MULTIVARIATE RANKING AND SELECTION WITHOUT ."REDUCTION T0 A UNIVARIATE PROBLEM

ABSTRACT

"Ranking and selection” procedures are statis-
tical procedures appropriate for use in situations
where thie experimenter's goal is to "select the
best" (selection) or to "rank competing alterna-
tives" (ranking). These goals are often present
in simulation studies, which are often performed
in order to select that one of several procedures
(for running a real-world system) which is “best.”
EF«;r)a discussion of ranking in simulation, see

2).

Most previous work in this area has dealt
with situations where either one has a univariate
response, or where 8 simple univariate function of
the multivariate response characterizes the "good-
ness" of a procedure. (For example, see (3) for
an introduction and some procedures especially use-
ful in univariate-response simulation settings, (8)
for a comprehensive review of the area, and (4) for
a discussion of selection in simuletion and related
statistical problems and procedures.) In a recent
excellent expository book on the area (7), Gibbons,
Olkin, and Sobel noted (Chapter 15, p. 390) that
"The whole field [of multivariate-response ranking
and selection] is as yet undeveloped and the read-
er is encouraged to regard this chapter as an intro-
duction to a wide area that will see considerable
development in the future as more meaningful models
are formulated."

In this paper we outline & selection model
recently developed for this multiple-response pro-
blem (6) and develop an example of its use and
recommendations for its implementation.

I. INTRODUCTION

In many settings it is reasonable to assume
that the response (output) from a simulation of a
procedure has a multivariate normal distribution.
{For example; this is usually doné in optimization,
as in (1).) We will assume that when alternative
i (denoted :ﬁi) is simulated the response (output

of a run) follows & multivariate normal distribution
with p(> 1) component variates, mean vector T

and variance-covariance matrix i 5 (where 1 = 1,...,k

if k alternatives are being comparatively evaluated).
This is usually abbreviated by saying ny is
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Np(h, 2‘31) (L =1,...,k). We desire to study the

problem of selecting the "best" of T3 HpseeesKy o
In contrast to the optimization approach (see (1)),
we do not assume the p responses are independent,
and we specifically acknowledge that they are ran~ .
dom (whereas in the optimization approach one usual-
ly disregards the randomness) and seek to run our
simulation so as to be (e.g.) 904 sure that we do
in fact select the best alternative, .

II. MODEL

Let x, be Np(gi, Z‘i) for 1 = 1,...,k, and

assume p > 1. Here the k pxp variance-covariance
matrices 31, see ’Z‘k are assumed unknown, and need not

be equal. Let g(ga_,...,g‘k) be an experimenter-

specified function with possible values 1,2,...;k
and such that

S(gl, ose ’&k) = J

if and only if, given & choice among Byoeee ’.ﬁk’ the

(11.1)

experimenter would prefer u.. Lebt u = (u,,... )
Ry R™ oo ol
denote the set of true mean vectors and
Pj = {gﬁ 8(&) =3hL 3 =1,...5k,
~ ~
and note that Pl’ veosP.

(11.2)
x are disjoint preference sets

whose union is kp dimensionsl Euclidean space, lep.
Define the distance between any two points a and 2‘
~ ~

of IRkp as the usual Euclidean distance

kp
Ay R = (2 Gy -2, (1r.3)
and denote the distan_cie from B to the boundary of
P by
s(i) .
dy(w) = inffaly, R): R‘¢P8(K)} . (IT.4)

We now set our probability requirement as
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Multivariate Selection (continued)

(11.5)

That is, we desire a selection procedure & which

has probability at least P* of choosing the true

best population (event "CS") whenever the mean

vector i is at least Euclidean distance d* from
~

P(cs|@) > P* whenever a () > ax.

mean vectors where other populations are best.
Consider the following procedure ém specified

by its sampling rule (telling how many observations,
or simulation runs, are needed on each alternative)
and terminal decision rule (telling which alterna-
tive to select once all the runs have been made).
Sampling Rule for OBM' Select z > Q, an

integer n, > p, and & pXp positive-definite matrix
(cz.r s)" ‘Take observations from each and every pop-

Take n, ini-

ulation x, (c =1,...,k) as follows. Y

tial observations xcl,.. . ,cho vhere xci

1 =
= (xcn, xcai,...,xcpi) | (1 1,2,...,no) and

compute
n
= 1 (v}
X, == =X .
el N, g eid

n
o Y —
SCiJ ) ;El (xci‘ - xci)(xcjl - xéd) s (II.6)

1 ..
’cij = Iagziy scij’ 1, 3 = 1,2,0005p

Define the positive integer N e by

N, = mx{no + p2, .
‘ (II.'T)

: b
[« =

l+1},
1,34 .

35 Bety

vhere [q] denotes the largest integer less than g,
and select p (PN c) matrices

B et ac;‘
o1l ‘ mc
Acr - . (r = l,a,-..,P)
L T
L5 5
11)1 such a way that:
1) = =, .= 8 H
eryy ersn

0
2) A, M, = €, where 7 is the N X1 vector

- (151y4..,1)" and €r is the pix} vector whose
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rt—h element i3 1 and all other elements are

zero;
a R
m .
' rs i3,
3) AAL = z{a ") ® (sc ), where Al '
T v ] _
= (Al Ace"“’Acp)’ ® denotes the direct pro

duct, and (b29) denotes the inverse of the
mtrix (bij), r,i = 1,2,...,p .

Next take N ¢ Mo additional observations

xc,no-l-l” ..,Xdc ‘and compute
o p X,
X =3 z%a S (r=1,2,...,p). (11.8)

T ja] w1 iy

. g
For n_ construct the p-dimensional vector xc
~ ~
- (Xcl,....,xcp) ’ e-lgzgn’-,k .

Terminal Decision Rule for OHM' Select

"e@®, .0 %) - ' (11.9)

It is shown in (6) that selection procedure

OHM satisfies probability requirement (II.5), i.e.

if ve use OHM we have probability at least P¥ of
choosing the best alternative whenever dB(g) > ax,
~

The constant z > 0 in OHM is to be chosen so
that

k ~ ~ 2

b4 | X673 = #*} )] =
Pl 1§1 (T ) Eymgy) < (%) ] =p*x, (I1.10)

‘ -~ » :
While the distribution of (xl,... ,Xk) is indepen-
dent of (ﬂl,...,ﬂk) s it is very complicated (see
equations (2.12), (2.13) of (5)), hence calculation
of z > O which satisfies (II.10) is not a simple
matter. However, for large n, (a design constant
under the experimenter's control) we may approxi-
mate the solution since (see (6)) as
n, » ® the z > 0 which solves (II1.10) approaches
~ ~

the solution of (II.10) when (fl,... ,}_('k) is replaced
by (Yl,...,Yk) where Y ,...,Y, are independent ran-

i

solution may be calculated from equations (4.3) and
and (4.,5) in (6) or, more simply, by Monte Carlo,
(The authors are currently calculating tables of z.)

dom variables and Y, is -Np(‘gi, ,zp(a.")). This



III, EXAMPLE

In practice it may sometimes be reascnable to
specify the function g(ga_,... ,gk) of equation

(I1.1) as follows. Let
vy = v;}(h_’“"lik) .
" . (I11.31)

P
= e, ( 2 Ho(yer i)
P SR e A - L1

LresesVy b

where cl +eoot cp = 1 (the ci's‘ are welghts depend-

ing on the relative importance of the p factors in
the multivariate output or response) and
Hi'(“ J12 ¥ zi) is a function expressing the goodness

of the 12 component of ity Telative to the tb

component of y,. (The functions H (., ),
Ka i

i =1,2,,..,p , #ill in general not be linear.
One may often expect to have Hi be monotone in-

éreasing in p i oy if large means of the :l-12
component are desirable.) We then set

ey seeiopy) =3 if2
(1I1.2)

Vy > max(VysennsVy g5 Vopnsenesty)

(j = 1,...,k). Thus V‘,j can be interpreted as the

"value™ of population n, relative to

J

1,.00’1‘3_1’ “J"'l,‘..’,{k
tive with the largest relative value.
Suppose, for example, that p = 3 and we take

Hes = H
Hi(p'ji’ l""i) - "31 + e i 1

Fd and we desire the alterna-

(I11.3)

for all i =1,2,3, If k =3 (we have three
alternatives to consider), one possible set of

K1’ Ho Mg is (as an example)

[ (a.o Moy 1.%
Ba=|¥1o | = |20 Jske= 122 } 7| 15>
Lp.13 ll.O Hpg 3.0
, (1I1.4)
&N (2'0 :
Rg™ fH32| = +-2
\p.33 \2.0‘

For convenience 6f discussion, assume we are con-
sidering three (k = 3) alternative transportation
systems and each has p = 3 attributes (e.g.,
convenience, pollution, and cost). If equation
(I11.3) applies, then

V) = e (H,(2.0,2.0) + H, (2.0, 1.5) + K, (2.0,2.0))
+ c2(H2(2.,0;2..0) + Hy(2.0, 1.5) + Hy(2.0,1.5))

e c3(n3(1.o,1.o) + n3(1.o, 3.0) + n3(1.o,2.o))
- : - (TI1.5) .

= 9.6#'07c1 +10.297hc,  + 4.5032c, ,

Vp = ¢y (8, (1.5,2.0) + K, (1.5, 1.5) + K, (1.5,2.0))
+ ey(H,(1.5,2.0) + Hy(1.5, 1.5) + K, (1.5,1.5))
+ e5(H5(3.0,1.0) + Hy(3.0, 3.0) + H,(3.0,2.0))

: ' (I11.6)

= 6'713]‘°l + 7. 21.065c2 + 20,1073¢

3.
V, = ci(nl(z.o,a.o) + nl(a.o, 1.5) + 31(2.0,2.6))-
+ ca(H2(1.5,2.0) + 32‘(\1.5, 1.5) + 32(1.5,1.5))‘

+ ¢3(85(2.0,1.0) + Hy(2.0, 3.0) + 33'(2.0,2.0')),
(1I11.7)
+ 10.0862¢._ ,

9.6!;87c1 + T.1065¢, |

‘and (if the three components are weighted equally,

i.ecc) =c, = ey = 1/3) then.

vl = 8.1498, vV, = 11.3090, v3 = 8,9471 (III.8)

and we find that of the mean vectors (III.4) alter-
native two 1is preferred: :

8y s Ko ig) =2 -
(With otlier weightings (cl, Cys c3), other .

(111.9).

alternatives will be preferred. For example, if
convenience is most important and cost least we
may take e = .6, ey = .3, c3 = ,1l . Then

V:L = 9,3288, V2 = 8.1705, V3 = 8,9298 and alterna-

tive 1 will be preferred.) Note that if only
alternatives 1 and 2 wére present, we would have
"V, = 6.6487c. + 6.6487c, +.3.1353¢
o 1 2 3 (111.10)
v, = u.sossel + k.6065¢, +1u.3891c3

and could (for some s Cpy © prefer alternative

3)
1 while (with the same ¢y oy c3) we would prefer
alt. 2 of 1,2,3. (For example, if e wc, = .18

while ey = .16k, then in the case of three alterna-
tives v, = 9.0760, v, = 9.0742, v3 = 8,6578 and

’
alternative 1 is preferred, while if only alterna=
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Multivariate Selection (continued)

" tives 1 and 2 are present then V, = 6.0725,
v, = 6.2108 and alternative 2 is preferred.) This

non-transitivity is, as discussed in (6), both
desirable and present in many situations of true
multivariate nature, even though it has been dis-
paraged in most of the literature to date (Just

as, at one time, non-normality was believed widely
to0 be ab-normality). In cases where it is aifficult
to specify g(.) in advance, a method of judging of
the results by experts (generals, managers, etc.)
as in (9) may be used.
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