer will attempt to make the customer receiving
service depart before attempting to make the new
arrival flow. Once the departed customer has flowed
through the system, a blocked customer will be
assigned to the barber thereby providing a place for
the new arrival to sit, Care must be taken to
assure that all three customers are in the proper
order in the timer line. Specific details of what
priority ordering is necessary will be dependent

260

upon what decision algorithm the timer uses to
decide when to restart scanning the active timer
line from the front. SR

Recall that with a state model the timer must
select the next state change algorithm and then
"call" the appropriate algorithm. Normally, the
ordering is based upon the time of occurrence of
prospective state changes. The modeler then can
control simultaneity by instructing the timer that
one algorithm should take priority over the other
if they are both due to happen at the same time.

Whatever the methodology, the technique of coping
with the problem is to force the desired ordering
upon the timer by assigning priorities. However,
the two methodologies require that this be done in
drastically different fashions. This difference
can, and usually does, have a profound effect on
the difficulty of the task. The state method con-
trols statically the priority of algorithms, while
the flow method controls dynamically the priority
of customers.

In a state model, all state change algorithms are
explicitly written, so the programmer has a list of
all possible state change algorithms. It is a
simple task for him to assign the relative pri-
orities of the completely known possible set of
conflicts and thereby assign tlie ordering to be
followed in case of time ties. Moreover, this
specification is usually done one time on a static
basis and can be implemented as part of the lan-
guage or package translation process. All that the
modeler must do is give the order for algorithm
performance. The important point is to note that
several algorithms with widely different priorities
can process the same customer. This implies that
even though the algorithms have a statically
assigned priority, the customer will have a derived
priority that is dynamically changing.

In the flow methodology, controlling the priority
of a customer is usually a fairly simple task. The
problem lies in how the programmer decides to set
priorities. In the example given, the programmer
must first recognize that there may be a simulta-
neity problem between a customer arriving and a
customer departing, and then must explicitly assign
priorities. The problem, in this case, is com~
pounded by the existence of a third customer wait-
ing in line, and the priority assignments must be
such that the scan algorithm in the ‘timer has a
customer depart first, then a customer go from the
line to the barber chair, and finally place the
arriving customer into line. In more complex
models, the interactions can be extremely subtle
and complex, and may easily be overlooked by the
programmer. Moreover, the use of the customer pri-
ority may well be difficult to implement. For
example, in a medical center some services may be
provided on one priority ordering, such as a lab
technician collecting samples on a room order
basis, while other services might be based on some
other factor, such as degree of illness. The con~
sumer (patient) would then have to be waiting in
two different lines with different priorities for
each.

In summary then, the handling of simultaneous
occurrences in all but the simplest systems appears
to be much simpler in state models using a static
global algorithm priority scheme. The flow model
analysis is more complex, not only because of the
subtleties of the interactions which may be
obscured by the model methodology, but also because
of the requirement of understanding so well the
timer role in the problem and the inherent complex-—
ities of dynamically readjusting the priority of
each consumer at every necessary point in his flow
through the system.

ON SEARCHING LINES

One touch in models which is often necessary and
useful is the capability to base an action on
whether or not certain conditions hold and, fur-
thermore, organizing lines in manners other than
first in first out. As an example, consider a sys-
tem where there are various classes of constmers,
say patients on various floors of .a hospital. The
service, say a lab technician collecting samples,
desires as a matter of convenience to collect all
samples from a single floor before proceeding to
the next floor. A priority arrangement with pri-
ority level corresponding to floor level will just
not work. Moreover, if the hospital has a large
number of floors, the technique of using separate
lines for each floor may become unwieldy as well.
Suppose that the initial implementation uses a line
ordered by floor with the high floors having high
priority. If there are always several requests for
service, it is possible that the lower floor (pri-
ority) requests will never be serviced. Also, if
the service has handled all requests on the top two
floors and a request for top floor service arrives
while the service is serving the fifth floor down,
the priority scheme will force him to make a trip
to the top floor before finishing the floor he is
currently serving. Basically, the line handling
can be described by the following sequence of
steps:

A) If there 1s a customer in the same class in
the line already, insert the new customer in
line at the end of the class.

B) Since there is no customer in the line in the
same class, the decision as to placement at
the front or back of the line is made based
upon whether the service is currently serving
a member of the class.

Selecting on this basis provides that the service
will serve all customers on the same floor before
leaving that floor, and will then choose which
class of customers (floor) to process next based
upon the earliest arrival of a request for service
from a particular class (floor).

Solving this problem is difficult, if not impossi-
ble, with only unordered lines and a timer line.

If, however, an ordered line is utilized, there are
two possible implementations. The first involves
placing the customer at the appropriate point in

the line when the customer is placed in line, and
the second involves removing a customer with the
proper attribute values when deciding whom to remove
from the line. The ease or difficulty of these
tasks is related to the specific line manipulation

primitives available much more than it is to the
programming methodology. 1If, for example, one can
search a line to determine if a customer with a
specific attribute value is in the line (or can

set a common variable to indicate presence) and
can then insert a new customer in line after.a
specified customer, the solution is straightfor- .
ward. Another alternative is to attempt to remove
a customer with a particular attribute value from
the Iine (no matter where in the line the customer
happens to be placed) and to condition the next
step on success or failure of the attempt. Several
other options exist as well. The major requirement
for any option is the ability (within the language
or system) to do a bit more than order a line based
only on the-value of some particular attribute and
remove from either end.

The primary difference between the two methodol-
ogies is that, in the state model, the algorithm is,
to a large extent, divorced from the line and
customers. The algorithm is separate and, thus,"
can do such things as reorder the line or reassign
values of customer attributes while the customer

is in the line. Conversely, in a flow model, one
of the customers is performing the actions of
attempting to manipulate other customers, and this
can be much more difficult,

In certain problems, an unordered line solution is
possible, even though a cursory glance might indi-
cate otherwise. Consider the barbershop example.
Suppose that if the line is over a certain length,
an arriving customer will remain only if there is-
somebody he knows already in the barbershop. (Pre-
sumably the arriving customer is willing to wait
longer if he has somebody to talk to.) Assume that
the algorithm to determine whether or not the
arriving customer knows a waiting customer is
fairly complex. A solution with full line manipu~
lation abilities would be to check, for each member
of the line, whether he is known by the new arrival.
With an unordered line, the information which is
required would have to be preset in some common
storage area in some fashion to allow for checking.
While complex, this problem can be solved in this
fashion in a flow model.

Finally, the familiar line hopping problem (the
other line is moving faster, so I want to get out
of this line and into that line), while not simple
in any methodology, appears to be much easier to
handle with an event model.

In summary then, the problem resolves to one of
having the appropriate tools to handle the rather
complex line manipulation problems. Usually, the:
event models come out well ahead on this score.
This is because they normally allow for any variety
of manipulation on any member of any linked list
structure, as well as the opportunity to actually
storé pointers to particular customers. Moreover,
a state model can normally allow any of the state
change algorithms to change easily any attribute
values of any customers whether or not they are in
a line. Flow models, on the other hand, generally
restrict operations to inserting and removing.
Moreover, decisions can only be made at insert time
or remove time. While on a line, a customer is
generally rather inaccessible except to be actually
removed.

261

TWO MAJOR METHODOLOGIES .- Continued

~

SYNCHRONIZATION AND COMMUNTCATION

The problems related to synchronization and com-
muinication are well-known. Several excellent
treatments of the topics exist in the literature.
Almost any book on Operating Systems devotes con-
siderable effort to these topics. Shaw [7] pro-
vides an especially clear exposition. He devotes
the major portion of his exposition to semaphore
techniques, and the "P" (decrement if possible) and
"V" (increment) indivisible semaphore operationms.
He gives examples of the use of semaphores as
resource counters and synchronizers. In his dis~
cussion of implementation, he méntions many anal-
ogous names for similar primitives and provides the
notion of "Blocking" progress to avoid a customer
continually attempting to decrement a zero sema-
phore value. The important point, relative to sim-
ulation, is that the whole notion of a semaphore
and the need for indivisible primitives is a result
of problems which can occur when two things are
going on in parallel. Given the sequential nature
of both simulation methodologies being considered,
the only necessary ingredient is to ensure that we
implement semaphore primitives with indivisible
chunks of software. This is, of course, trivial in
an event model algorithm. It is also almost triv-
ial in a flow model. The only point where care
must be taken is the assurance that the customer
can always completely flow through the steps of the
semaphore operation before the timer attempts to
cause another customer to flow. A little care can
assure that this is always the case.

Most of the difficulties normally associated with
critical sections and synchronization are not prob-—
lems in simulation models, and the sometimes rather
cumbersome techniques which must be used in oper-
ating systems can be avoided in simulation models
by implementing whole sections of actions in which
care must be taken in an operating system as an
indivisible chunk of software.

In terms of communication and cooperation, as
opposed to mutual exclusion, a number of problems
arise which are of interest to the simulation
modelter. While the modeler can resort to the tech-
niques of operating systems to handle the problems,
there often are simulation techniques which are not
nearly so cumbersome. Consider, for example, a
baton in a relay race changing hands. In an event
model, there could probably be an algorithm to
model removing the baton from the first customer
(racer) and giving it to the second which would
occur at the time the first racer got to the end of
his leg of the race. WNote that this algorithm has
global control and, though triggered by the actions
of the first racer, has the ability to communicate
the information to the second racer who can be
quiescent in the model until the algorithm acts.

In a flow model, however, the communication is not
quite so simple. The second racer (customer) must
somehow flow to his starting point and must wait
there until he receives a message (baton) from the
first racer. Normally, this is implemented by
using an auxiliary global variable to indicate
presence or absence of the baton at the change
point, and to cause the second customer to be unable

262

to proceed until the baton presence indicator is
set. A somewhat more complex example of handling
synchronization and communication will be discussed
below as a part of the discussion of the merits of
the different methodologies with respect to refin-
ing a model to a finer level of detail.

In summary, the problems of synchronization and

communication are usually not difficult to handle
whatever the methodology used.

REFINING LEVEL OF DETAIL

One problem often encountered in modeling is that
once a model is working, it becomes necessary to
refine the level of detail. Consider as an exam-
ple a model of a simple multiprogramming system
with a fixed quantum. A flow model might describe
the actions as follows: Wait in line for a quantum
of processor time. After the quantum is complete,
either go to the end of the line or depart depend-
ing on whether you are done. A state model might
describe the two state change algorithms this way:
A) On arrival, either get on line or start a quan-
tum. B) At end of quantum, the finishing customer
either gets put on line or departs. Then give the
processor to the first customer on line or go idle
if the line is empty. Coding either model is
rather straightforward. The major implementation
difficulties revolve around keeping track of how
much time a customer has left and setting the short
last quantum.

Suppose that one wishes to modify the model to
account for the quantum expiration processing and
arrival overhead processing. These modifications
make the model more -complex by an order of magni-
tude, assuming that one wants to detail the sched-
uling operations. 1In a state model, either of the
state change algorithms becomes a sequence of state
change algorithms performed at slightly .separated
times. This can lead to a veritable plethora of
algorithms unless some technique to describe a
finite nonzero algorithm occurrence time [8] is
utilized. Neither method is extremely clean or
elegant. In a flow model, it would appear that
the change is relatively simple insofar as one can
insert delays into the flow of a customer in a
relatively straightforward fashion. However,
synchronization and communication effects do add

a complication that can be quite subtle in its
form.

Consider the end of a quantum in the refined model.
Assuming no complications (such as another cus-
tomer arriving during the period of quantum end
processing) arise, the state change can be nicely
‘broken into four steps:

A) At T1, the processor is released by the
finishing customer and, though unavailable
for immediate use, is not doing productive
work.

B) At T2, the finishing customer actually enters
the line to wait for another turn.

C) At T3, the starting customer actually departs
the line to begin his quantum.

D) At T4, the starting customer begins his pro-
ductive use of the processor.

In a state model, then, the programmer must either
describe four distinct state change algorithms with
much information passed from algorithm to algorithm
or must use a nonzero occurrence time technique.

In a flow model, the use of an ordered line tech-~
nique is impossible unless the programmer intro-
duces a "ghost" customer to flow from time T2 to
time T3 to remove the starting customer from the
line at time T3, With an unordered line technique,
one need not introduce a "ghost," but the problem
does involve causing the finishing customer to con-
tinue to flow after being placed in line and then
causing the starting customer to start flowing when
he should flow out of the linme. A gating technique
can be used to synchronize the actions of the two
customers. The finishing customer could go through
a sequence as follows:

A) Open a gate for the starting customer.
B) Delay until a second gate is opened.
C) Flow through the second gate.

‘D) Shut the second gate behind himself.

The second or starting customer could then use the

sequence below:

4) Delay until the gate is opened.

B) Flow through the gate.

C) Shut the gate behind himself.

D) Do the interim T2 to T3 delay processing.

E) Open the second gate for the finishing cus-
tomer.

These sequences imply, of course, that the finish-
ing customer would have to test to determine if the
gate or synchronization protocol described above
was necessary or not.

In this example, the state model is characterized
by a proliferation of state change algorithms which
is not desirable, not only because of software
housekeeping complexity, but also because a logical
unit, namely the sequence of changes, has been
separated into parts and can be less clear in this
fashion. The other alternative is to use a nonzero
time technique, but this is not a clean solution
either because a subalgorithm is used like a sub-
routine to do a minor piece of processing at a
slightly later time. The flow model, while it does
not have the above difficulties, does require
actions that are not straightforward. In an
ordered line implementation, a "ghost" customer is
required because once the finishing customer goes
into the ordered line, he can no longer do things
until he comes out of the line, and, thus, the
"ghost" must flow from time T2 to T3 and then
remove the starting customer. Thus, the "ghost"
handles the synchronization. In an unordered line
implementation, a gating technique can be used to
do the synchronization. However, much care must be
taken to. assure proper ordering in the timer line,
especially when an unrelated customer might be able
to start to flow at an iInopportune time.

In summary, neither method is perfect, and the
advantages of each method lie in complementing
areas. The logic of the cooperation can be easily
delineated within the guise of a state model, but

the incremental state changes cannot be handled
simply. With a flow model, the incremental state
changes are easily delineated, but the logic of the
cooperation can become extremely convoluted.

STYLE

In any large computer program, there should be con-—
cern regarding understandability, readability, and
flexibility of the code. Wirth [9] is one of many
who suggests a top-down or stepwise refinement
method of programming as a vehicle for better
understandability and readability. A state model
lends itself nicely to these notions. At the high-
est level of description, the programmer defines
the units and specifies the state changes which can
occur. At the next level, each state change is
detailed. The programmer has available the stan-
dard techniques of subroutines and functions to
carry the refinement even further. A flow model,
on the other hand, does not lend itself quite so’
cleanly to stepwise refinement in the usual sense
of the term. However, to denigrate the flow lan~
guages on this basis would not only be unfair, but
would also be inaccurate and a gross disservice. A
strong case can bé made that the flow model is also
written with a refinement technique, though not in
the traditional sense. At the top level is the
specification of model segments or classes of cus-—
tomers. The refinement then involves detailing the
flow as it occurs. The question, then, really is
one of understandability of a technique rather than
whether a specific technique maps cleanly onto the
common notions of stepwise refinement or top~down
programming. The question of understandability,.
divorced from the details of the technique, then
boils down' to what is explicitly delineated in the
code versus what is hidden in the software.

In a flow model, the style is to set down in a
rather precise and concise fashion what exactly a
customer in the system does. This style will leave
implicit and sometimes a bit to the imagination
some of the interactions between different types

of customers, and also interactions between two
customers of the same type at different points in
their flow. A state model, on the other hand, pro-
vides a very clear picture of the customer inter-
actions but usually can obscure the flow of a
specific customer, more so if the interactions are
fairly complex. The trade-off in the style and
readability area thus is related to which method

of description is cleaner, more comfortable, and
easier to present.by not only the programmer, but
also his supervisor and those who are using the
model.

GATHERING STATISTICS

In any model, a number of relevant statistical
measures are readily available as provided by the
software. A problem can arise when statistical
information which is not readily available is
desired. Typically, any desired statistic can be
gathered by the programmer. The concern is the
ease or difficulty of the task and the accuracy of
the information obtained. Keeping track of tran-
sition times for customers between various stages*
in their progress through a model can be easily

263

TWO MAJOR METHODOLOGIES -«++ Continued

" done. The value of the simulation clock is saved
at the first point, and then at the second point a
difference is calculated. This is usually fairly
easy in either methodology. For the sake of sim—
plicity, assume that what is desired is the statis-
tical properties (as a function of time) of the
value of a variable. In a flow model, a "ghost"
customer can-be introduced to periodically interro-
gate and save the values of the variable. In a
state model, an identical technique can be used. A
statistics gathering algorithm can periodically save
the desired information. A state model allso allows
(as does a flow model, but not always in a straight-
forward manner) the insertion of code to gather the
desired statistical information each time any state
change algorithm changes the variable under consid—
eration. This can become burdensome if several
algorithms modify that variable. At least one
state language provides a capability to specify on
a global basis that the statistics be gathered
every time the variable is modified, no matter
which algorithm does the modification. This mecha-
nism provides the cleanest solution to the statis-'
tics gathering problem for those statistics which
are not routinely gathered by the software.

The trade—off then is the ghost technique, versus
the brute force technique, versus the global speci-
fication. .The ghost has a possibility for inaccu-
racy as it is a periodic sample of a random variate,
and the mere periodicity may obscure a related
periodic fluctuation in the random variable being
observed. The brute force method can become quite
involved and add a great deal to the complexity and
length of the program. The global specification
technique works nicely. One can think of it as a
specification that a particular statistic be gath-
ered routinely. The only problem is that in addi-
tion, the programmer may have to specifically assign
- a value to the variable so that the global specifi-
cation works properly.

CONCLUSIONS

This paper has presented analyses of the differ-
ences between two major methodologies for modeling
discrete change systems. This has been done in
séveral contexts. The purpose has not been to
advocate one technique over the other but rather

to make a comparison available so that a modeler
can make a better informed choice as to which tech-
nique better suits his (or her) purposes. It is
hoped that an outgrowth of this short analysis will
be a-better awareness of both techniques on the patrt
of those individuals who are now inexorably wedded.
to one over the other. One paper cannot hope to
"bring the two camps together," but it can, and
hopefully has, provided a basis or foundation for
better understanding and furtherance of simulation
as a discipline.

264

i

BIBLIOGRAPHY

1. C.A.C.I., "SIMSCRIPT II.5 Reference Handbook,"
C.A.C.I., Inc. - FEDERAL, 12011 San Vincente Blvd.,
Los Angeles, CA, March, 1976.

2. ZKnuth, Donald E., "The Art of Computer Pro-
grameing,” Volume 1, "Fundamental Algorithms,"
Addison-Wesley, Reading, MA, 1969.

3. Russell, E. C., "Simulating with Processes and
Resources in SIMSCRIPT II.5," C.A.C.I., Inc. -
FEDERAL, 12011 San Vincente Blvd., Los Angeles, CA,
July, 1976.

4, Sammet, Jean E., "PROGRAMMING LANGUAGES: His-
tory and Fundamentals,'" Prentice-Hall, Englewood
Cliffs, NJ, 1969.

5. Schreiber Thomas J., "Slmulatlon Using GPSS,"
John Wiley and Sons, NY, 1974.

6. Shannon, Robert E., "SYSTEMS SIMULATION: The
Art and Science," Prentice-Hall, Englewood Cliffs,
NJ, 1975.

7. Shaw, Alan C., "The Logical Design of Operating
Systems," Prentice-Hall, Englewood Cliffs, NJ,
1974,

8, Shub, Charles M., "Modeling Events Which Take
Finite Time to Occur," in Proceedings of the 1976
Summer Computer Simulation Conference, Washington,
D.C., July, 1976.

9. Wirth, Niklaus, '"Program Development by Step-
wise Refinement," in Communications of the A.C.M.,
Volume 14, No. 4, April 1971, pp. 221-227.

10. Xerox Data Systems, "Xerox General Purpose
Discrete Simulator (GPDS) Reference Manual,” XDS,
El Segundo, CA, Document Number 90 17 58A, April,
1971,

