A PROGRAMMING THEORY FOR DISCRETE SIMUI.AiION

1

ABSTRACT

Discrete systems are abstracted as
Cartesian products of automata operating
on a data structure. These abstract sys-
tems are then modeled as intuitive auto-
mata with natural (internal). updates and
unnatural (external) updates. Formal
programs which perform these functions as
well as necessary information flow between
subsystems are presented. A collection of
examples illustrate the theory.

INTRODUCTION

Digital modeling is one of the areas
being developed at Clemson University as
part of our efforts in the mathematical
sciences. We have found in many cases
that this modeling occurs as a two-stage
process. From the physical system a
first model serves to abstract the sys-
tem and from that, one develops a second
model which results in a program. These
models are labeled generic model and
specific model. A programming theory is
a generic-specific pair which models a
wide class of problems. For several
years we have been designing and testing
such a theory for discrete simulation.

At this point, we have enough evidence
to feel that the theory accomplishes what
we want from it. Major factors are:

1. The ability to model any discrete
event system which we can imagine
with a high degree of certainty of
obtaining a running program.

2. BEssential immunity to system com-
plexity. Although there is a moderate
amount of work to model the simplest
system this way, there is little
increase in difficulty as the system
get indefinitely complex.

3. Flexibility of model design. Any
system model can immediately be
added as a subsystem of a larger
model. Any subsystem can be re-
placed by a more complex model as
more information is available.

Robert E.Haymond

4. System polices can be identified in
the minutest detail, no "mysterious
events."

5. Even on major systems, programs are
easy to debug.

We are now preparing a report on our
major test of the system thus far: a
model of the Southern Railway system [2],
[31. This allowed a direct comparison
with a comparable model sponsored by the
American Association of Railroads and done
in either Simscript or GPSS [1l], [6]. We
can reproduce results of the earlier model
with run time faster by roughly two orders
of magnitude. A simulation of thirteen
days of system time reduced from six hours
to four minutes. We have since demon-
strated point 3 above by adding a complete
simulation of track segments in terms of
siding versus multiple tracks. '

Although the theory has been developed
to some degree of completeness and we have
made some extensions [4], [5] we realize
that there are some difficulties in com-
municating to others what the theory is
all about. The purpose of this article
is to present a first cut at making the
theory available outside the classrogm.

There are several principles on which
the presentation is based:

1. This is a method of accomplishing
running programs, not a method for
avoiding them. The novice programmer
will find it difficult material.

2. The only way we have found to teach
this material is by example. We will
.cover a sequence of examples, some in
detail and some suggested. The total
set is what we consider minimal to
learn the material. The sequence is
selected for various levels of com-
plexity and not necessarily for the
value of the finished models.

3. The ideas are essentially (computer)

language independent. However, they
must be described in some language

243



DISCRETE SIMULATION ... Continued

and we will use FORTRAN. This means that
a reader who prefers a different lan-~
guage, or indeed some changes in program-
ming style, should probably understand
what we have done first and then make the
appropriate translation.

THE MODELS

Generic Model

A discrete system is modeled as an
automaton; a digraph of its state space
and state-change function which indicates
the state at any given time. Of course,
producing the state-change functions
computationally is at the heart of the
difficulty in discrete simulation. Even
though any small change could be con-
sidered a different state, we have found
that most systems have a natural "data
structure." Hence, we assume a system
digraph of logical states and at each
change in state, a set of operations is
performed on a data structure. These
operations on the data structure corre-
spond to the output function in the
algebraic definition of an automaton. In
some sense if we think (intuitively) of
an automaton as a self-operating entity .
then we have a discrete system as an auto-
maton operating on a data structure. At
the next step, we consider two or more
systems so modeled and join these to make
a larger system. The digraph of the sys-
tem is the Cartesian product of the sub-
system digraphs and the data structure is
the union. If there are interrelations
between the subsystems then the product
can furnish inputs to the subsystems. In
" this fashion a product or product of pro-
ducts (etc.) is a system model. Clearly,
a system of many subsystems can be repre-
sented as a collection of products in many
different ways. When we get to the speci-
fic model we will see that it is not too
difficult to select product elements for
a successful simulation. All of these
notions can be specified in algebraic
detail and is a good way to abstract any
discrete system. On the other hand, it
does not furnish any reasonably direct
fashion for programming the interrelations

and indeed combinatorics on interrelations. .

This will be furnished by additional
modeling.

Specific Model

Here we make additional modeling
assumptions on automata and will here-
after refer to them as subsystems. We
assume that all state changes occur in
two fashions. A natural update is a
state change which will occur in a total-
ly internal fashion at a given future
time provided no external input occurs.
Any subsystem will have a scheduled

244

natural update at any time (even if it is
scheduled trivially at infinity). An un- .
natural update is a state change which !
occurs to a subsystem due to an external
input. Any subsystem will have a set
(possibly empty) of inputs with which it
can react. The input for a natural update
is simply a time. Now imagine a tree
structure which corresponds to a multi-~
level product. We partition this tree as
follows:

1. The root is a product but not a
factor. This is called the system.

2. The terminal nodes are factors but
not products. They are called atoms.

3. All others are factors and products. -
They are called intermediates.

The natural update time for any pro-
duct is the minimum natural update time
for its factors; the system has only
natural updates. The inputs acceptable
to any intermediate consist of exactly
those it can parcel out to its factors.
Vacuously or otherwise an atom has both
unnatural and natural updates.

There are formal programs for the
system, intermediates and atoms. In
FORTRAN each of these is a subprogram with
entry points. Like most programming
issues, these abstractions are understood
only after repeated examples. The remain-
der of the paper is directed entirely
toward techniques of programming. Class-
room evidence (graduate level) indicates
the necessity of heavy reader partici-
pation by way of actual modeling and pro-
gramming. In particular, to save space,
programming will be omitted in any case
where the needed computation is theory
independent. We will begin with a system
which would be easy to handle in any case
and progress to some which are quite in-
tricate. In order to concentrate on the
theory, we will omit any notion of statis-
tics and output; the information is
available for both and can be done as the
reader's choice.

Example 1. Barber shop with n barbers;
customers either do or do not have a
preference for a particular barber. The
seating policy should be first come, first
served; however, if at the beginning of
service a shuffling of those without pre-~
ference allows additional service, it
should be done. This model is done in
detail as the least level of the theory.
As defined earlier, we have a system and
two atoms and the diagram can be thought
of as representing the generic model and .
the specific model. In the generic case:
C has a state vector which consists of
the specification of arrival times for



~ -

-

o . \‘iDa;a_Structuref"

customers in. n+l gueues and next arrival
time for each queue; B has a state vector
which contains the.finish time for each
barber and the number of barbers avail-
..able; the state vector of 8 is system
time plus the union of the previous states.
The simulation would be the sequence of
states of S. 'For the specific case; think
of these three as operating automata (or
black boxes). The natural updates are:

C next arrival; B next finish; S minimum
of these two. Unnatural updates are: C
release a customer to service; B a barber
begins service; S none. The information
flow: C to S natural update time; B to 8§
natural update time; S to C'&B time. For
convenience, we segregate a portion of S
called BRANCH which handles unnatural up-
dates. Then C sends to BRANCH a permuta-
tion vector P(n+l) which lists the
priority (based on arrival time) of the
n+l queues; B sends to BRANCH a logical
array A(n) which barbers are available.
Program for this specific model:

C Main

CALL START
CALL SYSTEM
CALL STOP
END

SUBROUTINE SYSTEM
COMMON/ALL/ TIME,UPDT(2)
COMMON/STS/ BIGT

1 TIME=MIN (UPDT)
CALL STATE
IF (TIME.GE.BIGT) RETURN
CALL C N
CALL B N
2 CALL BRANCH(&1,&3)
3 CALL C U

CALL B U (&2)
END
SUBROUTINE BRANCH (*,%)
COMMON/BRC/ P (n+1),WHICH Q
" COMMON/BRB/ A{n) ,WHICH B
see notes below for seating
algorithm then RETURN1 or
compute WHICH Q and WHICH B
and RETURN2.
END
SUBROUTINE C
COMMON/ALL/ TIME,UPDATE
COMMON/BRC/ P (n+l) ,WHICH
ENTRY C N
1 IF (TIME.NE.UPDATE) RETURN
CALL PUSH C (UPDATE,P,&l)
ENTRY C U
2 CALL POP C (UPDATE,P,WHICH)
RETURN
END
SUBROUTINE B
COMMON/ALL/ TIME,BLANK,UPDATE
COMMON/BRB/ A,WHICH

. structures.

ENTRY B N
1 IF (TIME.NE.UPDATE) RETURN
CALL POP B (UPDATE,A,&l)
° ENTRY B U (*)
CALL DS C (8VT)
CALL PUSH B (UPDATE,A,WHICH,SVT) -
RETURNL °
END

Notes: (1) Seating algorithm. A relevant
gqueue is one with customers waiting and
the corresponding barber is available, If
there are none of these then no action is
taken. Otherwise compare the priority of
relevant preference queues with that of
the non~preference queue. Then service
the customer in the top preference queue
or service the non-preference queue with
the barber corresponding to queue of least
priority. It is important that only one-
service occurs on any given pass through
BRANCH and the product logic cycles until
there is no additional service to begin.

(2) The PUSH (put in) and POP (take
out) routines are operations and ENTRY
points on a data structure, DS. 1In case
PUSH C, the START routine reads the appro-
priate arrival and service times for the
queues and furnishes this information (by
COMMON) to DS. This means that DS can
maintain full queue information including
next arrival. It also-maintains full
service information including next f£inish.

‘The CALL statements are.'self explanatory,

it being . assumed that -the information in
each is correct on RETURN. Atoms, here
and in general, are operations on data
The calling statements should
contain only essential information from
above and essential information to pass
along. The data structure should contain .
all possible details. In this fashion,
the models are data structure independent
and in larger, more complex systems this
allows the freedom to employ any of the
very powerful data structure techniques
desired.

(3) The service time is called by B
much as a real system might use a terminal.
This allows a partition of the data struc-
ture corresponding to the various sub-
systems.

For those interested in doing simu-
lations this way, it is recommended that
this model be run before proceeding. Now
we abstract these ideas to a general pro-
duct including system, intermediates, and
atoms. The discussion parallels the
program and they should be studied
together.

We will concentrate, inductively, on
the operation of an intermediate automaton
and then see how that alters for a system
and for an atom. The intermediate has 3
major secticns: natural update, unnatural
update, and data processing.

245’



DISCRETE SIMULATION ... Continued

Natural Update. Thé natural update time
of any product is the minimum of the
natural update times of its factors.
Logically this minimum must be computed
after each natural update and after each
. unnatural update. This could lead to

. excessive computation and as the natural
. update times are forever changing much
‘of the minimization is wasted. Linked
lists could eliminate some of the compu-
tation but there would still be much ado
for update times which are likely to
change before they are used. The method
used was suggested by Mertens [5]; it
transfers responsibility to the lower
routines. The information i§ kept in an
UPDATE array with a pointer NEXT. The
value UPDATE (NEXT) is always correct in
a given routine and is maintained by
factor routines with calls of the form
N x (I,UPDATE). It is assumed, induc-
tively, that after any natural update call
on a routine it returns with a natural
update time which is later than TIME.

Unnatural Update. This calls a branch
(BR) routine which goes to data processing
if there is null input or makes a sequence
of calls to unnatural updates of factor
routines. There is a cycle through BR un-
til such time as inputs are null.

Data Processing. ' We have already dis-
cussed the CALL N x (I,UPDATE (NEXT)) which
sends up this routine's contribution to
update. There is also a state (ST) rou-
tine which receives processed information.
The one difficult algorithm in the barber
shop was left in intentionally. It was a
little messy because contributing rou-
tines supplied only logical information
instead of processed information. There
is enough information to make a decision
but the earlier fashion forces all of the
complexity to one spot. The ST routines
should be carefully constructed to send
information in its most useful form. In
the barber shop, for example, C ST might
provide a linked list of customer
priorities.

The system routine only looks down
so it has the natural and unnatural up-
dates but no data processing; the atoms
only look up so they have all three
sections but no BR. The atoms have no
factors and accomplish the natural and
unnatural updates by operations on various
components of data structure. The cycle
of natural updates in each atom completes
the induction of each routine completing
all natural updates before return. The
information flow is summarized as follows:

246

PR B> - - —3BRj—> AL

The following abstract program is
intended for study much as.one would
study mathematics. Here are some nota-
tional conventions:

N x natural update processing for x
example CALL N F2 (3,UPDATE)
#3 factor of F2,
ENTRY F1 N natural update on Fl
ENTRY A1 U unnatural update on Al
CALL S BR' branch routine for S
CALL, Al ST state routine for Al
CALL DS x i entry #i on the data
structure for automaton x.

SUBROUTIME SYSTEM
COMMON/ALL/ TIME
COMMON/SN/ UPDATE (n), NEXT
1 TIME=UPDATE (NEXT)
IF (TIME.GE.BIGT) RETURN
2 IF (TIME.NE.UPDATE) GO TO 10
GO TO (3,4,5,...), NEXT
3 CALL F1 N (&2)
4 CALL F2 N (&2)

2z CALL Fn N (&2)

10 CALL S BR (&11,&l)

11 CALL F1 U ({&l2)

12 CALL F2 U (&l13)

wwW CALL Fn U (&l0)
END

. SUBROUTINE Fi
COMMON/ALL/ TIME
COMMON/FiNUP/ UPDATE (n), NEXT
1 IF (TIME.NE.UPDATE{NEXT)) GO TO 100
ENTRY Fi N (*)
GO TO (2,3,4,...), HEXT

2 CALL Fi 1 N (&1)

3 CALL Fi 2 N (&l)

qq CALL Fi n N (&1)
ENTRY Fi U (¥)

10 CALL Fi BR (&1ll1l,&100)

11 CALL Fi 1 U (&l2)

12° CALL Fi 2 U (&l13)

.o PR N L s s veceesee

v CALL Fi n U (&l0)
100 CALL N S (i,UPDATE (NEXT))
CALL Fi ST
RETURN1
END
A typical W x routine:
SUBROUTINE N Fj (1,U)
COMMON/FjNUP/ UPDATE (n), NEXT
IF (U-UPDATE (NEXT)) 1,2,3

1 NEXT=1I

2 UPDATE (NEXT)=U
RETURN

3 UPDATE (I)=U



IF (I.NE.NEXT) RETURN
DO 4 L=1,n
4 IF (UPDATE (L) .LET.UPDATE (NEXT) )
* WEXT=IL
RETURN
END

The only case which requires a
gearch is “that of replacing the previous
UPDATE " (NEXT) with a greater value and
I=NEXT.

SUBROUTINE Ai
COMMON/ALL/TIME .
1 IF (TIME.NE.UPDATE) GO TO 100
ENTRY Ai N, (*)
CALL DS x 1
CALL DS y ‘2 (UPDATE,etc.)
CALL DS z 3 (&l)
ENTRY ai U (%)
GO TO (200,10,11,12,...), REQ
10 :
data structure calls corresponding to
11 various requests to which this atom
can respond; as above but in groups
12 each group should return to 100,
100 CALL, N Fj (i,UPDATE)
CALL Ai ST
200 RETURM1
END

Example 2. Medical clinic with n doctors
and m nurses; patients require a doctor,
a nurse, or both. Again, first come,
first served with the exception: if

(a) a patient needs both a doctor and a
nurse, (b) a doctor is available, and
() no nurse is available but a nurse is
serving a patient alone, then the nurse
patient is bumped back to the queue with
remaining service time and the nurse
joins the doctor on the new service. It
is this "undoing of events" that can
generally cause difficulty. An indexed
product is introduced as a product of
identical factors. The structure is
given below:

Py [Fr2) [F3]

clinic
patients
servers
need doctor
need both
need nurse
nurses
doctors

Natural updates: PI(1l), PI(2), P3

patient arrivals; N,D finish service.

Unnatural updates: PI(l), PI(2) release

patient to service; P3 release patient
to service or accept patient back in
gueue; D accept patient for service;

N accept patient for service or bump
least priority P3 back toO queue.

Information passed: PI(1l), PI(2), P3 to

P (through ST whether patients are
there and arrival times for first two
queues; P to C whether-patients are
there and which of the first two queues
has priority; D to S 0 or 1; M to 8 0,
1,2 where 2 means no nurses free but
some serving P3's; S to C which types
of patients can be served.

SUBROUTINE CLINIC
COMMON/C N/ UPDATE(2), NEXT
COMMON/CST/ BIGT
TIME=UPDATE (HEXT)

IF (TIME.GE.BIGT) RETURMN
TF (TIME.NE.UPDATE (NEXT)) GO TO 10
GO TO (3,4), NEXT
CALL P W (&2)
CALL S N, (&2)
CALL C BR (&ll,&l)
CALL P U (&l2)
CALL S U (&l0)
END
SUBROUTINE C BR (*,%*)
COMMOII/CBRPS/ REQ(2)
COMMON/CBRS/ REQS
COMMON/CBRSTP/ HERE(3) ,FIRST
COMIMON/CBRSTS/ SERV(3)
DIMEIISTON ORDER(3)/1,2,3/
LOGICAL HERE, SERV
REQ(1)=1
REQ(2)=1
ORDER (1) =FIRST
ORDER (2)=3-FIRST
DO 10 I=1,3
IF(
*YERE (ORDER(I) ) .AND.SERV (ORDER(TI))
*¥) GO TO 1
CONTINUE
RETURN2
DO 2 J=1,2
REQ (I)=ORDER(I)}+1
IF{.NOT.REQ(1l) .EQ.3.0R.SERV(3))
*RETURNL
REQ(1)=5
REQ(2)=5
RETURM1L
END '

SUBROUTINE S
COMMON/ALL/ TIME
COMMON/CBRS/ REQ
COMMON/SN/ UPDATE(2), NEXT
IF (TIME.NE.UPDATE (NEXT)) GO TO 100

ENTRY S N (%)
GO T™0 (2,3), NEXT

CALL D N (&1)

CALL N W (&l)

ENTRY S U (¥*)
CALL. S BR(&ll,&200)

CALL D U (&l2)

"CALL N U (&l00)
CALL, N C (2,UPDATE)
CALL S ST

247



‘DISCRETE SIMULATION ... Continued

200 RETURN1
END.

SUBROUTINE S BR (*,*)
COMMON/CBRPS/ REQ
COMMON/SBRDN/ REQD, REQN
REQD=1
REQS=1
GO TO .(1,2,3,4,5), REQ

1 RETURN2 nothing
2 REQD=2 ) doctor

RETURN1

3 - REQD=2 both’

REQN=2
RETURN1

4 REQN=2. h nurse

RETURN1

5 _REQN=3 - bump

RETURNL
END

SUBROUTINE S ST
COMMOW/CBRSST/ S(3)
COMMON/SSTDN,/" DA, NA
LOGICAL S
S(1)=DA.EQ.1 -
S(3)=NA.EQ.1

5(2)=8(1) .AND. (S(3) OR.HA.EQ.2)

RETURN
END

SUBROUTINE D
COMMON/ALL/ TIME
COMMON/SBRDN/ REQ .

1 IF (TIME.NE.UPDATE) GO TO 100

ENTRY D N (%)

CALL DS D 1 (uppaTe,sl)

ENTRY D U (%)
GO TO (200,10), REQ
CALL DS P 1 (sVT)

10 CALL. DS D 2 (SVT,UPDATE)

100 CALL N S (1,UPDATE)
CALL D ST
200 RETURNL
END :
SUBROUTINE N
COMMON/ALL/ TIME
COMMON/SBRDN/ BLANK, REQ

1 IF (TIME.NE,UPDATE) GO TO 100

ENTRY N N (%)

CALL DS N L (UPDATE, &1)

ENTRY N U (*)
GO TO (200,10,11), REQ
10 CALL DS P 1 (8svT)

CALL DS N 2(SVT,UPDATE,&100)
11 CALL DS W 3 (UPDATE,&l00)

ioo CALL N S (2,UPDATE)
CALL N ST
RETURN1
END
SUBROUTINE P
COMMON/ALL/ TIME
COMMON/PN/ UPDATE(2), NEX

1 IF (TIME.NE.UPDATE (NEXT)) GO TO 100 .

ENTRY P N (%)
GO TO (2,3,4;...), NEXT

2 CALL PI(l) N (&l)

3 CALL PI(2) N (&l)

4 CALL P3 N (&l)
ENTRY P U (%)

10 CALL, P . BR (&11,&100)

248

o w [

10
100

200

10
11

100
200

CALL PI(1l) U (&l2)

CALL PI(2) U (&l13) :

CALL P3 U (&100) fi
CALL N P (1,UPDATE (NEXT)) i
CALL, P ST

. RETURN1

END
SUBROUTINE P BR (*,%*)

. COMMON/CBRPS/ BLAHNK.,REQ

COMMON/PPIBR/ REQI(2), REQ3

CREQI(1)=1

REQI (2)=1
REQ3=1

‘GO TO (1,2,3,4,5), REQ
- RETURN2

REQI(1)=2
RETURN1

- REQI{2)=2

RETURN1
REQ3=2"
RETURN1
REQ3=3
RETURN1
END .
SUBROUTINE PI (J)
COMMON/ALL/ TIME

COMMON/PPI/ REQ{2) -

IF (TIME.NE.UPDATE(J)) GO TO 100
ENTRY PI N (*)

CALL DS PIl (J,UPDATE(J),&1)

: ENTRY P1 U (%)

GO TO (200,10), REQ(J)

CALL DS PI 2 (J)

CALL N P (J,UPDATE(J))

CALL PI ST (J)

RETURNL
END
SUBROUTINE PI ST (J)
COMMON/STP/ A(2), HERE(3)
CALL DS PI (J,A,HERE)
RETURN
END
SUBROUTINE P3
COMMON/ALL/ TIME
COMMON/PPI/ BLANK(2) ,REQ
IF (TIME.NE.UPDATE) GO TO 100
. ENTRY P3 N (*)
CALL DS P3 1 (UPDARE,&l)
ENTRY P3 U (%)
GO TO (200,19,11), REQ
CALL DS P3 2 (&1l00)
CALL DS N 3 (8VT)
CALL DS P3 3 (8SVT)
CALL N P (3,UPDATE)
CALL PI 8T(3)
RETURNL
END
SUBROUTINE P ST
COMMON/CBRST/ H(3), F
COMMON/STP/ A(2), HERE(3)
LOGICAL HERE, H
P=1
IF (A(1l).GT.A(2)) F=2
DO 1 I=1,3
H(I)=HERE(I)
RETURN
END



Notés: D ST and N ST simply set Da=0,1
and NA=0,1,2 for unavailable, avail-
able, and in the latter case all
nurses busy but some are serving P3's.

DS D 1 has a doctor finishing; fur-
nishes possibly new update and DA=1
through D ST.

DS P 1 gets service time from P data
structure.

DS D 2 has a doctor begin service;
furnishes possibly new update and DA.

DS N 1 similar to DS D 1.

DS N 2 similar to DS D 2.

DS N 3 releases a nurse from last P3
to begin service; furnishes possibly
new update tlme, sets NA=l, and makes
remaining service time for bumped
patient available.

DS PI 1 has patient arrival, furnishes
possibly new update and appropriate
HERE and arrival time, .

DS PI 2 takes patient out of queue and
makes service time available.

PI(1) and PI(2) illustrate an indexed
product. This means that every
operation in the subsystém or its
data structure requires an index.

In case where large numbers of rou-
tines occur, DO loops can be used.
The PI ST routine is uséed by P3 as a
convenience.

Whether the data structures are
simple arrays or linked lists, there &are
no decisions to be made in any of the
entry points. Again, the way to under-
stand the model is to make one run. Our
experience has been that there is a
leveling off in complexity at about this
difficulty. In our model of the Southern
Railroad we were never forced to have more
simulation complex1ty at any one point.

The data proce551ng needed to operate on
trains in a given terminal required appro-
prlate expertise to achieve efficiency
but in any case it was always at points

in the simulation where 1t was well known
what had to be done.

Thé next two examples indicate the
kind of overall compléxity which can be
achieved with simple BR routines between
complex subsystems.

Example 3. Totally Bumping Clinic. This
is a clinic which operates like the one
in the previous example but in addition,
a doctor or nurse can be added or deleted
from the systém at any time. It can
almost be copiéd from the previous one.
The structure is

[Pz (1)} [pz(2)] [PI(3)] [s1(1)] [s1(2)]

BEach PI is modeled after P3 in the Clinic
and each SI is modeled after N of the
Clinic. B has all of the bumping requests
and C becomes an intermediate. In X BR
first check to see if personnel is to be
added--this case is easy. Then check 1f
personnel, one at a time, is to bé
deleted. This would require an indexed
bumping. Finally, there would be a
command to operate as usual.

Example 4. Emergency Clinic. This has a
regular clinic and an emergency clinic,
each operating as the TBC. 1In any case
where the emergency clinic needs personnel
which exists in the clinic then the trans-
fer is made. When the need no longer
exists the reverse transfer is made. fThe
structure is

where C and EC are isomorphic totally
bumping clinics. They can be indexed if
desired. The X BR simply monitors needs
and existence.

Refarences

[1]1] AAR Wetwork Simulétlon System, The:
A Tool for the Analysis of Railroad
Network Ooeratlons. Feébruary 1971.

[2] TUodges, H.E., "A Characterizing
Model for Discrete Simulations and-—
its Application to a Major Railway
System." Ph.D. dissertation, Clemson
"University, 1977.

[3] Jones, A.F., "A Theory for Discrete
Simulations: An Application to
Major Railway Systems." Ph.D. dig-
sertation, Clemson University, 1976.

[4] Matar, M.A., "A Comparison of Program
ming Theorles and Languages for Dis-
crete Simulation." Ph.D. dissertation;
Clemson University, 1977.

[5]1 Mertens, G.T., "A Programming Theory
for Continuous-discrete Hybrid Simu-~
lation." ©Ph.D. dissertation, Clemson
University, 1977.

[6] SIMTRAN: ©Preliminary User's Manual.

. Operations Research Department.
Southern Railway System. 1973.

249



